Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.281
Filtrar
1.
J Biophotonics ; : e202400138, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952169

RESUMO

Neurological disorders such as Parkinson's disease (PD) often adversely affect the vascular system, leading to alterations in blood flow patterns. Functional near-infrared spectroscopy (fNIRS) is used to monitor hemodynamic changes via signal measurement. This study investigated the potential of using resting-state fNIRS data through a convolutional neural network (CNN) to evaluate PD with orthostatic hypotension. The CNN demonstrated significant efficacy in analyzing fNIRS data, and it outperformed the other machine learning methods. The results indicate that judicious input data selection can enhance accuracy by over 85%, while including the correlation matrix as an input further improves the accuracy to more than 90%. This study underscores the promising role of CNN-based fNIRS data analysis in the diagnosis and management of the PD. This approach enhances diagnostic accuracy, particularly in resting-state conditions, and can reduce the discomfort and risks associated with current diagnostic methods, such as the head-up tilt test.

2.
Neuroimage ; 297: 120714, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950665

RESUMO

Previous neuroimaging studies have reported dual-task interference (DTi) and deterioration of task performance in a cognitive-motor dual task (DT) compared to that in a single task (ST). Greater frontoparietal activity is a neural signature of DTi; nonetheless, the underlying mechanism of cortical network in DTi still remains unclear. This study aimed to investigate the regional brain activity and neural network changes during DTi induced by highly demanding cognitive-motor DT. Thirty-four right-handed healthy young adults performed the spiral-drawing task. They underwent a paced auditory serial addition test (PASAT) simultaneously or independently while their cortical activity was measured using functional near-infrared spectroscopy. Motor performance was determined using the balanced integration score (BIS), a balanced index of drawing speed and precision. The cognitive task of the PASAT was administered with two difficulty levels defined by 1 s (PASAT-1 s) and 2 s (PASAT-2 s) intervals, allowing for the serial addition of numbers. Cognitive performance was determined using the percentage of correct responses. These motor and cognitive performances were significantly reduced during DT, which combined a drawing and a cognitive task at either difficulty level, compared to those in the corresponding ST conditions. The DT conditions were also characterized by significantly increased activity in the right dorsolateral prefrontal cortex (DLPFC) compared to that in the ST conditions. Multivariate Granger causality (GC) analysis of cortical activity in the selected frontoparietal regions of interest further revealed selective top-down causal connectivity from the right DLPFC to the right inferior parietal cortex during DTs. Furthermore, changes in the frontoparietal GC connectivity strength between the PASAT-2 s DT and ST conditions significantly correlated negatively with changes in the percentage of correct responses. Therefore, DTi can occur even in cognitively proficient young adults, and the right DLPFC and frontoparietal network being crucial neural mechanisms underlying DTi. These findings provide new insights into DTi and its underlying neural mechanisms and have implications for the clinical utility of cognitive-motor DTs applied to clinical populations with cognitive decline, such as those with psychiatric and brain disorders.

3.
Front Hum Neurosci ; 18: 1338453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952645

RESUMO

Introduction: As robot teleoperation increasingly becomes integral in executing tasks in distant, hazardous, or inaccessible environments, operational delays remain a significant obstacle. These delays, inherent in signal transmission and processing, adversely affect operator performance, particularly in tasks requiring precision and timeliness. While current research has made strides in mitigating these delays through advanced control strategies and training methods, a crucial gap persists in understanding the neurofunctional impacts of these delays and the efficacy of countermeasures from a cognitive perspective. Methods: This study addresses the gap by leveraging functional Near-Infrared Spectroscopy (fNIRS) to examine the neurofunctional implications of simulated haptic feedback on cognitive activity and motor coordination under delayed conditions. In a human-subject experiment (N = 41), sensory feedback was manipulated to observe its influences on various brain regions of interest (ROIs) during teleoperation tasks. The fNIRS data provided a detailed assessment of cerebral activity, particularly in ROIs implicated in time perception and the execution of precise movements. Results: Our results reveal that the anchoring condition, which provided immediate simulated haptic feedback with a delayed visual cue, significantly optimized neural functions related to time perception and motor coordination. This condition also improved motor performance compared to the asynchronous condition, where visual and haptic feedback were misaligned. Discussion: These findings provide empirical evidence about the neurofunctional basis of the enhanced motor performance with simulated synthetic force feedback in the presence of teleoperation delays. The study highlights the potential for immediate haptic feedback to mitigate the adverse effects of operational delays, thereby improving the efficacy of teleoperation in critical applications.

4.
Asian J Psychiatr ; 99: 104137, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38959836

RESUMO

Executive impairment in schizophrenia is common, but the mechanism remains unclear. This is the first study to use simultaneously functional near-infrared spectroscopy (fNIRS) to monitor the hemodynamic response in schizophrenia during the MATRICS Consensus Cognitive Battery (MCCB). Here, we monitored relative changes in oxyhemoglobin concentration in the medial prefrontal cortex (mPFC) during Trail Making Test, Symbol Coding Test and Mazes Test of the MCCB in 63 patients (29 females) with schizophrenia and 32 healthy controls (15 females). Results showed that patients with schizophrenia scored lower than healthy controls on all three tests (P < 0.001), but mPFC activation was significantly higher during the test (P < 0.03). Higher activation of the mPFC may reflect abnormal information processing in schizophrenia. In addition, the results also showed sex differences in hemodynamic activation during the task in patients with schizophrenia, and fNIRS has the potential to be a clinical adjunct to screening for cognitive function in schizophrenia.

5.
Neurophotonics ; 11(3): 035001, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962430

RESUMO

Significance: We explore the feasibility of using time-domain (TD) and continuous-wave (CW) functional near-infrared spectroscopy (fNIRS) to monitor brain hemodynamic oscillations during resting-state activity in humans, a phenomenon that is of increasing interest in the scientific and medical community and appears to be crucial to advancing the understanding of both healthy and pathological brain functioning. Aim: Our general object is to maximize fNIRS sensitivity to brain resting-state oscillations. More specifically, we aim to define comprehensive guidelines for optimizing main operational parameters in fNIRS measurements [average photon count rate, measurement length, sampling frequency, and source-detector distance (SSD)]. In addition, we compare TD and CW fNIRS performance for the detection and localization of oscillations. Approach: A series of synthetic TD and CW fNIRS signals were generated by exploiting the solution of the diffusion equation for two different geometries of the probed medium: a homogeneous medium and a bilayer medium. Known and periodical perturbations of the concentrations of oxy- and deoxy-hemoglobin were imposed in the medium, determining changes in its optical properties. The homogeneous slab model was used to determine the effect of multiple measurement parameters on fNIRS sensitivity to oscillatory phenomena, and the bilayer model was used to evaluate and compare the abilities of TD and CW fNIRS in detecting and isolating oscillations occurring at different depths. For TD fNIRS, two approaches to enhance depth-selectivity were evaluated: first, a time-windowing of the photon distribution of time-of-flight was performed, and then, the time-dependent mean partial pathlength (TMPP) method was used to retrieve the hemoglobin concentrations in the medium. Results: In the homogeneous medium case, the sensitivity of TD and CW fNIRS to periodical perturbations of the optical properties increases proportionally with the average photon count rate, the measurement length, and the sampling frequency and approximatively with the square of the SSD. In the bilayer medium case, the time-windowing method can detect and correctly localize the presence of oscillatory components in the TD fNIRS signal, even in the presence of very low photon count rates. The TMPP method demonstrates how to correctly retrieve the periodical variation of hemoglobin at different depths from the TD fNIRS signal acquired at a single SSD. For CW fNIRS, measurements taken at typical SSDs used for short-separation channel regression show notable sensitivity to oscillations occurring in the deep layer, challenging the assumptions underlying this correction method when the focus is on analyzing oscillatory phenomena. Conclusions: We demonstrated that the TD fNIRS technique allows for the detection and depth-localization of periodical fluctuations of the hemoglobin concentrations within the probed medium using an acquisition at a single SSD, offering an alternative to multi-distance CW fNIRS setups. Moreover, we offered some valuable guidelines that can assist researchers in defining optimal experimental protocols for fNIRS studies.

6.
Neuroimage ; 297: 120725, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977040

RESUMO

Phasic cardiac vagal activity (CVA), reflecting ongoing, moment-to-moment psychophysiological adaptations to environmental changes, can serve as a predictor of individual difference in executive function, particularly executive performance. However, the relationship between phasic CVA and executive function demands requires further validation because of previous inconsistent findings. Moreover, it remains unclear what types of phasic changes of CVA may be adaptive in response to heightened executive demands. This study used the standard N-back task to induce different levels of working memory (WM) load and combined functional Near-Infrared Spectroscopy (fNIRS) with a multipurpose polygraph to investigate the variations of CVA and its interactions with cognitive and prefrontal responses as executive demands increased in fifty-two healthy young subjects. Our results showed phasic decreases in CVA as WM load increased (t (51) = -3.758, p < 0.001, Cohen's d = 0.526). Furthermore, phasic changes of CVA elicited by increased executive demands moderated the association of cognitive and cerebral hemodynamic variations in the prefrontal cortex (B = 0.038, SE = 0.014, p < 0.05). Specifically, as executive demands increased, individuals with larger phasic CVA withdrawal showed a positive relationship between cognitive and hemodynamic variations in the prefrontal cortex (ß = 0.281, p = 0.031). No such significant relationship was observed in individuals with smaller phasic CVA withdrawal. The current findings demonstrate a decrease in CVA with increasing executive demands and provide empirical support for the notion that a larger phasic CVA withdrawal can be considered adaptive in situations requiring high executive function demands.

7.
Neuroimage ; 297: 120726, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986794

RESUMO

Internet gaming disorder (IGD) prompts inquiry into how feedback from prior gaming rounds influences subsequent risk-taking behavior and potential neural mechanisms. Forty-two participants, including 15 with IGD and 27 health controls (HCs), underwent a sequential risk-taking task. Hierarchy Bayesian modeling was adopted to measure risky propensity, behavioral consistence, and affection by emotion ratings from last trial. Concurrent electroencephalogram and functional near-infrared spectroscopy (EEG-fNIRS) recordings were performed to demonstrate when, where and how the previous-round feedback affects the decision making to the next round. We discovered that the IGD illustrated heightened risk-taking propensity as compared to the HCs, indicating by the computational modeling (p = 0.028). EEG results also showed significant time window differences in univariate and multivariate pattern analysis between the IGD and HCs after the loss of the game. Further, reduced brain activation in the prefrontal cortex during the task was detected in IGD as compared to that of the control group. The findings underscore the importance of understanding the aberrant decision-making processes in IGD and suggest potential implications for future interventions and treatments aimed at addressing this behavioral addiction.

8.
Sci Rep ; 14(1): 15587, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971930

RESUMO

Identifying the types of exercise that enhance cerebral blood flow is crucial for developing exercise programs that enhance cognitive function. Nevertheless, few studies have explored the amount of light-intensity, short-duration exercises that individuals can easily perform on cerebral blood flow, particularly in children. We examined the effects of these exercises on the hemodynamics of the prefrontal cortex (PFC) using functional near-infrared spectroscopy. Participants comprised 41 children (aged 12.1 ± 1.5 years, 37% female) who engaged in seven light-intensity exercises, with each movement performed in two patterns lasting 10 or 20 s. Changes in oxygenated hemoglobin (oxy-Hb) levels at rest and during exercise were compared using analysis of covariance, with sex and age as covariates. Significant increases in oxy-Hb were observed in multiple regions of the PFC during all forms of exercise (including dynamic and twist stretching [66.6%, 8/12 regions, η2 = 0.07-0.27], hand and finger movements [75.0%, 9/12 regions, η2 = 0.07-0.16], and balance exercises (100.0%, 6/6 regions, η2 = 0.13-0.25]), except for static stretching with monotonic movements. This study implies that short-duration, light-intensity exercises, provided that they entail a certain degree of cognitive and/or physical demands, can activate the PFC and increase blood flow.


Assuntos
Exercício Físico , Hemodinâmica , Córtex Pré-Frontal , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/irrigação sanguínea , Criança , Feminino , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Exercício Físico/fisiologia , Hemodinâmica/fisiologia , Circulação Cerebrovascular/fisiologia , Oxiemoglobinas/metabolismo , Adolescente
9.
Front Psychol ; 15: 1401946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993341

RESUMO

Hypnosis has been applied in healing procedures since the earliest of recorded history and today it is implemented in a wholesome concept Hypnotherapy (HT1). On a neurophysiological level, hypnosis has been associated with parts of the Default Mode Network (DMN2), but its effects on this network when induced in a treatment setting of a widespread disorder, namely depression, have never been investigated. Depression is associated with abnormal functional connectivity (FC3) of the DMN. Cognitive Behavioral Therapy (CBT4) has proven itself to be an effective treatment for depression; effects of CBT on DMN-related regions are heterogeneous. In the past years, HT was found to be a promising alternative or helpful adjunction. Yet, its underlying mechanisms remain to be unclear. In this original study 75 depressed patients receiving either CBT or HT were included and measured during resting-state before and after therapy with functional near-infrared-spectroscopy (fNIRS5). On symptom level, results show a significant reduction in both groups. On a neurophysiological level, first exploratory analyses hint toward treatment effects in two components of the DMN. However, these effects do not withstand correction for multiple testing. Still, our study is a first stepstone in the investigation of neural mechanisms of HT and offers first ideas about possible implications.

10.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000826

RESUMO

Advances in neuroimaging technology, like functional near-infrared spectroscopy (fNIRS), support the evaluation of task-dependent brain activity during functional tasks, like balance, in healthy and clinical populations. To date, there have been no studies examining how interventions, like yoga, impact task-dependent brain activity in adults with chronic acquired brain injury (ABI). This pilot study compared eight weeks of group yoga (active) to group exercise (control) on balance and task-dependent neural activity outcomes. Twenty-three participants were randomized to yoga (n = 13) or exercise groups (n = 10). Neuroimaging and balance performance data were collected simultaneously using a force plate and mobile fNIRS device before and after interventions. Linear mixed-effects models were used to evaluate the effect of time, time x group interactions, and simple (i.e., within-group) effects. Regardless of group, all participants had significant balance improvements after the interventions. Additionally, regardless of group, there were significant changes in task-dependent neural activity, as well as distinct changes in neural activity within each group. In summary, using advances in sensor technology, we were able to demonstrate preliminary evidence of intervention-induced changes in balance and neural activity in adults with ABI. These preliminary results may provide an important foundation for future neurorehabilitation studies that leverage neuroimaging methods, like fNIRS.


Assuntos
Lesões Encefálicas , Equilíbrio Postural , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Masculino , Projetos Piloto , Feminino , Equilíbrio Postural/fisiologia , Adulto , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/reabilitação , Lesões Encefálicas/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Exercício Físico/fisiologia
11.
Comput Biol Med ; 179: 108840, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39004047

RESUMO

Functional near-infrared spectroscopy (fNIRS) technology has been widely used to analyze biomechanics and diagnose brain activity. Despite being a promising tool for assessing the brain cortex status, this system is susceptible to disturbances and noise from electrical instrumentation and basal metabolism. In this study, an alternative filtering method, maximum likelihood generalized extended stochastic gradient (ML-GESG) estimation, is proposed to overcome the limitations of these disturbance factors. The proposed algorithm was designed to reduce multiple disturbances originating from heartbeats, breathing, shivering, and instrumental noises as multivariate parameters. To evaluate the effectiveness of the algorithm in filtering involuntary signals, a comparative analysis was conducted with a conventional filtering method, using hemodynamic responses to auditory stimuli and psycho-acoustic factors as quality indices. Using auditory sound stimuli consisting of 12 voice sources (six males and six females), the fNIRS test was configured with 18 channels and conducted on 10 volunteers. The psycho-acoustic factors of loudness and sharpness were used to evaluate physiological responses to the stimuli. Applying the proposed filtering method, the oxygenated hemoglobin concentration correlated better with the psychoacoustic analysis of each auditory stimulus than that of the conventional filtering method.

12.
Front Hum Neurosci ; 18: 1398601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045507

RESUMO

Background: Reaching movements are crucial for daily living and rehabilitation, for which Fitts' Law describes a speed-accuracy trade-off that movement time increases with task difficulty. This study aims to investigate whether cortical activation in motor-related areas is directly linked to task difficulty as defined by Fitts' Law. Understanding this relationship provides a physiological basis for parameter selection in therapeutic exercises. Methods: Sixteen healthy subjects performed 2D reaching movements using a rehabilitation robot, with their cortical responses detected using functional near-infrared spectroscopy (fNIRS). Task difficulty was manipulated by varying target size and distance, resulting in 3 levels of index-of-difficulty (ID). Kinematic signals were recorded alongside cortical activity to assess the relationship among movement time, task difficulty, and cortical activation. Results: Our results showed that movement time increased with ID by 0.2974s/bit across all subjects (conditional r2 = 0.6434, p < 0.0001), and all subjects showed individual trends conforming Fitts' Law (all p < 0.001). Neither activation in BA4 nor in BA6 showed a significant correlation with ID (p > 0.05), while both the target size and distance, as well as the interaction between them, showed a significant relationship with BA4 or BA6 activation (all p < 0.05). Conclusion: This study found that although kinematic measures supported Fitts' Law, cortical activity in motor-related areas during reaching movements did not correlate directly with task difficulty as defined by Fitts' Law. Additional factors such as muscle activation may call for different cortical control even when difficulty was identical.

13.
Brain Topogr ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042322

RESUMO

Functional near-infrared spectroscopy (fNIRS), a non-invasive optical neuroimaging technique that is portable and acoustically silent, has become a promising tool for evaluating auditory brain functions in hearing-vulnerable individuals. This study, for the first time, used fNIRS to evaluate neuroplasticity of speech-in-noise processing in older adults. Ten older adults, most of whom had moderate-to-mild hearing loss, participated in a 4-week speech-in-noise training. Their speech-in-noise performances and fNIRS brain responses to speech (auditory sentences in noise), non-speech (spectrally-rotated speech in noise) and visual (flashing chequerboards) stimuli were evaluated pre- (T0) and post-training (immediately after training, T1; and after a 4-week retention, T2). Behaviourally, speech-in-noise performances were improved after retention (T2 vs. T0) but not immediately after training (T1 vs. T0). Neurally, we intriguingly found brain responses to speech vs. non-speech decreased significantly in the left auditory cortex after retention (T2 vs. T0 and T2 vs. T1) for which we interpret as suppressed processing of background noise during speech listening alongside the significant behavioural improvements. Meanwhile, functional connectivity within and between multiple regions of temporal, parietal and frontal lobes was significantly enhanced in the speech condition after retention (T2 vs. T0). We also found neural changes before the emergence of significant behavioural improvements. Compared to pre-training, responses to speech vs. non-speech in the left frontal/prefrontal cortex were decreased significantly both immediately after training (T1 vs. T0) and retention (T2 vs. T0), reflecting possible alleviation of listening efforts. Finally, connectivity was significantly decreased between auditory and higher-level non-auditory (parietal and frontal) cortices in response to visual stimuli immediately after training (T1 vs. T0), indicating decreased cross-modal takeover of speech-related regions during visual processing. The results thus showed that neuroplasticity can be observed not only at the same time with, but also before, behavioural changes in speech-in-noise perception. To our knowledge, this is the first fNIRS study to evaluate speech-based auditory neuroplasticity in older adults. It thus provides important implications for current research by illustrating the promises of detecting neuroplasticity using fNIRS in hearing-vulnerable individuals.

14.
BMC Pediatr ; 24(1): 449, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997661

RESUMO

BACKGROUND: Language delay affects near- and long-term social communication and learning in toddlers, and, an increasing number of experts pay attention to it. The development of prosody discrimination is one of the earliest stages of language development in which key skills for later stages are mastered. Therefore, analyzing the relationship between brain discrimination of speech prosody and language abilities may provide an objective basis for the diagnosis and intervention of language delay. METHODS: In this study, all cases(n = 241) were enrolled from a tertiary women's hospital, from 2021 to 2022. We used functional near-infrared spectroscopy (fNIRS) to assess children's neural prosody discrimination abilities, and a Chinese communicative development inventory (CCDI) were used to evaluate their language abilities. RESULTS: Ninety-eight full-term and 108 preterm toddlers were included in the final analysis in phase I and II studies, respectively. The total CCDI screening abnormality rate was 9.2% for full-term and 34.3% for preterm toddlers. Full-term toddlers showed prosody discrimination ability in all channels except channel 5, while preterm toddlers showed prosody discrimination ability in channel 6 only. Multifactorial logistic regression analyses showed that prosody discrimination of the right angular gyrus (channel 3) had a statistically significant effect on language delay (odd ratio = 0.301, P < 0.05) in full-term toddlers. Random forest (RF) regression model presented that prosody discrimination reflected by channels and brain regions based on fNIRS data was an important parameter for predicting language delay in preterm toddlers, among which the prosody discrimination reflected by the right angular gyrus (channel 4) was the most important parameter. The area under the model Receiver operating characteristic (ROC) curve was 0.687. CONCLUSIONS: Neural prosody discrimination ability is positively associated with language development, assessment of brain prosody discrimination abilities through fNIRS could be used as an objective indicator for early identification of children with language delay in the future clinical application.


Assuntos
Transtornos do Desenvolvimento da Linguagem , Desenvolvimento da Linguagem , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Feminino , Masculino , Pré-Escolar , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Lactente , Percepção da Fala/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem
15.
J Neuroeng Rehabil ; 21(1): 115, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987817

RESUMO

BACKGROUND: Stroke causes long-term disabilities, highlighting the need for innovative rehabilitation strategies for reducing residual impairments. This study explored the potential of functional near-infrared spectroscopy (fNIRS) for monitoring cortical activation during rehabilitation using digital therapeutics. METHODS: This cross-sectional study included 18 patients with chronic stroke, of whom 13 were men. The mean age of the patients was 67.0 ± 7.1 years. Motor function was evaluated through various tests, including the Fugl-Meyer assessment for upper extremity (FMA-UE), grip and pinch strength test, and box and block test. All the patients completed the digital rehabilitation program (MotoCog®, Cybermedic Co., Ltd., Republic of Korea) while being monitored using fNIRS (NIRScout®, NIRx Inc., Germany). Statistical parametric mapping (SPM) was employed to analyze the cortical activation patterns from the fNIRS data. Furthermore, the K-nearest neighbor (K-NN) algorithm was used to analyze task performance and fNIRS data to classify the severity of motor impairment. RESULTS: The participants showed diverse task performances in the digital rehabilitation program, demonstrating distinct patterns of cortical activation that correlated with different motor function levels. Significant activation was observed in the ipsilesional primary motor area (M1), primary somatosensory area (S1), and contralateral prefrontal cortex. The activation patterns varied according to the FMA-UE scores. Positive correlations were observed between the FMA-UE scores and SPM t-values in the ipsilesional M1, whereas negative correlations were observed in the ipsilesional S1, frontal lobe, and parietal lobe. The incorporation of cortical hemodynamic responses with task scores in a digital rehabilitation program substantially improves the accuracy of the K-NN algorithm in classifying upper limb functional levels in patients with stroke. The accuracy for tasks, such as the gas stove-operation task, increased from 44.4% using only task scores to 83.3% when these scores were combined with oxy-Hb t-values from the ipsilesional M1. CONCLUSIONS: The results advocated the development of tailored digital rehabilitation strategies by combining the behavioral and cerebral hemodynamic data of patients with stroke. This approach aligns with the evolving paradigm of personalized rehabilitation in stroke recovery, highlighting the need for further extensive research to optimize rehabilitation outcomes.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Reabilitação do Acidente Vascular Cerebral , Extremidade Superior , Humanos , Masculino , Reabilitação do Acidente Vascular Cerebral/métodos , Idoso , Feminino , Extremidade Superior/fisiopatologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Estudos Transversais , Pessoa de Meia-Idade , Hemodinâmica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem
16.
Disabil Rehabil ; : 1-8, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033386

RESUMO

PURPOSE: Cognitive training in parallel with functional near-infrared spectroscopy (fNIRS)-derived neurofeedback has been identified to be beneficial in enhancing cognitive function in patients with mild cognitive impairment (MCI). However, effects of virtual reality (VR)-based cognitive training ensuring ecological validity in parallel with fNIRS-derived neurofeedback on neural efficiency has received little attention. This study investigated effects of VR-based cognitive training in parallel with fNIRS-derived neurofeedback on cognitive function and neural efficiency in patients with MCI. METHOD: Ninety participants were randomly assigned into the active group (AG) receiving VR-based cognitive training in parallel with fNIRS-derived neurofeedback, the sham group (SG), or wait-list group (CG). The AG and SG group performed each intervention for fifteen minutes a session, for eight sessions. The Trail Making Test Part B and Backward Digit Span Test were used for outcomes. In addition, activity in the dorsolateral prefrontal cortex (DLPFC) during cognitive testing using fNIRS was measured. RESULTS: After the eight sessions, the AG achieved greater improvements in all outcomes than the other groups. In addition, the AG showed a lower DLPFC activity during cognitive testing than the other groups. CONCLUSIONS: VR-based cognitive training in parallel with fNIRS-derived neurofeedback is superior to enhancing cognitive function and neural efficiency.


Virtual reality-based cognitive training in parallel with functional near-infrared spectroscopy-derived neurofeedback might improve cognitive function and neural efficiency in patients with mild cognitive impairmentFunctional near-infrared spectroscopy-derived neurofeedback would be considered as an effective tool for understanding neural efficiency underlying improved cognitive function.Rehabilitation professionals need to integrate virtual reality-based cognitive training and functional near-infrared spectroscopy-derived neurofeedback into their practice to enhance cognitive rehabilitation outcomes for patients with mild cognitive impairment.

17.
Neurophotonics ; 11(3): 035002, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975286

RESUMO

Significance: Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic conditions remains a significant challenge. Aim: The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide a real-time probe three-dimensional (3D) shape estimation to improve the use of fNIRS in everyday conditions. Approach: The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3D positions in real time to enable advanced tomographic data analysis and motion tracking. Results: Optical characterization of the MOBI detector reports a noise equivalence power of 8.9 and 7.3 pW / Hz at 735 and 850 nm, respectively, with a dynamic range of 88 dB. The 3D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared with positions acquired from a digitizer. Results for initial in vivo validations, including a cuff occlusion and a finger-tapping test, are also provided. Conclusions: To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3D optode position acquisition, combined with lightweight modules ( 18 g / module ) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.

18.
J Affect Disord ; 362: 716-722, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009319

RESUMO

BACKGROUND: Anxiety is a prevalent mental health disorder, with debilitating symptoms causing avoidance and decreased quality of life. Balance impairments during standing and walking are common in anxiety. However, understanding of gait control mechanisms in people with trait anxiety, particularly when walking requires increased attention (dual-task), is still limited. This work examined the attentional cost of walking in people with varying levels of trait anxiety. Since people with anxiety are often prone to Space and Motion Discomfort (SMD), this work also evaluated the potential role of SMD in the attentional cost of walking. METHODS: Fifty-six participants, aged 18-51, classified as anxious and non-anxious, were asked to walk under single- and two dual-task conditions (cognitive: counting backwards; visuomotor: texting on a mobile phone). Task performance (walking, counting and texting) was measured. Prefrontal cortex (PFC) activation was recorded using functional near infrared spectroscopy (fNIRS) for a subset of participants (n = 29). RESULTS: Anxious individuals walked slower under dual-task conditions, with smaller increases in PFC activation from single to dual-task conditions in the cognitive task. Dual-task walking was unrelated to SMD. LIMITATIONS: sample size was limited, particularly for fNIRS data. CONCLUSIONS: To the best of our knowledge, this study is the first to identify anxiety-related deficits in attentional gait control in the general population, including during the everyday task of texting on a mobile phone. Since decrements in dual-task walking are linked to poor health outcomes, results from this work may have functional implications for people with anxiety.

19.
Neurosci Lett ; 837: 137901, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019145

RESUMO

Neurological or neurodevelopmental disorders, such as Parkinson's disease and dyslexia, can impair rhythm perception and production. Deficits in rhythm are associated with poor performance in language, attention, and working memory tasks. Research indicates that retraining rhythmic skills may enhance these related cognitive functions. In this context, using tactile aids for rhythm training emerges as a promising approach for children who do not fully benefit from conventional audiovisual rhythm games. This is because tactile aids can compensate for sensory deficiencies and facilitate more extensive brain activation. In our study, we employed functional near-infrared spectroscopy (fNIRS) to assess the impact of tactile aids on brain cortical activation during rhythmic training in children aged 6-12 years (N = 25). We also measured the participants' spontaneous motor rhythms. The findings indicate that tactile stimulation significantly improves performance in synchronized rhythm tasks compared to audiovisual stimulation alone, particularly enhancing activation in brain regions associated with speech training such as the prefrontal cortex, motor cortex, and temporal areas. These results not only support the application of rhythm training in speech rehabilitation, but also highlight the potential of tactile aids as an effective multisensory learning strategy.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39012092

RESUMO

Recent research has extensively reported the phenomenon of inter-brain neural coupling between speaker and listener during speech communication. Yet, the specific speech processes underlying this neural coupling remain elusive. To bridge this gap, this study estimated the correlation between the temporal dynamics of speaker-listener neural coupling with speech features, utilizing two inter-brain datasets accounting for different noise levels and listener's language experiences (native vs. non-native). We first derived time-varying speaker-listener neural coupling, extracted acoustic feature (envelope) and semantic features (entropy and surprisal) from speech, and then explored their correlational relationship. Our findings reveal that in clear conditions, speaker-listener neural coupling correlates with semantic features. However, as noise increases, this correlation is only significant for native listeners. For non-native listeners, neural coupling correlates predominantly with acoustic feature rather than semantic features. These results revealed how speaker-listener neural coupling associated with the acoustic and semantic features under various scenarios, enriching our understanding of the inter-brain neural mechanisms during natural speech communication. We therefore advocate for more attention on the dynamic nature of speaker-listener neural coupling and its modelling with multi-level speech features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA