Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.227
Filtrar
1.
World Neurosurg ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986943

RESUMO

OBJECTIVE: As advances are made in quantitative magnetic resonance imaging, specifically diffusion tensor imaging, researchers have investigated its potential to serve as a biomarker of disease or prognosticator for post-operative recovery in the management of cervical spondylotic myelopathy. Here, we narratively review the current state of the emerging literature, describing areas of consensus and disagreement. METHODS: In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, we queried two large databases for original manuscripts published in English and systematically produced a narrative review of the use of diffusion tensor imaging in the management of cervical spondylotic myelopathy. RESULTS: Of the 437 manuscripts initially returned in our query, 29 met the final inclusion criteria, and data were extracted regarding diffusion tensor imaging indices and their relationships with clinical outcomes following surgery. Preoperative fractional anisotropy was most commonly found to correlate closely with post-surgical clinical outcomes, though results were mixed. CONCLUSION: Preoperative fractional anisotropy most frequently and best correlates with functional outcomes following surgery for cervical spondylotic myelopathy, according to a review of the current literature. The findings were not universal and at times contradictory, highlighting the need for high-quality future investigations to better define the utility of diffusion tensor imaging in spinal disease.

2.
Diagnostics (Basel) ; 14(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928642

RESUMO

BACKGROUND: Diffusion tensor imaging (DTI) has been increasingly recognized for its capability to study microstructural changes in the neuropathology of brain diseases. However, the optimal DTI metric and its diagnostic utility for a variety of spinal cord diseases are still under investigation. PURPOSE: To evaluate the diagnostic efficacy of DTI metrics for differentiating between cervical spondylosis, myelitis, and spinal tumors. METHODS: This retrospective study analyzed DTI scans from 68 patients (22 with cervical spondylosis, 23 with myelitis, and 23 with spinal tumors). DTI indicators, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD), were calculated. The Kruskal-Wallis test was used to compare these indicators, followed by Receiver Operating Characteristic (ROC) curve analysis, to evaluate the diagnostic efficacy of each indicator across disease pairs. Additionally, we explored the correlations of DTI indicators with specific clinical measurements. RESULTS: FA values were significantly lower in tumor patients compared to those with cervical spondylosis (p < 0.0001) and myelitis (p < 0.05). Additionally, tumor patients exhibited significantly elevated MD and RD values relative to the spondylosis and myelitis groups. ROC curve analysis underscored FA's superior discriminative performance, with an area under the curve (AUC) of 0.902 for differentiating tumors from cervical spondylosis, and an AUC of 0.748 for distinguishing cervical myelitis from spondylosis. Furthermore, a significant negative correlation was observed between FA values and Expanded Disability Status Scores (EDSSs) in myelitis patients (r = -0.62, p = 0.002), as well as between FA values and Ki-67 scores in tumor patients (r = -0.71, p = 0.0002). CONCLUSION: DTI indicators, especially FA, have the potential in distinguishing spondylosis, myelitis, and spinal cord tumors. The significant correlation between FA values and clinical indicators highlights the value of FA in the clinical assessment and prognosis of spinal diseases and may be applied in diagnostic protocols in the future.

3.
Front Neuroinform ; 18: 1415085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933144

RESUMO

Background: Quantitative maps obtained with diffusion weighted (DW) imaging, such as fractional anisotropy (FA) -calculated by fitting the diffusion tensor (DT) model to the data,-are very useful to study neurological diseases. To fit this map accurately, acquisition times of the order of several minutes are needed because many noncollinear DW volumes must be acquired to reduce directional biases. Deep learning (DL) can be used to reduce acquisition times by reducing the number of DW volumes. We already developed a DL network named "one-minute FA," which uses 10 DW volumes to obtain FA maps, maintaining the same characteristics and clinical sensitivity of the FA maps calculated with the standard method using more volumes. Recent publications have indicated that it is possible to train DL networks and obtain FA maps even with 4 DW input volumes, far less than the minimum number of directions for the mathematical estimation of the DT. Methods: Here we investigated the impact of reducing the number of DW input volumes to 4 or 7, and evaluated the performance and clinical sensitivity of the corresponding DL networks trained to calculate FA, while comparing results also with those using our one-minute FA. Each network training was performed on the human connectome project open-access dataset that has a high resolution and many DW volumes, used to fit a ground truth FA. To evaluate the generalizability of each network, they were tested on two external clinical datasets, not seen during training, and acquired on different scanners with different protocols, as previously done. Results: Using 4 or 7 DW volumes, it was possible to train DL networks to obtain FA maps with the same range of values as ground truth - map, only when using HCP test data; pathological sensitivity was lost when tested using the external clinical datasets: indeed in both cases, no consistent differences were found between patient groups. On the contrary, our "one-minute FA" did not suffer from the same problem. Conclusion: When developing DL networks for reduced acquisition times, the ability to generalize and to generate quantitative biomarkers that provide clinical sensitivity must be addressed.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38901756

RESUMO

BACKGROUND: Abnormal structure and function of gray matter (GM) have been discovered in the cortico-striatal-thalamic-cortical (CSTC) circuit in obsessive-compulsive disorder (OCD). The GM structure and function may be influenced by the structure and function of the white matter (WM). Therefore, it is crucial to explore the characteristics of WM in OCD. METHODS: Diffusion tensor imaging and resting-state functional magnetic resonance imaging data of 52 patients with OCD and 39 healthy controls (HCs) were collected. The tract-based spatial statistics, amplitude of low-frequency fluctuations (ALFF), and structural-functional coupling approaches were utilized to explore the WM structure and function. Furthermore, the relationship between the abnormal WM structure and function and clinical symptoms of OCD was investigated using Pearson's correlation. Support vector machine was performed to evaluate whether patients with OCD could be identified with the changed WM structure and function. RESULTS: Compared to HCs, the lower fractional anisotropy (FA) values of four clusters including the superior corona radiata, anterior corona radiata, right superior longitudinal fasciculus, corpus callosum, left posterior corona radiata, fornix, and the right anterior limb of internal capsule, reduced ALFF/FA ratio in the left anterior thalamic radiation (ATR), and the decreased functional connectivity between the left ATR and the left dorsal lateral prefrontal cortex within CSTC circuit at rest were observed in OCD. The decreased ALFF/FA ratio in the left ATR negatively correlated with Yale-Brown Obsessive-Compulsive Scale obsessive thinking scores and Hamilton Anxiety Rating Scale scores in OCD. Furthermore, the features that combined the abnormal WM structure and function performed best in distinguishing OCD from HCs with the appropriate accuracy (0.80), sensitivity (0.82), as well as specificity (0.80). CONCLUSION: Current research discovered changed WM structure and function in OCD. Furthermore, abnormal WM structural-functional coupling may lead to aberrant GM connectivity within the CSTC circuit at rest in OCD. TRIAL REGISTRATION: Study on the mechanism of brain network in obsessive-compulsive disorder with multi-model magnetic resonance imaging (ChiCTR-COC-17013301).

5.
J Huntingtons Dis ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38905054

RESUMO

Background: Diffusion magnetic resonance imaging (dMRI) has revealed microstructural changes in white matter (WM) in Huntington's disease (HD). Objective: To compare the validities of different dMRI, i.e., diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) in HD. Methods: 22 mutant huntingtin (mHTT) carriers and 14 controls were enrolled. Clinical assessments and dMRI were conducted. Based on CAG-Age Product (CAP) score, mHTT carriers were categorized into high CAP (hCAP) and medium and low CAP (m& lCAP) groups. Spearman analyses were used to explore correlations between imaging parameters in brain regions and clinical assessments. Receiver operating characteristic (ROC) was used to distinguish mHTT carriers from control, and define the HD patients at advanced stage. Results: Compared to controls, mHTT carriers exhibited WM changes in DKI and DTI. There were 22 more regions showing significant differences in HD detected by MK than FA. Only MK in five brain regions showed significantly difference between any two group, and negatively correlated with the disease burden (r = -0.80 to -0.71). ROC analysis revealed that MK was more sensitive and FA was more specific, while Youden index showed that the integration of FA and MK gave rise to higher authenticities, in distinguishing m& lCAP from controls (Youden Index = 0.786), and discerning different phase of HD (Youden Index = 0.804). Conclusions: Microstructural changes in WM occur at early stage of HD and deteriorate over the disease progression. Integrating DKI and DTI would provide the best accuracies for differentiating early HD from control and identifying advanced HD.

6.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38879808

RESUMO

Navigated repetitive transmagnetic stimulation is a non-invasive and safe brain activity modulation technique. When combined with the classical rehabilitation process in stroke patients it has the potential to enhance the overall neurologic recovery. We present a case of a peri-operative stroke, treated with ultra-early low frequency navigated repetitive transmagnetic stimulation over the contralesional hemisphere. The patient received low frequency navigated repetitive transmagnetic stimulation within 12 hours of stroke onset for seven consecutive days and a significant improvement in his right sided weakness was noticed and he was discharge with normal power. This was accompanied by an increase in the number of positive responses evoked by navigated repetitive transmagnetic stimulation and a decrease of the resting motor thresholds at a cortical level. Subcortically, a decrease in the radial, axial, and mean diffusivity were recorded in the ipsilateral corticospinal tract and an increase in fractional anisotropy, axial diffusivity, and mean diffusivity was observed in the interhemispheric fibers of the corpus callosum responsible for the interhemispheric connectivity between motor areas. Our case demonstrates clearly that ultra-early low frequency navigated repetitive transmagnetic stimulation applied to the contralateral motor cortex can lead to significant clinical motor improvement in patients with subcortical stroke.


Assuntos
Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Masculino , Estimulação Magnética Transcraniana/métodos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/cirurgia , Córtex Motor/fisiopatologia , Córtex Motor/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Tratos Piramidais/fisiopatologia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Potencial Evocado Motor/fisiologia
7.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854147

RESUMO

INTRODUCTION: Electrophysiology and plasma biomarkers are early and non-invasive candidates for Alzheimer's disease detection. The purpose of this paper is to evaluate changes in dynamic functional connectivity measured with magnetoencephalography, associated with the plasma pathology marker p-tau231 in unimpaired adults. METHODS: 73 individuals were included. Static and dynamic functional connectivity were calculated using leakage corrected amplitude envelope correlation. Each source's strength entropy across trials was calculated. A data-driven statistical analysis was performed to find the association between functional connectivity and plasma p-tau231 levels. Regression models were used to assess the influence of other variables over the clusters' connectivity. RESULTS: Frontotemporal dynamic connectivity positively associated with p-tau231 levels. Linear regression models identified pathological, functional and structural factors that influence dynamic functional connectivity. DISCUSSION: These results expand previous literature on dynamic functional connectivity in healthy individuals at risk of AD, highlighting its usefulness as an early, non-invasive and more sensitive biomarker.

8.
Hum Brain Mapp ; 45(8): e26706, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867646

RESUMO

We aimed to compare the ability of diffusion tensor imaging and multi-compartment spherical mean technique to detect focal tissue damage and in distinguishing between different connectivity patterns associated with varying clinical outcomes in multiple sclerosis (MS). Seventy-six people diagnosed with MS were scanned using a SIEMENS Prisma Fit 3T magnetic resonance imaging (MRI), employing both conventional (T1w and fluid-attenuated inversion recovery) and advanced diffusion MRI sequences from which fractional anisotropy (FA) and microscopic FA (µFA) maps were generated. Using automated fiber quantification (AFQ), we assessed diffusion profiles across multiple white matter (WM) pathways to measure the sensitivity of anisotropy diffusion metrics in detecting localized tissue damage. In parallel, we analyzed structural brain connectivity in a specific patient cohort to fully grasp its relationships with cognitive and physical clinical outcomes. This evaluation comprehensively considered different patient categories, including cognitively preserved (CP), mild cognitive deficits (MCD), and cognitively impaired (CI) for cognitive assessment, as well as groups distinguished by physical impact: those with mild disability (Expanded Disability Status Scale [EDSS] <=3) and those with moderate-severe disability (EDSS >3). In our initial objective, we employed Ridge regression to forecast the presence of focal MS lesions, comparing the performance of µFA and FA. µFA exhibited a stronger association with tissue damage and a higher predictive precision for focal MS lesions across the tracts, achieving an R-squared value of .57, significantly outperforming the R-squared value of .24 for FA (p-value <.001). In structural connectivity, µFA exhibited more pronounced differences than FA in response to alteration in both cognitive and physical clinical scores in terms of effect size and number of connections. Regarding cognitive groups, FA differences between CP and MCD groups were limited to 0.5% of connections, mainly around the thalamus, while µFA revealed changes in 2.5% of connections. In the CP and CI group comparison, which have noticeable cognitive differences, the disparity was 5.6% for FA values and 32.5% for µFA. Similarly, µFA outperformed FA in detecting WM changes between the MCD and CI groups, with 5% versus 0.3% of connections, respectively. When analyzing structural connectivity between physical disability groups, µFA still demonstrated superior performance over FA, disclosing a 2.1% difference in connectivity between regions closely associated with physical disability in MS. In contrast, FA spotted a few regions, comprising only 0.6% of total connections. In summary, µFA emerged as a more effective tool than FA in predicting MS lesions and identifying structural changes across patients with different degrees of cognitive and global disability, offering deeper insights into the complexities of MS-related impairments.


Assuntos
Imagem de Tensor de Difusão , Esclerose Múltipla , Substância Branca , Humanos , Feminino , Masculino , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Anisotropia , Adulto , Imagem de Tensor de Difusão/métodos , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Disfunção Cognitiva/etiologia
9.
Alzheimers Dement ; 20(7): 4401-4410, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38877688

RESUMO

INTRODUCTION: TAR DNA-binding protein 43 (TDP-43) is a highly prevalent proteinopathy that is involved in neurodegenerative processes, including axonal damage. To date, no ante mortem biomarkers exist for TDP-43, and few studies have directly assessed its impact on neuroimaging measures utilizing pathologic quantification. METHODS: Ante mortem diffusion-weighted images were obtained from community-dwelling older adults. Regression models calculated the relationship between post mortem TDP-43 burden and ante mortem fractional anisotropy (FA) within each voxel in connection with the hippocampus, controlling for coexisting Alzheimer's disease and demographics. RESULTS: Results revealed a significant negative relationship (false discovery rate [FDR] corrected p < .05) between post mortem TDP-43 and ante mortem FA in one cluster within the left medial temporal lobe connecting to the parahippocampal cortex, entorhinal cortex, and cingulate, aligning with the ventral subdivision of the cingulum. FA within this cluster was associated with cognition. DISCUSSION: Greater TDP-43 burden is associated with lower FA within the limbic system, which may contribute to impairment in learning and memory. HIGHLIGHTS: Post mortem TDP-43 pathological burden is associated with reduced ante mortem fractional anisotropy. Reduced FA located in the parahippocampal portion of the cingulum. FA in this area was associated with reduced episodic and semantic memory. FA in this area was associated with increased inward hippocampal surface deformation.


Assuntos
Hipocampo , Substância Branca , Humanos , Masculino , Feminino , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ligação a DNA/metabolismo , Imagem de Difusão por Ressonância Magnética , Anisotropia , Doença de Alzheimer/patologia , Demência , Proteinopatias TDP-43
10.
Psychiatry Res Neuroimaging ; 342: 111843, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896909

RESUMO

Schizophrenia is associated with robust white matter (WM) abnormalities but influences of potentially confounding variables and relationships with cognitive performance and symptom severity remain to be fully determined. This study was designed to evaluate WM abnormalities based on diffusion tensor imaging (DTI) in individuals with schizophrenia, and their relationships with cognitive performance and symptom severity. Data from individuals with schizophrenia (SZ; n=138, mean age±SD=39.02±11.82; 105 males) and healthy controls (HC; n=143, mean age±SD=37.07±10.84; 102 males) were collected as part of the Function Biomedical Informatics Research Network Phase 3 study. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were compared between individuals with schizophrenia and healthy controls, and their relationships with neurocognitive performance and symptomatology assessed. Individuals with SZ had significantly lower FA in forceps minor and the left inferior fronto-occipital fasciculus compared to HC. FA in several tracts were associated with speed of processing and attention/vigilance and the severity of the negative symptom alogia. This study suggests that regional WM abnormalities are fundamentally involved in the pathophysiology of schizophrenia and may contribute to cognitive performance deficits and symptom expression observed in schizophrenia.


Assuntos
Imagem de Tensor de Difusão , Esquizofrenia , Substância Branca , Humanos , Masculino , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Feminino , Adulto , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/fisiopatologia
11.
J Child Neurol ; : 8830738241261110, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853672

RESUMO

Background: To investigate whether there is a difference in mean diffusivity (MD) and fractional anisotropy (FA) values in the auditory pathways of neurofibromatosis type 1 patients with and without focal areas of abnormal signal intensity (FASI) compared to healthy controls by using diffusion tensor imaging (DTI). Methods: Patients were classified as group 1 with focal areas of abnormal signal intensity in the brainstem, group 2 without focal areas of abnormal signal intensity, and healthy control group 3 according to the MRI findings. Mean diffusivity and fractional anisotropy values of lateral lemniscus, inferior colliculus, corpus geniculatum mediale, Heschl gyrus, and brainstem were compared between groups. The correlation between mean diffusivity and fractional anisotropy values of auditory pathways and age was investigated. Results: There was a significant difference between group 1 and group 2 in terms of mean diffusivity and fractional anisotropy values at lateral lemniscus, inferior colliculus, corpus geniculatum mediale, and Heschl gyrus. Increased mean diffusivity and decreased fractional anisotropy values at brainstem were found in group 1. There was a significant difference between group 1 and group 3 in terms of mean diffusivity values at all auditory pathways. Fractional anisotropy values obtained from lateral lemniscus, inferior colliculus, and Heschl gyrus decreased in group 1 compared with group 3. There was a negative correlation between mean diffusivity values and positive correlation between fractional anisotropy values at lateral lemniscus, inferior colliculus, Heschl gyrus, and age. Conclusions: Our diffusion tensor imaging findings show that the neuronal integrity of the auditory pathways is affected in neurofibromatosis type 1 patients with brainstem focal areas of abnormal signal intensity. We think that the disappearance of brainstem focal areas of abnormal signal intensity associated with myelin repair and the regression of diffusion tensor imaging changes in the auditory pathways occur simultaneously with advancing age in patients with neurofibromatosis type 1.

12.
Front Neurosci ; 18: 1344653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726030

RESUMO

Introduction: Effects of dioxin exposure on gray matter volume have been reported in previous studies, but a few studies reported effects of dioxin exposure on white matter structure. Therefore, this study was undertaken to investigate the impact of dioxin exposure on white matter microstructure in men living in the most severely dioxin-contaminated areas in Vietnam. Methods: In 2019 brain MRI scans from 28 men living near Bien Hoa airbase were obtained at Dong Nai General Hospital, Vietnam, on a 3 T scanner using a conventional diffusion tensor imaging sequence. Two exposure markers were indicated by perinatal exposure estimated by assessment of maternal residency in a dioxin-contaminated area during pregnancy and by measurement of blood dioxin levels. A general linear model was used to compare fractional anisotropy (FA) values in 11 white matter tracts in both hemispheres between groups with and without perinatal dioxin exposure and groups with high and low blood dioxin levels after adjusting for covariates. Results: The adjusted mean FA value in the left cingulum hippocampal part (CGH) was significantly lower in the perinatal dioxin exposure group compared with the group without perinatal dioxin exposure. The high blood TCDD group showed significantly reduced FA values in the left and right CGH and right uncinate fasciculus (UNC). Moreover, the high blood TEQ-PCDDs group showed significantly lower FA values in the left and right CGH and the left UNC. There were no significant differences in FA values between the groups with high and low TEQ-PCDFs levels or between the groups with high and low TEQ-PCDD/Fs levels. Discussion: It was concluded that dioxin exposure during the perinatal period and adulthood may alter the microstructure of white matter tracts in individuals with neurodevelopmental disorders.

13.
Acta Radiol ; : 2841851241252716, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757268

RESUMO

BACKGROUND: Major brain injuries in structural brain magnetic resonance imaging (MRI) at term affect concurrent diffusion tensor imaging (DTI) parameters in very preterm infants. White matter is known to gradually maturate along with increasing gestational age, which is characterized by increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD). PURPOSE: To study the difference between DTI parameters at term and 13 years in adolescents born very preterm with and without major pathologies in structural brain MRI at term. MATERIAL AND METHODS: Adolescents born very preterm (gestational age <32 weeks and/or birth weight ≤1500 g) in 2004-2006 at Turku University Hospital, Finland were included. We evaluated FA and MD at term and 13 years in 18 regions of interest using the JHU-neonate-SS atlas to compare the differences in these parameters between adolescents with and without major injuries identified on MRI at term. RESULTS: A total of 24 adolescents underwent brain MRI including DTI both at term and 13 years. Adolescents with major brain injury pathologies (n = 6) in structural MRI at term had decreased FA in the left corpus callosum and right cingulate gyrus part, and increased MD in the left corpus callosum, right anterior limb of internal capsule, and right posterior limb of the internal capsule at 13 years, in comparison with adolescents without major brain injuries (n = 18) in structural MRI at term. CONCLUSION: Our findings suggest that major brain injuries identified on structural MRI at term affect brain maturation, with adverse effects in FA and MD still during adolescence.

14.
Surg Neurol Int ; 15: 110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628509

RESUMO

Background: Carpal tunnel syndrome (CTS) is diagnosed based on neurological, electrophysiology, and radiological findings. Due to the technical development of magnetic resonance imaging (MRI), the median nerve is evaluated with several MRI protocols. However, diffusion tensor imaging (DTI) combined with a dual-echo steady-state (DESS) protocol is not frequently used to evaluate the median nerve of CTS. This study aimed to evaluate the median nerve in the carpal tunnel using DTI combined with a DESS protocol. Methods: Five healthy volunteers and seven patients with CTS were enrolled. The patients underwent MRI for CTS pre- and post-operatively. The median nerve was evaluated using a 3-T MRI scanner. The parameters of the DESS protocol were as follows: Repetition time (TR)/echo time (TE) = 10.83/3.32 ms, slice thickness = 0.45 mm, field of view (FoV) = 350 × 253 × 350 mm, and 3D voxel size = 0.5 × 0.5 ×0.4 mm. The parameters of the DTI sequence were as follows: TR/TE = 4000/86 ms, slice thickness = 3 mm, FoV = 160 × 993 × 90 mm, 3D voxel size = 1.2 × 1.2 ×3.0 mm, and b value = 0.1000 s/mm2. The apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of the median nerve were statistically analyzed. Statistical significance was set at P< 0.05. Results: The FA value of healthy volunteers was 0.576 ± 0.058, while those of the patients were 0.357 ± 0.094 and 0.395 ± 0.062 pre-and post-operatively, respectively. Statistically significant differences were identified between the FA values of healthy volunteers and pre-operative/post-operative patients. The ADC values of healthy volunteers and pre-operative patients were 0.931 ± 0.096 and 1.26 ± 0.282 (10-3 mm2/s), respectively (P< 0.05). Conclusion: This MRI protocol may be useful for evaluating the median nerve in the carpal tunnel.

15.
Front Neurosci ; 18: 1374948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686326

RESUMO

Introduction: Cognitive impairment (CI) is a common complication of end-stage renal disease (ESRD) that is associated with structural and functional changes in the brain. However, whether a joint structural and functional alteration pattern exists that is related to CI in ESRD is unclear. Methods: In this study, instead of looking at brain structure and function separately, we aim to investigate the covariant characteristics of both functional and structural aspects. Specifically, we took the fusion analysis approach, namely, multimodal canonical correlation analysis and joint independent component analysis (mCCA+jICA), to jointly study the discriminative features in gray matter volume (GMV) measured by T1-weighted (T1w) MRI, fractional anisotropy (FA) in white matter measured by diffusion MRI, and the amplitude of low-frequency fluctuation (ALFF) measured by blood oxygenation-level-dependent (BOLD) MRI in 78 ESRD patients versus 64 healthy controls (HCs), followed by a mediation effect analysis to explore the relationship between neuroimaging findings, cognitive impairments and uremic toxins. Results: Two joint group-discriminative independent components (ICs) were found to show covariant abnormalities across FA, GMV, and ALFF (all p < 0.05). The most dominant joint IC revealed associative patterns of alterations of GMV (in the precentral gyrus, occipital lobe, temporal lobe, parahippocampal gyrus, and hippocampus), alterations of ALFF (in the precuneus, superior parietal gyrus, and superior occipital gyrus), and of white matter FA (in the corticospinal tract and inferior frontal occipital fasciculus). Another significant IC revealed associative alterations of GMV (in the dorsolateral prefrontal and orbitofrontal cortex) and FA (in the forceps minor). Moreover, the brain changes identified by FA and GMV in the above-mentioned brain regions were found to mediate the negative correlation between serum phosphate and mini-mental state examination (MMSE) scores (all p < 0.05). Conclusion: The mCCA+jICA method was demonstrated to be capable of revealing covariant abnormalities across neuronal features of different types in ESRD patients as contrasted to HCs, and joint brain changes may play an important role in mediating the relationship between serum toxins and CIs in ESRD. Our results show the mCCA+jICA fusion analysis approach may provide new insights into similar neurobiological studies.

16.
Brain Behav ; 14(5): e3500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685801

RESUMO

INTRODUCTION: The number of smartphone apps for brain training is increasing, and the number of people who are working on brain training is also increasing. However, researchers disagree about the effectiveness of brain training. METHODS: Therefore, in this study, we conducted an intervention test with the participation of 70 healthy middle-aged men and women and measured the effect of smartphone apps on lifestyle improvement using brain healthcare quotient calculated from brain imaging data. RESULTS: As a result, in the intervention group, significant improvements were seen in fractional anisotropy (FA) of the whole brain, corpus callosum, internal capsule, corona radiata, posterior thalamic radiation, external capsule, and superior longitudinal fasciculus. Additionally, in the intervention group, these FA increments correlated with improvements in cognitive function as measured by the trail-making test and vigor as measured by the Profile of Mood States 2nd Edition. CONCLUSION: The results of this study suggest that improving lifestyle habits through smartphone apps can improve brain health and cognitive and emotional performance of healthy middle-aged adults. This is consistent with previous research that suggests that FA integrity in the limbic-thalamo-cortical pathway influences cognitive function and emotion regulation.


Assuntos
Encéfalo , Cognição , Aplicativos Móveis , Smartphone , Humanos , Masculino , Feminino , Cognição/fisiologia , Pessoa de Meia-Idade , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Estilo de Vida , Imagem de Tensor de Difusão , Anisotropia
17.
Brain Behav Immun ; 119: 781-791, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677627

RESUMO

There are inter-individual differences in susceptibility to the influence of early life experiences for which the underlying neurobiological mechanisms are poorly understood. Microglia play a role in environmental surveillance and may influence individual susceptibility to environmental factors. As an index of neurodevelopment, we estimated individual slopes of mean white matter fractional anisotropy (WM-FA) across three time-points (age 4.5, 6.0, and 7.5 years) for 351 participants. Individual variation in microglia reactivity was derived from an expression-based polygenic score(ePGS) comprised of Single Nucleotide Polymorphisms (SNPs) functionally related to the expression of microglia-enriched genes.A higher ePGS denotes an increased genetic capacity for the expression of microglia-related genes, and thus may confer a greater capacity to respond to the early environment and to influence brain development. We hypothesized that this ePGS would associate with the WM-FA index of neurodevelopment and moderate the influence of early environmental factors.Our findings show sex dependency, where a significant association between WM-FA and microglia ePGS was only obtained for females.We then examined associations with perinatal factors known to decrease (optimal birth outcomes and familial conditions) or increase (systemic inflammation) the risk for later mental health problems.In females, individuals with high microglia ePGS showed a negative association between systemic inflammation and WM-FA and a positive association between more advantageous environmental conditions and WM-FA. The microglia ePGS in females thus accounted for variations in the influence of the quality of the early environment on WM-FA.Finally, WM-FA slopes mediated the association of microglia ePGS with interpersonal problems and social hostility in females. Our findings suggest the genetic capacity for microglia function as a potential factor underlying differential susceptibility to early life exposuresthrough influences on neurodevelopment.


Assuntos
Microglia , Polimorfismo de Nucleotídeo Único , Substância Branca , Humanos , Microglia/metabolismo , Feminino , Masculino , Criança , Pré-Escolar , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Fatores Sexuais , Herança Multifatorial
18.
Brain Res ; 1838: 148889, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552934

RESUMO

Table tennis training has been employed as an exercise treatment to enhance cognitive brain functioning in patients with mental illnesses. However, research on its underlying mechanisms remains limited. In this study, we investigated functional and structural changes in large-scale brain regions between 20 table tennis players (TTPs) and 21 healthy controls (HCs) using 7-Tesla magnetic resonance imaging (MRI) techniques. Compared with those of HCs, TTPs exhibited significantly greater fractional anisotropy (FA) and axial diffusivity (AD) values in multiple fiber tracts. We used the locations with the most significant structural changes in white matter as the seed areas and then compared static and dynamic functional connectivity (sFC and dFC). Brodmann 11, located in the orbitofrontal cortex, showed altered dFC values to large-scale brain regions, such as the occipital lobe, thalamus, and cerebellar hemispheres, in TTPs. Brodmann 48, located in the temporal lobe, showed altered dFC to the parietal lobe, frontal lobe, cerebellum, and occipital lobe. Furthermore, the AD values of the forceps minor (Fmi) and right anterior thalamic radiations (ATRs) were negatively correlated with useful field of view (UFOV) test scores in TTPs. Our results suggest that table tennis players exhibit a unique pattern of dynamic neural activity, this provides evidence for potential mechanisms through which table tennis interventions can enhance attention and other cognitive functions.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Substância Branca , Humanos , Substância Branca/fisiologia , Substância Branca/diagnóstico por imagem , Masculino , Encéfalo/fisiologia , Adulto Jovem , Adulto , Imageamento por Ressonância Magnética/métodos , Feminino , Imagem de Tensor de Difusão/métodos , Vias Neurais/fisiologia
19.
Spine J ; 24(8): 1352-1360, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38556218

RESUMO

BACKGROUND CONTEXT: The most frequent type of spinal cord injury is cervical spondylotic myelopathy (CSM). Conventional structural magnetic resonance imaging (MRI) is the gold diagnosis standard for CSM. Diffusion tensor imaging (DTI) could reflect microstructural changes in the spinal cord by tracing water molecular diffusion in early stages of CSM. However, due to the complex local anatomical structure and small field of view of the spinal cord, the imaging effect of traditional DTI imaging on the spinal cord is limited. MUSE (MUltiplexed Sensitivity-Encoding) -DTI is a novel diffusion-weighted imaging (DWI) sequence that achieves higher signal intensity through multiple excitation acquisition. MUSE sequence may improve the quality of spinal cord DTI imaging. STUDY DESIGN: Prospective study. PURPOSE: This study aimed to investigate the clinical diagnosis value of a novel protocol of MUSE-DTI in patients with cervical spondylotic myelopathy (CSM). PATIENT SAMPLE: From August 2021 to March 2022, a total of 60 subjects (22-71 years) were enrolled, including 51 CSM patients (22 males, 29 females) and 9 healthy subjects (4 males and 5 females). Each subject underwent a MUSE-DTI examination and a clinical Japanese Orthopedic Association (JOA) scale. OUTCOME MEASURES: We measured values of FA (Fractional Anisotropy), MD (Mean Diffusivity), AD (Axial Diffusivity), and RD (Radial Diffusivity), and collected the clinical JOA scores of each subject before the MR examination. METHODS: A 3.0T MR scanner (Signa Architect, GE Healthcare) performed the MUSE-DTI sequence on each subject. The cervical canal stenosis of subjects was classified from grade 0 to grade Ⅲ according to the method of an MRI grading system. FA, MD, AD, and RD maps were generated by postprocessing MUSE-DTI data on the GE workstation. Regions of interest (ROIs) were manually drawn at the C2 vertebral body level and C2/3-C6/7 intervertebral disc levels by covering the whole spinal cord. The clinical severity of myelopathy of subjects was assessed by the clinical Japanese Orthopedic Association scale (JOA). RESULTS: MUSE-DTI can acquire a high-resolution diffusion image compared to traditional DTI. The FAMCL values showed a decreasing trend from grade 0 to grade Ⅲ, while the MDMCL, ADMCL, and RDMCL values showed an overall increasing trend. Significant differences in MDMCL, ADMCL, and RDMCL values were found between adjacent groups among grades Ⅰ-Ⅲ (p<.05). The ADC2 values in CSM patients (grade I-Ⅲ) were significantly lower than in healthy individuals (grade 0) (p=.019). The clinical JOA score has a significant correlation with FAMCL (p=.035), MDMCL (p<.001), ADMCL (p<.001), and RDMCL (p<.001) values. CONCLUSIONS: MUSE-DTI displayed a better image quality compared to traditional DTI. MUSE-DTI parameters displayed a grade-dependent trend. All the MUSE-DTI parameters at MCL were correlated with the clinical JOA scores. The ADC2 values can reflect the secondary damage of distal spinal cord. Therefore, MUSE-DTI could be a reliable biomarker for clinical auxiliary diagnosis of spinal cord injury severity in cervical spondylotic myelopathy.


Assuntos
Vértebras Cervicais , Imagem de Tensor de Difusão , Estudos de Viabilidade , Espondilose , Humanos , Feminino , Imagem de Tensor de Difusão/métodos , Masculino , Pessoa de Meia-Idade , Espondilose/diagnóstico por imagem , Idoso , Vértebras Cervicais/diagnóstico por imagem , Adulto , Estudos Prospectivos , Doenças da Medula Espinal/diagnóstico por imagem , Adulto Jovem
20.
Pol J Radiol ; 89: e88-e105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510548

RESUMO

Purpose: Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy. Current diagnostic tests like genetic testing, needle electromyography, and muscle biopsy are either not easily available or invasive, and they are impractical for assessing disease progression and treatment outcomes. Therefore, there is a need for a non-invasive and accurate investigative modality for DMD. In recent years, musculoskeletal magnetic resonance imaging (MRI-MSK) along with fractional anisotropy (FA) and diffusion tensor imaging (DTI) have become major non-invasive tools. Material and methods: T1-weighted MRI-MSK and FA measures of DTI of 78 DMD patients were retrospectively studied to identify the distinct pattern of muscle involvement and fatty infiltration as age and/or disease progresses. Correlation analysis was performed between MRI-MSK grade score vs. age, muscle strength, and Vignos scale. Spearman's rank correlation coefficient was used. Results: As age increased, the MRI grade score and Vignos score increased. There was a statistically significant high positive correlation between MRI-MSK grade score and age, and low positive correlation with Vignos scores. With increasing age, the muscle strength on manual muscle testing (MMT) and FA value decreased. There was high negative correlation with muscle strength on MMT and low positive correlation between FA values and MMT score. Conclusions: On T1-weighted MRI, a distinct pattern, extent, and distribution of lower limb muscle involvement can be seen. MRI-MSK grade score worsens with progressing age, reducing strength, and increasing functional impairment. FA alone may not be an accurate marker in assessing progression of DMD. MRI-MSK and other DTI measures should be further explored as diagnostic and prognostic tools for DMD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA