Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171344, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38432391

RESUMO

Synthetic musks (SMs) have served as cost-effective substitutes for natural musk compounds in personal care and daily chemical products for decades. Their widespread use has led to their detection in various environmental matrices, raising concerns about potential risks. Despite numerous studies on SM levels in different natural environments, a systematic review of their contemporary presence is lacking. This review aims to address this gap by summarising recent research developments on SMs in diverse natural environments, including river water, lake water, seawater, estuarine water, groundwater, snow, meltwater, sediments, aquatic suspended matter, soils, sands, outdoor air, and atmospheric particulate matter. Covering the period from 2010 to 2023, the review focuses on four SM categories: nitro, polycyclic, macrocyclic, and alicyclic. It systematically examines their sources, occurrences, concentrations, spatial and temporal variations, and fate. The literature reveals widespread detection of SMs in the natural environment (freshwater and sediments in particular), with polycyclic musks being the most studied group. Both direct (e.g., wastewater discharges) and indirect (e.g., human recreational activities) sources contribute to SM presence. Levels of SMs vary greatly among studies with higher levels observed in certain regions, such as sediments in Southeast Asia. Spatial and temporal variations are also evident. The fate of SMs in the environment depends on their physicochemical properties and environmental processes, including bioaccumulation, biodegradation, photodegradation, adsorption, phase exchange, hydro-dilution effects. Biodegradation and photodegradation can decrease SM levels, but may produce more persistent and eco-toxic products. Modelling approaches have been employed to analyse SM fate, especially for indirect processes like photodegradation or long-distance atmospheric transport. Future studies should further investigate the complex fate if SMs and their environmental influence. This review enhances understanding of SM status in the natural environment and supports efforts to control environmental contamination.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise , Ácidos Graxos Monoinsaturados/análise , Indanos/análise
2.
Front Plant Sci ; 14: 1221780, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692435

RESUMO

The current study aimed to address the response of soybean (Glycine max) plants to biofertilization and selenium supplementation treatments under galaxolide contamination of soil. In this regard, a pot experiment was carried out where the soybean plants were treated with the plant growth-promoting Actinobacteria (Actinobacterium sp.) as a biofertilizer (PGPB treatment) and/or selenium nanoparticles (Se treatment; 25 mg L-1) under two non-polluted and galaxolide-polluted soils (250 mg galaxolide per kg of soil) to assess the modifications in some plant physiological and biochemical traits. Although higher accumulation of oxidative biomarkers, including hydrogen peroxide (+180%), malondialdehyde (+163%), and protein oxidation (+125%), indicating oxidative stress in galaxolide-contaminated plants, an apparent decline in their contents was observed in response to biofertilization/supplementation treatments in contaminated soil, especially. It was mainly related to the higher detoxification of ROS in PGPB- and Se-treated plants under galaxolide-induced oxidative stress, in which the direct ROS-scavenging enzymes (+44 -179%), enzymatic (+34 - 293%) and non-enzymatic (+35 - 98%) components of the ascorbate-glutathione pathway, and antioxidant molecules (+38 - 370%) were more activated than in control plants. In addition, a higher accumulation of detoxification activity markers, including phytochelatins (+32%) and metallothioneins (+79%), were found in the combined treatments (PGPB+Se) under galaxolide contamination. Moreover, combined treatment with PGPB and Se ameliorated the levels of chlorophyll a content (+58%), stomatal conductance (+57%), the maximum efficiency of photosystem II (PSII) (+36%), and photorespiratory metabolism (including +99% in glycolate oxidase and +54% in hydroxypyruvate reductase activity) in leaves under galaxolide contamination, which resulted in higher photosynthesis capacity (+36%) and biomass production (+74%) in galaxolide-stressed plants as compared to control group. In conclusion, the application of beneficial Actinobacteria and selenium nanoparticles as biofertilization/supplementation is expected to be useful for improving plant toleration and adaptation against galaxolide contamination.

3.
Chemosphere ; 332: 138879, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169086

RESUMO

Long-term infiltration from river receiving reclaimed water will pose potential risk to vadose zone and groundwater because of the persistent and highly toxic contaminants. In order to predict the spatio-temporal distribution of ecological and health risk, a coupled model of HYDRUS-GMS combined risk quotient was proposed. The model can accurately predict water flow, solute transport and risk with model due to the acceptable efficiency (E:0.99), mean absolute error (MAE:0.031 m) and root-mean-square error (RMSE:0.039 m). The content of galaxolide (HHCB), a typical pharmaceutical and personal care product with hydrophobicity and refractory in reclaimed water, increased in vadose zone at an accumulative rate of 6.1 ng g-1 year-1 with infiltration time extension. The accumulation will pose ecological risk after 53 years infiltration. The potential risk will extent to groundwater once penetrate through vadose zone, and mainly diffuse along groundwater flow direction. The migration rate along horizontal direction of groundwater flow is 0.03396 m d-1, which is 9.7 and 1.1 times higher than longitudinal and vertical rates due to the variation of driving force in three directions. The migration rate of HHCB was 2.6% of groundwater flow due to hydrophobicity (LogKow = 5.9). The complete biochemical decomposition of HHCB will take approximately 0.38 year through metabolite within 182.65 m distance. The persistence was attributed to the high chronic toxicity and the low bio-availability. The major biochemical metabolism of HHCB was enzymatic hydrolysis, ring opening, decarboxylation, which was decomposed and carbonized within approximately 0.38 year after 182.65 m migration distance. This study provided a new approach to predict the spatio-temporal risk distribution due to reclaimed water reuse.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Rios , Água , Água Subterrânea/química , Simulação por Computador , Poluentes Químicos da Água/análise
4.
J Mol Recognit ; 36(4): e3005, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36573888

RESUMO

Galaxolide (1,3,4,6,7,8-hexahydro-4,6,6,7,8-hexamethylcyclopenta-γ-2-benzopyrane; HHCB) and Tonalide (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene; AHTN) are "pseudo-persistent" pollutants that can cause DNA damage, endocrine disruption, organ toxicity, and reproductive toxicity in humans. HHCB and AHTN are readily enriched in breast milk, so exposure of infants to HHCB and AHTN is of concern. Here, the molecular mechanisms through which HHCB and AHTN interact with human lactoferrin (HLF) are investigated using computational simulations and spectroscopic methods to identify indirectly how HHCB and AHTN may harm infants. Molecular docking and kinetic simulation studies indicated that HHCB and AHTN can interact with and alter the secondary HLF structure. The fluorescence quenching of HLF by HHCB, AHTN was static with the forming of HLF-HHCB, HLF-AHTN complex, and accompanied by non-radiative energy transfer and that 1:1 complexes form through interaction forces. Time-resolved fluorescence spectroscopy indicated that binding to small molecules does not markedly change the HLF fluorescence lifetime. Three-dimensional fluorescence spectroscopy indicated that HHCB and AHTN alter the peptide chain backbone structure of HLF. Ultraviolet-visible absorption spectroscopy, simultaneous fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and circular dichroism spectroscopy indicated that HHCB and AHTN change the secondary HLF conformation. Antimicrobial activity experiments indicated that polycyclic musks decrease lactoferrin activity and interact with HLF. These results improve our understanding of the mechanisms involved in the toxicities of polycyclic musks bound to HLF at the molecular level and provide theoretical support for mother-and-child health risk assessments.


Assuntos
Lactoferrina , Poluentes Químicos da Água , Feminino , Humanos , Simulação de Acoplamento Molecular , Análise Espectral , Poluentes Químicos da Água/análise , Receptores Colinérgicos , Receptores Proteína Tirosina Quinases
5.
Front Plant Sci ; 13: 1037474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466263

RESUMO

To date, several studies have considered the phytotoxic impact of cosmetics and personal care products on crop plants. Nonetheless, data are scarce about the toxic impact of galaxolide [hexahydro-hexamethyl cyclopentabenzopyran (HHCB)] on the growth, physiology, and biochemistry of plants from different functional groups. To this end, the impact of HHCB on biomass, photosynthetic efficiency, antioxidant production, and detoxification metabolism of grass (wheat) and legume (faba bean) plants has been investigated. On the other hand, plant growth-promoting bacteria (PGPB) can be effectively applied to reduce HHCB phytotoxicity. HHCB significantly reduced the biomass accumulation and the photosynthetic machinery of both crops, but to more extent for wheat. This growth reduction was concomitant with induced oxidative damage and decreased antioxidant defense system. To mitigate HHCB toxicity, a bioactive strain of diazotrophic plant growth-promoting Rhodospirillum sp. JY3 was isolated from heavy metal-contaminated soil in Jazan, Kingdom of Saudi Arabia, and applied to both crops. Overall, Rhodospirillum mitigated HHCB-induced stress by differently modulating the oxidative burst [malondialdehyde (MDA), hydrogen peroxide (H2O2), and protein oxidation] in both wheat and faba beans. This alleviation was coincident with improvement in plant biomass and photosynthetic efficiency, particularly in wheat crops. Considering the antioxidant defense system, JY3 augmented the antioxidants in both wheat and faba beans and the detoxification metabolism under HHCB stress conditions. More interestingly, inoculation with JY3 further enhanced the tolerance level of both wheat and faba beans against contamination with HHCB via quenching the lignin metabolism. Overall, this study advanced our understanding of the physiological and biochemical mechanisms underlying HHCB stress and mitigating its impact using Rhodospirillum sp. JY3, which may strikingly reduce the environmental risks on agriculture sustainability.

6.
J Hazard Mater ; 436: 129185, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739716

RESUMO

Musk fragrances have been detected in drinking water (DW) at trace concentrations. However, their impact on the microbial quality of DW has been disregarded. This work provides a pioneer evaluation of the effects of two synthetic musks contaminants, tonalide (AHTN) and galaxolide (HHCB), in microbial biofilms formed on two different surfaces, polyvinyl chloride (PVC) and stainless steel AISI 316 (SS316). Three bacterial species isolated from DW (Acinetobacter calcoaceticus, Burkholderia cepacia and Stenotrophomonas maltophilia), were used to develop 7-day-old single and mixed species biofilms. The impact of musks was assessed directly on biofilms but also on the bacteria motility, biofilm formation ability and biofilm susceptibility to chlorination. AHTN musk caused the most remarkable effects by increasing the cellular density and viability of mixed biofilms, and the extracellular polysaccharides content of biofilms on SS316. Most of the alterations caused by the direct exposure of biofilms to musks were observed when SS316 was used as an adhesion surface. In contrast, the ability to form biofilms and their susceptibility to chlorine were more affected for bacteria from HHCB-exposed biofilms on PVC. The overall results demonstrate that the presence of musks at residual concentrations influences DW bacterial dynamics, with the potential to impact the DW quality and safety. The type of plumbing material may further impact the effects of musks.


Assuntos
Água Potável , Poluentes Químicos da Água , Bactérias , Benzopiranos/análise , Biofilmes , Água Potável/microbiologia , Ácidos Graxos Monoinsaturados , Cloreto de Polivinila , Poluentes Químicos da Água/análise
7.
J Environ Manage ; 302(Pt B): 114096, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775339

RESUMO

To quantitate the degradation rate of 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[g]-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) under field conditions, a level III fugacity model combined with a least-squares method was used to determine the degradation rate of HHCB and AHTN in the North Canal River watershed of Beijing, China. Model fitting, validation, sensitivity, and uncertainty analyses revealed that the established model was stable and robust. The degradation rates of HHCB and AHTN were 4.16 × 10-3 h-1 (t1/2 = 167 h) and 1.68 × 10-2 h-1 (t1/2 = 41.3 h), respectively. The calculated degradation rates were extrapolated to the Liangshui River, and indicated that the differences between the measured and predicted concentrations were less than 0.32 and 0.34 log units for HHCB and AHTN, respectively. The attenuation rates of HHCB and AHTN were calculated, and the results indicated that degradation was an important yet not the sole contributor to the degradation of the polycyclic musks. Results of uncertainty analyses indicated that the inflow and outflow concentrations of the polycyclic musks in the surface water of each segment strongly influenced the model outputs, followed by environmental factors (water depth and flow rate). It is essential to measure the degradation rate in the field because of the influence of the surrounding environment. The present study reveals the utility of fugacity models to quantify the degradation rate of organic micropollutants in the field.


Assuntos
Rios , Poluentes Químicos da Água , Pequim , Benzopiranos/análise , Monitoramento Ambiental , Tetra-Hidronaftalenos/análise , Poluentes Químicos da Água/análise
8.
Neurotoxicology ; 87: 219-230, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687775

RESUMO

Galaxolide and tonalide are well-known polycyclic musks whose intensive use without limitations in numerous cleaning, hygiene, and personal care products has resulted in widespread direct human exposure via absorption, inhalation, and oral ingestion. Latest data shows that long-term, low-dose exposure to toxic chemicals can induce unpredictable harmful effects in a variety of living systems, however, interactions between synthetic musks and brain tumours remain largely unexplored. Glioblastoma (GB) accounts for nearly half of all tumours of the central nervous system and is characterized by very poor prognosis. The aims of this study were (1) to investigate the potential effect of long-term (20-generation) single and combined application of galaxolide and tonalide at sub-lethal doses (5-2.5 u M) on the angiogenesis, invasion, and migration of human U87 cells or tumour spheroids, and (2) to explore the underlying molecular mechanisms. Random amplified polymorphic DNA assays revealed significant DNA damage and increased total mutation load in galaxolide- and/or tonalide-treated U87 cells. In those same groups, we also detected remarkable tumour spheroid invasion and up-regulation of both HIF1-α/VEGF/MMP9 and IL6/JAK2/STAT3 signals, known to have important roles in hypoxia-related angiogenesis and/or proliferation. Prolonged musk treatment further altered angio-miRNA expression in a manner consistent with poor prognosis in GB. We also detected significant over-expression of the genes Slug, Snail, ZEB1, and Vimentin, which are biomarkers of epithelial to mesenchymal transition. In addition, matrigel, transwell, and wound healing assays clearly showed that long-term sub-lethal exposure to galaxolide and/or tonalide induced invasion and migration proposing a high metastatic potential. Our results suggest that assessing expression of HIF-1a, VEGF, STAT3, and the miR-17-92 cluster in biopsy samples of GB patients who have a history of possible long-term exposure to galaxolide or tonalide could be beneficial for deciding a therapy regime. Additionally, we recommend that extensively-used hygiene and cleaning materials be selected from synthetic musk-free products, especially when used in palliative care processes for GB patients.


Assuntos
Benzopiranos/toxicidade , Carcinógenos/toxicidade , Glioblastoma/induzido quimicamente , Tetra-Hidronaftalenos/toxicidade , Benzopiranos/administração & dosagem , Carcinógenos/administração & dosagem , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Esferoides Celulares/efeitos dos fármacos , Tetra-Hidronaftalenos/administração & dosagem
9.
Environ Res ; 196: 110960, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675801

RESUMO

Galaxolide (HHCB) and tonalide (AHTN) are polycyclic musk compounds (PMCs) used in household and personal care products that have been included on the list as emerging contaminants of environmental concern due to their ubiquity in aquatic and terrestrial environments. There still exists a dearth of information on the neurotoxicity and endocrine disrupting effects of these contaminants, especially for marine and estuarine species. Here, we assessed the neuroendocrine effects of HHCB and AHTN using adult clams, Ruditapes philippinarum, and yolk-sac larvae of sheepshead minnow, Cyprinodon variegatus. The clams were treated with concentrations (0.005-50 µg/L) of each compound for 21 days. Meanwhile, sheepshead minnow larvae were exposed to 0.5, 5 and 50 µg/L of HHCB and AHTN for 3 days. Enzyme activities related to neurotoxicity (acetylcholinesterase - AChE), neuroendocrine function (cyclooxygenase - COX), and energy reserves (total lipids - TL) were assessed in R. philippinarum. Gene expression levels of cyp19 and vtg1 were measured in C. variegatus using qPCR. Our results indicated induction of AChE and COX in the clams exposed to HHCB while AHTN exposure significantly inhibited AChE and COX. Gene expression of cyp19 and vtg1 in yolk-sac C. variegatus larvae exposed to 50 µg/L AHTN was significantly downregulated versus the control. The results of this study demonstrate that HHCB and AHTN might pose neurotoxic and endocrine disrupting effects in coastal ecosystems.


Assuntos
Ecossistema , Poluentes Químicos da Água , Adulto , Benzopiranos , Humanos , Tetra-Hidronaftalenos/análise , Tetra-Hidronaftalenos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
Environ Sci Pollut Res Int ; 28(28): 38054-38064, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33723788

RESUMO

The first Italian annual monitoring study was carried out in Northern Italy to analyse the fate and removal of polycyclic musk fragrances (PMFs) in a wastewater treatment plant (WWTP) with conventional activated sludge (CAS) system. Water was sampled in four different stations along wastewater treatments to better understand the behaviour of PMFs along different steps of the plant. Galaxolide (HHCB) and galaxolidone (HHCB-lactone) were found in concentrations at µg L-1 level, 1 order of magnitude greater than tonalide (AHTN), whilst phantolide (AHDI) was never detected and celestolide (ADBI) was measured only at trace levels. Considering water concentrations, HHCB and AHTN evidenced a slight reduction, 20% and 50%, respectively, during wastewater treatments, thus resulting in a modest removal efficiency, mainly due to adsorption processes during the biological treatment. This was also confirmed by the high PMF concentrations measured in activated sludges which remained stable throughout the year. On the contrary, HHCB-lactone registered an increase up to 70% during wastewater treatments caused by the biotransformation of the parental compound HHCB during the biological treatment, as shown by the different HHCB-lactone/HHCB ratio measured before and after this step. No significant differences were recorded between seasons in terms of PMF input onto WWTP, in accordance with the common use of these chemicals in civil houses. Overall, this study suggests that current technologies employed in conventional WWTP are not enough efficient in removing these organic micropollutants from wastewaters and, therefore, WWTP effluents represent possible point sources of pollution for aquatic ecosystems. Additional treatments are necessary to enhance the removal of PMFs in order to increase the quality of the WWTP effluents.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Benzopiranos/análise , Ecossistema , Ácidos Graxos Monoinsaturados , Itália , Odorantes , Esgotos , Tetra-Hidronaftalenos/análise , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
11.
Chemosphere ; 268: 129312, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33352512

RESUMO

The levels and trends of four bioaccumulative synthetic musks (galaxolide - HHCB, tonalide - AHTN, musk xylene - MX and musk ketone - MK) were investigated in filter-feeding bivalves collected yearly since 2010 at sites of contrasted pressure along the French coasts. Quantification rates were high for all 4 compounds (85-99%), indicating their geographical and temporal extensive occurrence in the French coastal environment. The polycyclic musks HHCB and AHTN prevailed, with median concentrations of 2.27 ng g-1 dw and of 0.724 ng g-1 dw, whilst nitromusks were found 1 to 2 orders of magnitude lower. These levels were in the high range of those encountered for various other CEC families at the same sites and comparable to those from other locations on European coasts. Unlike for the other musks, the accumulation of HHCB was evidenced to be species-specific, with significantly lower levels found in oysters in comparison with mussels, possibly suggesting a higher metabolization in oysters. Geographical differences in musk distribution highlighted the sites under strong anthropogenic pressures and these differences were found to be consistent between years. The HHCB/AHTN ratio proved to be discriminant to explain the relative occurrence of polycyclic musks. The 8-year time series showed that only the now-banned compound MX displayed a significant decrease in most sites, whilst stable concentrations of the other musks suggested consistency in their usage over the last decade. These results provide reference data for future studies of the occurrence of personal care products on European coasts.


Assuntos
Bivalves , Cosméticos , Poluentes Químicos da Água , Animais , Benzopiranos/análise , Ácidos Graxos Monoinsaturados , Humanos , Receptores Proteína Tirosina Quinases , Receptores Colinérgicos , Tetra-Hidronaftalenos/análise , Poluentes Químicos da Água/análise
12.
Environ Pollut ; 263(Pt A): 114548, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32302895

RESUMO

Two typical polycyclic musks (PCMs), namely 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), were determined in 63 surface water and 42 sediment samples collected from the North Canal River watershed, an urban catchment located in the megacity Beijing, China. Concentrations of HHCB and AHTN were 13.2 ng/L-395 ng/L and 2.98 ng/L-232 ng/L in surface water, while 4.10 ng/g-818 ng/g and 1.21 ng/g-731 ng/g in sediments. The results showed that PCM concentrations in the North Canal River watershed were at the high end when compared to that in other regions in China and worldwide. A watershed-wide annual mass budget showed that HHCB (∼150 kg/year) and AHTN (∼80 kg/year) mainly originated from urban wastewaters. Both PCMs were eliminated primarily by outflowing water (72 kg/year and 43 kg/year for HHCB and AHTN, respectively) and due to losses to the atmosphere (40 kg/year and 26 kg/year for HHCB and AHTN, respectively). An assessment of ecological risks posed by HHCB and AHTN to aquatic organisms in the North Canal River watershed was performed by using a tiered ecological risk assessment. The results showed that PCMs were unlikely to pose an ecological risk at the watershed scale (the probability of the incidence of adverse effect was <3.5% at the 99% protection level). However, according to the results from the risk quotient method, the tributaries draining wastewater effluents should be hotspots that warrant further research in future.


Assuntos
Poluentes Químicos da Água/análise , Pequim , Benzopiranos/análise , China , Rios , Tetra-Hidronaftalenos/análise , Água
13.
J Hazard Mater ; 384: 121468, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31761648

RESUMO

Sewage sludge application to soil is of great interest, due to required organic matter and the wide spectra of nutrients it provides. However, the presence of unpredictable content of emerging contaminants may turn this valuable raw material into a hazardous substance. In this study, three selected sewage sludges derived micropollutants from different origins; that is, one each under persistent organic pollutants (POPs), pharmaceuticals and personal care products (PPCPs) were considered. The effect of each micropollutant on the feeding activity of free-living soil nematode Caenorhabditis elegans was analysed. The analysis was performed in model soil solution using a larval feeding inhibition assay. The results showed no significant effects from selected POP-2,2',4,4',5-pentabromodiphenyl either and pharmaceutical-chlortetracycline on the feeding activity of tested nematodes. On the contrary, feeding activity was inhibited by PPCP-galaxolide (HHCB) with an effective concentration of 12.2 ±â€¯2.2 mg.l-1. The calculated risk quotient for galaxolide (RQ = 0.14) demonstrated a medium ecological risk to the nematodes. Based on our findings, concentrations of micropollutants in sewage sludge treated soil pose negligible risk to feeding activity of soil nematode. However, the potential impact of musk compounds on free-living soil biota requires detailed evaluation in further research.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Esgotos , Animais , Testes de Toxicidade
14.
J Hazard Mater ; 384: 121360, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31648896

RESUMO

Galaxolide (HHCB) is known to be persistent during wastewater treatment and has raised increasing concern due to its high detection frequency in the environment and potentially negative effects. However, little information is available on the degradation of HHCB by algae, the degradation mechanisms and the toxicity of HHCB on algae. In the present study, HHCB was found to be toxic to Navicula sp. and Scenedesmus quadricauda, with a 3 d EC50 of 0.050 and 0.336 mg L-1, respectively. Both microalgae showed high removal efficiency (72.9-100%) for HHCB. S. quadricauda showed a more satisfactory effect in the bioremediation of HHCB than Navicula sp. A total of four metabolites were found in the biotransformation processes of HHCB, and its possible metabolic pathways were proposed. Hydroxylation, methoxylation, methylation, ketonization, demethylation, and oxaloacetate conjunction contributed to the metabolism of HHCB in algal cells.


Assuntos
Benzopiranos/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Scenedesmus/metabolismo , Poluentes Químicos da Água/toxicidade , Benzopiranos/análise , Benzopiranos/metabolismo , Bioacumulação , Biodegradação Ambiental , Cinética , Scenedesmus/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
15.
Chemosphere ; 232: 113-120, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31152895

RESUMO

The musk fragrances galaxolide (HHCB) and tonalide (AHTN) are compounds of emerging concern that have been found in various environmental compartments. The present study addressed the ability of HHCB and AHTN to elicit the avoidance response in the estuarine shrimp Palaemon varians and to predict the population immediate decline (PID) of P. varians when exposed to HHCB and AHTN by integrating both avoidance (non-forced exposure) and lethality (forced exposure) responses. The avoidance response was tested in a non-forced multi-compartmented static system, in which the shrimps could move freely among the compartments with different concentrations. The shrimps (n = 3 shrimps per compartment/concentration; 18 shrimps per system) were exposed to a gradient (0, 0.005, 0.05, 0.5, 5 and 50 µg/L) of both substances and their positions were checked at every 20 min for a 3 h period. The results from 24-h forced exposure showed no dose-response relationship and the highest percentage mortality was 17% for HHCB at 0.005 and 0.5 µg/L. In the 3-h non-forced exposure to a gradient of HHCB and AHTN, significant concentration-dependent spatial avoidance was observed for both substances. The shrimps avoided the lowest concentration of HHCB and AHTN (0.005 µg/L) by 15% and 16%. The avoidance increased significantly (p < 0.005) to a 61% and 57%, respectively, for the highest concentration (50 µg/L). The population immediate decline was driven by the avoidance behaviour of the shrimps rather than mortality. These results indicated that the aversiveness of HHCB and AHTN might have serious consequences for habitat selection processes by organisms.


Assuntos
Benzopiranos/toxicidade , Palaemonidae/fisiologia , Tetra-Hidronaftalenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Aprendizagem da Esquiva , Benzopiranos/análise , Ácidos Graxos Monoinsaturados , Perfumes , Alimentos Marinhos , Água do Mar/química , Poluentes Químicos da Água/análise
16.
Sci Total Environ ; 659: 1537-1545, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096363

RESUMO

The environmental risk of galaxolide (HHCB) spurs the need to develop efficient and economical removal technology. Although sorption is one of the best removal approaches, studies on sorption of HHCB by biochar were limited. With the purpose of combining the advantages of ball-milling and sorption technologies, six ball-milled biochars (BM-biochars) varied with biomasses and pyrolysis temperature were produced, characterized, and tested for HHCB removal from aqueous solution. At an initial HHCB concentration of 2 mg L-1, the unmilled and BM-biochars adsorbed 330-746 and 609-2098 mg kg-1 of HHCB, respectively. The increase in sorption capacities (about 3-fold increase) was mainly ascribed to the increase in BM-biochar's external and internal surface area, pore volume and pore size, and the exposure of the graphitic structure. The removal of HHCB by the BM-biochars increased with increasing pyrolysis temperature. For lower temperature biochar (300 °C wheat straw biochar, WS300), hydrophobic partitioning played a major role in HHCB sorption onto unmilled biochar (log Koc/log Kow value of WS300 was 0.772 at a Ce of 1 mg L-1). Ball milling reduced the hydrophobicity of 300 °C biochar, which diminished the HHCB sorption. However, increased surface area, pore volume, pore size, and graphitic structure provided additional sorption sites, resulting in enhanced HHCB uptake (log Koc/log Kow value of BMWS300 was 1.23 at a Ce of 1 mg L-1). For higher temperature biochars (500 and 700 °C), ball milling mainly enhanced HHCB sorption onto high temperature biochars via surface adsorption, π-π interaction, and pore filling. For WS500, 77.9% of HHCB removal was due to surface adsorption. Ball milling increased this percentage to 96.7% for BMWS500. This work highlighted the potential of ball milling as an excellent engineering method to improve biochar's sorption properties.


Assuntos
Benzopiranos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Benzopiranos/análise , Carvão Vegetal , Modelos Químicos , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 651(Pt 2): 2235-2246, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326456

RESUMO

Synthetic musk compounds are extensively used in personal care and cosmetic products around the world. Because they are not completely removed in sewage treatment plants, they eventually end up in aquatic environments. The aim of this review was to summarize published information on effects of polycyclic musks on aquatic organisms and to discuss whether the experimental design of toxicological studies involving these substances could influence the results obtained. With the exception of one study run in a flow-through system, all published toxicological studies on synthetic polycyclic musks have been conducted in semi-static or even static systems. Based upon data in the literature and our own results, we conclude that in toxicological tests with semi-static set-ups, concentrations of polycyclic musks decrease with time between bath exchanges, and, as a result, tested organisms are not being exposed to stable concentrations but rather to concentration pulses. The duration and character of these pulses are influenced mainly by aeration of experimental baths, as polycyclic musks have a tendency to volatilize from water baths. Under semi-static conditions, tested organisms may be subjected to lower concentration of the tested substance for relatively long periods. Those levels may even fall below the limits of quantification. During these periods, some level of detoxification and/or elimination (depuration) of the toxicant may reduce toxic effect of the previous exposures. Consequently, toxicity of polycyclic musk substances for aquatic organisms obtained under these conditions may be underestimated. Based upon existing data in the literature, therefore, it is very difficult to correctly estimate risk of polycyclic musks to aquatic organisms.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Produtos Domésticos/efeitos adversos , Compostos Policíclicos/efeitos adversos , Poluentes Químicos da Água/efeitos adversos
18.
Food Chem Toxicol ; 122: 33-37, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30278243

RESUMO

Generally, dietary intake assessment and risk characterization are evaluated using contaminant concentration in raw fish while it is usually ingested cooked, which can cause an overestimation because one of the essential issues for risk-benefit analysis is to determine the maximum amount of a contaminant that can be released from the food matrix and be absorbed by the human body, called bioaccessibility. Moreover, despite most seafood products are cooked before consumption, risk assessment is still evaluated in raw products, strongly affecting public health guidelines. In the present study, an in vitro bioaccessibility assay was performed for Galaxolide (HHCB) in fish samples. Raw spiked hake samples were in vitro digested and aliquots of each fraction of the digestion process were analysed. HHCB was quantitatively present in the bioaccessibility fraction. The effect of fish cooking on HHCB was also evaluated in cod and mackerel samples. Results demonstrate that steaming and grilling processes lead to a loss of 50-70% HHCB in fish.


Assuntos
Benzopiranos/farmacocinética , Culinária , Exposição Dietética , Peixes/metabolismo , Alimentos Marinhos/análise , Poluentes Químicos da Água/farmacocinética , Animais , Benzopiranos/metabolismo , Disponibilidade Biológica , Culinária/métodos , Digestão , Contaminação de Alimentos/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Reprodutibilidade dos Testes , Medição de Risco , Microextração em Fase Sólida , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/metabolismo
19.
Environ Sci Pollut Res Int ; 25(5): 4915-4923, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29204937

RESUMO

Human activity in estuarine areas has resulted in pollution of the aquatic environment, but little is known about the levels of synthetic musks (SMs) in river water and sediments in estuarine areas. This study investigated the concentrations and distribution of SMs in the Jiaozhou Bay wetland, including celestolide, phantolide, traseolide, galaxolide (HHCB), tonalide (AHTN), musk xylene and musk ketone (MK). The SMs HHCB, AHTN and MK were detected at concentrations of 10.7-208, not detected (ND)-59.2 and ND-13.6 ng/L, respectively, in surface water samples and 13.1-27.3, 3.06-14.5 and 1.33-18.8 ng/g (dry weight; dw), respectively, in sediment samples. Based on the calculated total organic carbon (TOC) concentrations, there was no significant correlation between SMs and TOC in sediment samples (p > 0.05). The hazard quotients were 0.204, 0.386 and 0.059 for AHTN, HHCB and MK, respectively, which indicated no serious environmental impact, because these values are all less than 1. The concentrations of SMs decreased as the distance to the Xiaojianxi refuse landfill increased in both surface water and sediments. Compared with previous studies, the concentration of SMs in the Jiaozhou Bay wetland was relatively high. Therefore, more attention should be paid to SMs because of their persistent impact on human health and the environment.


Assuntos
Ácidos Graxos Monoinsaturados/toxicidade , Perfumes/toxicidade , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Baías , Benzopiranos/toxicidade , China , Humanos , Medição de Risco , Tetra-Hidronaftalenos/toxicidade , Poluentes Químicos da Água/análise , Xilenos/toxicidade
20.
Environ Pollut ; 231(Pt 2): 1593-1600, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28964606

RESUMO

The synthetic polycyclic musks HHCB (Galaxolide®) and AHTN (Tonalide®) were monitored in fathead minnows (FHMs) caged for a month at various locations in the North Saskatchewan River (NSR), upstream and downstream of the Gold Bar wastewater treatment plant that serves the city of Edmonton, AB, Canada. In addition, the distribution of these musk compounds in the river was predicted using the fugacity-based Quantitative Water Air Sediment Interface (QWASI) model. In FHMs caged 0.15 km downstream of the wastewater outfall, mean concentrations of HHCB and AHTN were 7.4 and 0.4 µg g-1 wet weight, respectively. These are among the highest reported concentrations of these musk compounds in fish exposed to treated wastewater. The musk concentrations in FHMs were significantly lower further downstream of the outfall. High bioconcentration factors (BCFs) in FHMs that exceeded 104 higher than estimated concentrations in water indicated that there were low rates of biotransformation of the musks in the fish. In the FHMs caged at the site closest to the wastewater outfall, HHCB concentrations in FHMs were comparable to the body burdens that have been reported to moderate expression of vitellogenin in female rainbow trout, indicating that fish in the NSR downstream of the wastewater outfall may be at risk of anti-estrogenic effects. The QWASI model applied to six individual river sections of the NSR predicted that the largest fluxes of HHCB and AHTN would be for downstream transport in water, which explains why FHMs accumulated elevated concentrations of the musks at the furthest downstream site, 9.9 km from the wastewater discharge.


Assuntos
Benzopiranos/análise , Cyprinidae/metabolismo , Monitoramento Ambiental/métodos , Tetra-Hidronaftalenos/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Animais , Sedimentos Geológicos/química , Modelos Teóricos , Rios/química , Saskatchewan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA