Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Materials (Basel) ; 17(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39410309

RESUMO

This study utilized a bobbin tool to friction stir weld aluminum 6082 workpieces under two sets of process parameters: a tool rotation speed of 280 rev/min with a weld velocity of 280 mm/min (280/280) and a tool rotation speed of 450 rev/min with a weld velocity of 450 mm/min (450/450). The weld microstructures were characterized through optical microscopy utilizing polarized light and through transmission electron microscopy (TEM) and scanning electron microscopy (SEM) coupled with chemical analysis by energy dispersive spectroscopy and electron back scatter diffraction. The microstructural studies were supplemented by hardness measurements (Vickers) performed on the same sections as the metallographic examinations. The produced weldments were free from cracks and any discontinuities. Fine, equiaxed grains that were several microns in size characterized the stir zones (SZs), and the advancing (AS) and retreating (RS) sides revealed distinct microstructural features. On the AS, the transition from the thermo-mechanically affected zone to the SZ was well defined and sharp, but on the RS, the transition appeared as a continuous, gradual change in microstructure. The lower weld energy (280/280) produced lower hardness in the stir zone than the higher energy weld (450/450), ~95 HV1 versus ~115 HV1; however, the 280/280 welds showed higher tensile strengths than the 450/450 welds, ~238 MPa as opposed to ~172 MPa. These behaviors in mechanical performance correlated with the temperature histories produced by each set of weld parameters in relation to the precipitation behavior of the alloy. The fracture characteristics of the weldments were notably different with the 450/450 sample fracturing in a quasi-brittle manner with slight plastic deformation and the 280/280 sample fracturing ductilely. A numerical simulation supported the investigation by elucidating the temperature and material flow behavior during the joining process.

2.
Materials (Basel) ; 17(19)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39410445

RESUMO

Electron backscattered diffraction (EBSD) characterization was conducted on the typical regions in friction-stir-welded dissimilar Al/Mg joints of 2 mm thick sheets with/without ultrasonic assistance. The effects of ultrasonic vibration (UV) on the grain size, recrystallization mechanisms, and degree of recrystallization on both sides of the Al-Mg bonding interface and the intermetallic compounds (IMCs) were investigated. It was found that on the Mg side of the weld nugget zone (WNZ), the primary dynamic recrystallization (DRX) mechanisms were discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX), with geometric dynamic recrystallization (GDRX) playing a secondary role. On the Al side of the WNZ, CDRX was identified as the primary mechanism, with GDRX as a secondary contributor. While UV did not significantly alter the DRX mechanisms in either alloy within the WNZ, it promoted the aggregation and rearrangement of dislocations. This led to an increase in high-angle grain boundaries (HAGBs) and an enhanced degree of recrystallization in the welds. The average grain size in both the Al and Mg alloys of the WNZ followed a pattern of initially increasing and then decreasing along the thickness direction, reaching a maximum in the upper-middle part and a minimum at the bottom. The influence of UV on the average grain size in the WNZ was minimal, with only slight grain refinement observed, and the minimum refinement degree was only 0.9%. The Schmid factor (SF) on the WNZ and thermo-mechanically affected zone (TMAZ) boundary regions of the advancing side (AS) indicates that the application of UV increased the likelihood of basal slip and extension twinning in the crystal structure. In addition, UV reduced the thickness of IMCs and improved the strength of the Al-Mg bonding interface. These results suggest a higher probability of fracture along the TMAZ and WNZ boundary on the AS when UV was applied.

3.
Heliyon ; 10(19): e38351, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39397915

RESUMO

AA5083 is an alloy of military-grade aluminum used to make lightweight combat vehicles. Combining this material with traditional welding methods results in the formation of grain agglomerations, alloy separation, porosity, and pores. To overcome these shortcomings, Friction stir welding was utilized. In this work, the problems arising from friction stir welding are reduced by performing the process underwater. A relative study was also conducted to determine the impact of various tool pin profiles. particularly straight hexagonal, straight cylindrical, straight threaded, and tapered cylindrical. Friction stir welding and Underwater friction stir welding were used for welding Aluminium alloy AA5083 alloys of 150 x100 × 6 mm, constant tool rotational speed of 1200 rpm, tool transverse speed of 40 mm/min, and tool tilt angle of 0°. This study revealed that the straight hexagonal pin produced joint in an underwater cooling medium had a greater tensile strength (UTS) of 295 MPa and a joint efficiency of 78 %.

4.
Materials (Basel) ; 17(20)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39459680

RESUMO

Friction stir welding has been extensively applied for the high-quality bonding of Mg alloys. The welding temperature caused by friction and plastic deformation is essential for determining the joint characteristics, especially the residual stress and weld microstructure. In this work, a modified moving heat source model was proposed by considering the variations in heat generation caused by friction shear stress at both the side and bottom surfaces of the tool. The application of this model was further extended to the entire welding process, especially in the plunging stage. The relative errors between the experimental and simulated peak temperatures at characteristic points were small, with a maximum of 10%, thereby validating the model for accurate temperature prediction. Furthermore, the influence of welding and rotational speed on temperature fields was systematically investigated. At relatively low welding and rotational speeds, the welding temperature increased significantly with either an increase in rotational speed or a decrease in welding speed. However, this effect gradually diminished at higher welding and rotational speeds. These results provide some valuable guidelines for controlling heat generation to improve the quality of Mg alloy welds.

5.
Materials (Basel) ; 17(20)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39459686

RESUMO

In recent years, high-performance lightweight and multifunctional aluminum foam sandwiches (AFSs) can be successfully applied to spacecraft, automobiles, and high-speed trains. Friction stir welding (FSW) has been proposed as a new method for the preparation of AFS precursors in order to improve the cost-effectiveness and productivity of the preparation of AFS. In this study, the AFS precursors were prepared using the FSW process. The distribution of foaming agents in the AFS precursors and the structure and morphology of AFS were observed using optical microscopy (OM), scanning electron microscopy (SEM), and X-ray energy dispersive spectroscopy (EDS). The effects of the temperature and material flow on the distribution of the foaming agent during the FSW process were analyzed through experimental study and numerical simulation using ANSYS Fluent 19.0 software. The results show that the uniform distribution of the foaming agent in the matrix and excellent densification of AFS precursor can be prepared when the rotation speed is 1500 r/min, the travel speed is 25 mm/min, the tool plunge depth is 0.2 mm, and the tool moves along the retreating side (RS). In addition, the experimental and numerical simulations show that increasing the welding temperature improves the uniformity of foaming agent distribution and the area of AFS precursor prepared by single welding, shortening the thread length inhibits the foaming agent from reaching the upper sandwich plate and moving along the RS leads to a more uniform distribution of the foaming agent. Finally, the AFS with porosity of 74.55%, roundness of 0.97, and average pore diameter of 1.192 mm is prepared.

6.
Materials (Basel) ; 17(20)2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39459812

RESUMO

The friction stir welding (FSW) process is a unique combination of deformation and high temperature, which provides opportunities to modify microstructures through the adjustment of the processing parameters and is an ideal way to join non-weldable aluminum alloys by avoiding the formation of a molten pool. The 7xxx series heat-treatable aluminum alloys are widely used in the aerospace field as high-performance structural materials. The microstructure evolution and mechanical performance of these alloys are affected by the effects of thermomechanical processing, which provides opportunities to optimize the material properties by controlling microstructural features such as intermetallic constituent particles, dispersoids and nanoscale precipitates. This paper focuses on the basic principles of the thermal and mechanical effects generated during FSW on the evolution of second-phase particles in different zones of the weld.

7.
Materials (Basel) ; 17(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39336188

RESUMO

This study investigates the effects of a back plate preheating assistance system and deep rolling (DR) on axial force and tunnel defects during friction stir welding (FSW). Different preheating configurations-advancing side (AS), retreating side (RS), and both sides-were examined to evaluate their impact on axial force reduction, temperature distribution, and defect minimization. Axial force measurements were taken using a dynamometer, and temperature histories were recorded with a thermal camera. The results demonstrate that a preheating temperature of 200 °C is optimal, reducing axial force by 30.24% and enhancing material flow. This temperature also facilitated deeper tool penetration, especially when preheating was applied to both sides. Preheating on the AS resulted in the smallest tunnel defects, reducing defect size by 80.15% on the RS and 96.91% on the AS compared to the non-preheated condition. While DR further reduced tunnel defects, its effectiveness was limited by the proximity of defects to the surface. These findings offer significant insights for improving the FSW process.

8.
Materials (Basel) ; 17(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39336402

RESUMO

SA516 Gr.70 steels were welded by friction stir welding (FSW) under various media of air, water, and water + CO2 cooling, and the effect of the cooling media on the microstructure and mechanical properties of joints was systematically analyzed. The nugget zone (NZ) under the air-cooling condition contained coarse bainite + martensite. Martensite was obtained by decreasing the cooling media temperature. Furthermore, tensile fracturing of the joints occurred in the basal metal (BM), and the ultimate tensile strength of the joints under various cooling media was similar to that of the BM. However, with decreasing cooling media temperature, the total elongation of the joints noticeably increased. Good strength (545 MPa) and elongation (16.8%) were obtained in the joints under the water + CO2 cooling condition since the fine martensite microstructure enhanced the plastic deformation capacity of the joints. In addition, in the NZ under water + CO2 cooling condition, good toughness of 110 J/cm2 was obtained due to a high fraction of high-angle boundaries and fine martensite.

9.
Materials (Basel) ; 17(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39274580

RESUMO

Mg-Gd-Y-Zn-Mn (MVWZ842) is a kind of high rare earth magnesium alloy with high strength, high toughness and multi-scale strengthening mechanisms. After heat treatment, the maximum tensile strength of MVWZ842 alloy is more than 550 MPa, and the elongation is more than 5%. Because of its great mechanical properties, MVWZ842 has broad application potential in aerospace and rail transit. However, the addition of high rare earth elements makes the deformation resistance of MVWZ842 alloy increase to some extent. This leads to the difficulty of direct plastic processing forming and large structural part shaping. Friction stir welding (FSW) is a convenient fast solid-state joining technology. When FSW is used to weld MVWZ842 alloy, small workpieces can be joined into a large one to avoid the problem that large workpieces are difficult to form. In this work, a high-quality joint of MVWZ842 alloy was achieved by FSW. The microstructure and properties of this high-strength magnesium alloy after friction stir welding were studied. There was a prominent onion ring characteristic in the nugget zone. After the base was welded, the stacking fault structure precipitated in the grain. There were a lot of broken long period stacking order (LPSO) phases on the retreating side of the nugget zone, which brought the effect of precipitation strengthening. Nano-α-Mn and the broken second phase dispersed in the matrix in the nugget zone, which made the grains refine. A relatively complete dynamic recrystallization occurred in the nugget zone, and the grains were refined. The welding coefficient of the welded joint exceeded 95%, and the hardness of the weld nugget zone was higher than that of the base. There were a series of strengthening mechanisms in the joint, mainly fine grain strengthening, second phase strengthening and solid solution strengthening.

10.
Materials (Basel) ; 17(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39203223

RESUMO

Friction stir welding (FSW) and ultrasonic vibration enhanced FSW (UVeFSW) experiments were conducted by using 6061-T6 Al alloy and AZ31B-H24 Mg alloy sheets of thickness 2 mm. The suitable process parameters windows were obtained for the butt joining of Al/Mg sheets. The effect of ultrasonic vibration on the macrostructure and mechanical properties of the dissimilar joints was studied. The results showed that the width of the weld nugget zone (WNZ) was enlarged to some extent and the hardness distribution in WNZ was more uniform in UVeFSW. In addition, the application of ultrasonic vibration effectively promoted the interpenetration degree of dissimilar materials in the WNZ so that the mechanical interlocking on the bonding interface of dissimilar Al/Mg materials was enhanced. The facture positions were changed from the bonding interface in FSW to the boundary between WNZ and the thermo-mechanical affected zone, and the ductile fracture zone was expanded. The highest ultimate tensile strength was 205 MPa at the process parameters set of 1200 rpm-50 mm/min in UVeFSW in this experiment. The average ultimate tensile strength of FSW/UVeFSW joints was 172.3 MPa and 184.4 MPa, respectively, and the average ultimate tensile strength was increased by 7.02% with the introduction of ultrasonic vibration.

11.
Materials (Basel) ; 17(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124303

RESUMO

For damage tolerance design in engineering components, the fracture toughness value, KIC, of the material is essential. However, obtaining specimens of sufficient thickness from stir friction welded plates is challenging, and often, the experimental test values do not meet the necessary criteria, preventing the experimental fracture toughness, Kq, from being recognized as plane strain fracture toughness KIC. The fracture toughness Kq of 2195 Al-Li alloy welding seams with different thicknesses was measured on the forward and backward sides. Microstructure characterization was conducted by scanning electron microscope (SEM). The results indicated minimal significant differences in grain size between the advancing and retreating sides of the weld nugget zone. In specimens of the same thickness, fracture toughness measurements along the normal direction of the joint cross-section showed a high similarity between the advancing and retreating sides of the weld nugget zone. Utilizing the quantitative relationships between fracture toughness and sample thickness derived from both the fracture K and G criteria, it is possible to predict the fracture toughness of thick plates using thin plates. This study employs these relationships to calculate the fracture toughness KIC of 2195 aluminum-lithium alloy friction stir welds. The KIC values obtained are 41.65 MPa·m1/2 from the fracture K criterion and 43.54 MPa·m1/2 from the fracture G criterion.

12.
Materials (Basel) ; 17(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124368

RESUMO

A novel dual-speed tool for which the shoulder and pin rotation speeds are separately established was utilized to friction stir weld cast magnesium AZ91 with wrought aluminum 6082-T6. To assess the performance and efficacy of the dual-speed tool, baseline dissimilar welds were also fabricated using a conventional FSW tool. Optical microscopy characterized the weld microstructures, and a numerical simulation enhanced the understanding of the temperature and material flow behaviors. For both tool types, regions of the welds contained significant amounts of the AZ91 primary eutectic phase, Al12Mg17, indicating that weld zone temperatures exceeded the solidus temperature of α-Mg (470 °C). Liquation, therefore, occurred during processing with subsequent eutectic formation upon cooling below the primary eutectic temperature (437 °C). The brittle character of the eutectic phase promoted cracking in the fusion zone, and the "process window" for quality welds was narrow. For the conventional tool, offsetting to the aluminum side (advancing side) mitigated eutectic formation and improved weld quality. For the dual-speed tool, experimental trials demonstrated that separate rotation speeds for the shoulder and pin could mitigate eutectic formation and produce quality welds without an offset at relatively higher weld speeds than the conventional tool. Exploration of various weld parameters coupled with the simulation identified the bounds of a process window based on the percentage of weld cross-section exceeding the eutectic temperature and on the material flow rate at the tool trailing edge. For the dual-speed tool, a minimum flow rate of 26.0 cm3/s and a maximum percentage of the weld cross-section above the eutectic temperature of 35% produced a defect-free weld.

13.
Materials (Basel) ; 17(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124414

RESUMO

High-strength dissimilar aluminum alloys are difficult to connect by fusion welding, while they can be successfully joined by friction stir welding (FSW). However, the asymmetrical deformation and heat input that occur during FSW result in the formation of a heterogeneous microstructure in their welded zone. In this work, the grain structure and texture evolution in the bottom zones of dissimilar FSW AA2024-T351 and AA7075-T651 joints at different welding speeds (feeding speeds) were quantitatively investigated. The results indicated that dynamic recrystallization occurs in the bottom zones of dissimilar FSW joints, and equiaxed grains with low grain sizes are formed at the welding speed of 60-240 mm/min. A high fraction of the recrystallized grains were generated in the bottom zones of the joints at a low welding speed, while a high fraction of the substructured grains are produced at a high welding speed. Different types of shear textures are produced in the bottom zones of the joints; the number fraction of shear texture types depends on different welding speeds. This study helps to understand the mechanism of microstructure homogenization in dissimilar FSW joints and provides a basis for further improving the microstructure of the welded zone for engineering applications.

14.
Biomimetics (Basel) ; 9(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39056868

RESUMO

In this study, based on the principles of bionics, we fabricated a bionic non-smooth concave pit structure on the shoulders of friction stir welding tools and detected the thermal cycling curve, downforce, and torque of the tool in the welding process. We tested the wear loss weight and analyzed the surface morphology of the shoulder surfaces after welding for 200 m. This study found that as the distance between the concave pits decreased and the number of concave pits increased, the maximum downforce, torque, and temperature in the welding process showed a decreasing trend. As the speed increased, no matter how the tool structure changed, the downforce and torque decreased, while the peak thermal cycle temperature increased. The experimental welding results show that the wear loss weight of the non-smooth structure tool significantly reduced. The lowest wear loss weight of the tool with a concave pit interval of 1.125 mm was only 0.1529 g, which is 27% lower than that of the conventional tool. Our observations of the surface morphology of the tool shoulder after welding showed that the amount of aluminum swarf on the tool shoulder of the welding tool gradually declined with the increasing density of the uneven pits. The lowest number of aluminum chips adhered to a welding tool with a pit distance of 1.125 mm. Therefore, friction stir welding tools with biomimetic structures have better wear resistance and adhesion resistance.

15.
Materials (Basel) ; 17(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38998157

RESUMO

The process of grain refinement during welding significantly influences both the final microstructure and performance of the weld joint. In the present work, merits of acoustic addition in the conventional Frictions Stir Welding (FSW) process were evaluated for joining dissimilar Al/Mg alloys. To capture the near "in situ" structure around the exit hole, an "emergency stop" followed by rapid cooling using liquid nitrogen was employed. Electron Backscatter Diffraction analysis was utilized to characterize and examine the evolution of grain microstructure within the aluminum matrix as the material flowed around the exit hole. The findings reveal that two mechanisms, continuous dynamic recrystallization (CDRX) and geometric dynamic recrystallization (GDRX), jointly or alternatively influence the grain evolution process. In conventional FSW, CDRX initially governs grain evolution, transitioning to GDRX as material deformation strain and temperature increase. Subsequently, as material deposition commences, CDRX reasserts dominance. Conversely, in acoustic addition, ultrasonic vibration accelerates GDRX, promoting its predominance by enhancing material flow and dislocation movements. Even during the material deposition, GDRX remains the dominant mechanism.

16.
Materials (Basel) ; 17(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38998415

RESUMO

The aim of this work is to study joining Al 2024-T3 alloy plates with different welding procedures. Aluminum alloy AA 2024-T351 is especially used in the aerospace industry. Aluminum plates are welded by the TIG and MIG fusion welding process, as well as by the solid-state welding process, friction stir welding (FSW), which has recently become very important in aluminum and alloy welding. For welding AA2024-T35 with MIG and TIG fusion processes, the filler material ER 4043-AlSi5 was chosen because of reduced cracking. Different methods were used to evaluate the quality of the produced joints, including macro- and microstructure evaluation, in addition to hardness and tensile tests. The ultimate tensile strength (UTS) of the FSW sample was found to be 80% higher than that of MIG and TIG samples. The average hardness value of the weld zone of metal for the MIG- and TIG-produced AA2024-T3511 butt joints showed a significant decrease compared to the hardness of the base metal AA2024-T351 by 50%, while for FSW joints, in the nugget zone, the hardness is about 10% lower relative to the base metal AA2024-T3511.

17.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000646

RESUMO

Parts produced using a 3D printer are combined with friction stir welding (FSW). In the FSW processing of parts with a low infill ratio, welding errors occur due to a lack of material. In this study, plates were created using two different-colored PLA Plus filaments with different infill ratios in the weld area (20%, 60%, and 100%). Triangular pin geometry, different feed rates (20, 40, and 60 mm/min), and different tool rotation speeds (1250, 1750, and 2250 rpm) were used as FSW process parameters. Tensile testing was performed to determine weld strength and hardness measurements, and visual inspections were performed. Color measurements were made on the test samples before and after the welding process, and the relationship between welding performance and color was evaluated. The best welding strength was obtained as 17.83 ± 0.68 MPa at a feed rate of 20 mm/min, a tool rotation speed of 1750 rpm, and a part with a 60% infill ratio in the welding zone. In the sample with the best weld strength, the temperature was measured as 198.97 °C. Color changes in the weld area of parts with 60% and 100% infill ratios were measured between 78.9-82.2 and 79.1-84.5, respectively. It was determined that the color change decreases as the weld strength increases in these parts. The results show that with the proposed new part design, the FSW method can be used at low infill ratios, and the weld strength can be evaluated based on the color changes in the weld zone.

18.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000750

RESUMO

Additive manufacturing (AM), also known as 3D printing, offers many advantages and, particularly in the medical field, it has stood out for its potential for the manufacture of patient-specific implantable devices. Thus, the unique properties of 3D-printed biocompatible polymers such as Polylactic Acid (PLA) and Polyetheretherketone (PEEK) have made these materials the focus of recent research where new post-processing and joining techniques need to be investigated. This study investigates the weldability of PLA and PEEK 3D-printed plates through stationary shoulder friction stir welding (SS-FSW) with assisted heating. An SS-FSW apparatus was developed to address the challenges of rotating shoulder FSW of thermoplastics, with assisted heating either through the shoulder or through the backing plate, thus minimizing material removal defects in the welds. Successful welds revealed that SS-FSW improves surface quality in both PLA and PEEK welds compared to rotating shoulder tools. Process parameters for PLA welds are investigated using the Taguchi method, emphasizing the importance of lower travel speeds to achieve higher joint efficiencies. In PEEK welds, the heated backing plate proved effective in increasing process heat input and reducing cooldown rates which were associated with higher crystallinity PEEK. Despite these findings, further research is needed to improve the weld strength of SS-FSW with these materials considering aspects like tool design, process stability, and 3D printing parameters. This investigation emphasizes the potential of SS-FSW in the assembly of thermoplastic materials, offering insights into the weldability of additively manufactured biocompatible polymers like PLA and PEEK.

19.
Materials (Basel) ; 17(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39063778

RESUMO

Friction stir welding was utilized to obtain high-quality SUS301L stainless steel joints, whose mechanical and corrosion properties were thoroughly evaluated. Sound joints were obtained with a wide range of rotational velocities from 400 to 700 rpm. The microstructures of the stir zone primarily consisted of austenite and lath martensite without the formation of detrimental phases. The ultimate tensile strength of the welded joints improved with higher rotational velocities apart from 400 rpm. The ultimate tensile strength reached 813 ± 16 MPa, equal to 98.1 ± 1.9% of the base materials (BMs) with a rotational velocity of 700 rpm. The corrosion resistance of the FSW joints was improved, and the corrosion rates related to uniform corrosion with lower rotational velocities were one order of magnitude lower than that of the BMs, which was attributed to the lower martensite content. However, better anti-pitting corrosion performance was obtained with a high rotational velocity of 700 rpm, which was inconsistent with the uniform corrosion results. It could be speculated that a higher martensitic content had a negative effect on the uniform corrosion performance, but had a positive effect on the improvement of the anti-pitting corrosion ability.

20.
Materials (Basel) ; 17(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930252

RESUMO

In this study, two-mm-thick dual-phase LA103Z Mg-Li and 6061 Al alloys, known for their application in lightweight structural designs, were joined using dynamic support friction stir lap welding (DSFSLW). The microstructural evolution and mechanical properties of dissimilar joints were investigated at different welding speeds. The analysis revealed two distinct interfaces: the diffusion interface and the mixed interface. The diffusion interface, characterized by a pronounced diffusion zone, is formed under slower welding speeds. The diffusion zone height, the effective lap width, and the interface layer thickness decrease with increasing welding speed due to low plastic deformation capacity and weak interfacial reactions. Conversely, the mixed interface, associated with higher welding speeds, contained large Al fragments. The extremely high microhardness values (130.5 HV) can be ascribed to the formation of intermetallic compounds (IMCs) and strain-hardened Al fragments. Notably, the maximum shear strength achieved was 175 N/mm at a welding speed of 20 mm/min. The fracture behavior varied significantly with the interface type; the diffusion interface showed enhanced mechanical strength due to better intermetallic reactions and interlocking structures, while the mixed interface displayed more linear crack propagation due to weaker IMCs and the absence of hook structures. Fracture surface analysis indicates that fractures are more likely to propagate through the Al matrix and interface layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA