Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 14(2): 774-795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455415

RESUMO

Over the past two decades, the gold standard of glioblastoma multiforme (GBM) treatment is unchanged and adjunctive therapy has offered little to prolong both quality and quantity of life. To improve pharmacotherapy for GBM, galectins are being studied provided their positive correlation with the malignancy and disease severity. Despite the use of galectin inhibitors and literature displaying the ability of the lectin proteins to decrease tumor burden and decrease mortality within various malignancies, galectin inhibitors have not been studied for GBM therapy. Interestingly, anti-galectin siRNA delivered in nanoparticle capsules, assisting in blood brain barrier penetrance, is well studied for GBM, and has demonstrated a remarkable ability to attenuate both galectin and tumor count. Provided that the two therapies have an analogous anti-galectin effect, it is hypothesized that galectin inhibitors encapsuled within nanoparticles will likely have a similar anti-galectin effect in GBM cells and further correlate to a repressed tumor burden.

2.
Bioorg Med Chem ; 94: 117480, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37774448

RESUMO

Galectins, a family of endogenous glycan-binding proteins, play crucial roles in a broad range of physiological and pathological processes. Galectin-1 (Gal-1), a proto-type member of this family, is overexpressed in several cancers and plays critical roles in tumor-immune escape, angiogenesis and metastasis. Thus, generation of high-affinity Gal-1 inhibitors emerges as an attractive therapeutic approach for a wide range of neoplastic conditions. Small-molecule carbohydrate inhibitors based on lactose (Lac) and N-acetyllactosamine (LacNAc) structures have been tested showing different results. In this study, we evaluated Lac- and LacNAc-based compounds with specific chemical modifications at key positions as Gal-1 ligands by competitive solid-phase assays (SPA) and isothermal titration calorimetry (ITC). Both assays showed excellent correlation, highlighting that lactosides bearing bulky aromatic groups at the anomeric carbon and sulfate groups at the O3' position exhibited the highest binding affinities. To dissect the atomistic determinants for preferential affinity of the different tested Gal-1 ligands, molecular docking simulations were conducted and PRODIGY-LIG structure-based method was employed to predict binding affinity in protein-ligand complexes. Notably, calculated binding free energies derived from the molecular docking were in accordance with experimental values determined by SPA and ITC, showing excellent correlation between theoretical and experimental approaches. Moreover, this analysis showed that 3'-O-sulfate groups interact with residues of the Gal-1 subsite B, mainly with Asn33, while the ester groups of the aromatic anomeric group interact with Gly69 and Thr70 at Gal-1 subsite E, extending deeper into the pocket, which could account for the enhanced binding affinity. This study contributes to the rational design of highly optimized Gal-1 inhibitors to be further studied in cancer models and other pathologic conditions.

3.
Front Immunol ; 14: 1145268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817445

RESUMO

Galectins are galactoside-binding proteins, exerting numerous functions inside and outside the cell, particularly conferring adaptation to stress factors. For most of them, aberrant expression profiles have been reported in the context of cancer. Albeit not being oncogenic drivers, galectins can be harnessed to exacerbate the malignant phenotype. Their impact on disease establishment and progression is not limited to making cancer cells resistant to apoptosis, but is prominent in the context of the tumor microenvironment, where it fosters angiogenesis, immune escape and exclusion. This review focuses mainly on Gal-1, Gal-3 and Gal-9 for which the involvement in cancer biology is best known. It presents the types of galectin dysregulations, attempts to explain the mechanisms behind them and analyzes the different ways in which they favor tumour growth. In an era where tumour resistance to immunotherapy appears as a major challenge, we highlight the crucial immunosuppressive roles of galectins and the potential therapeutic benefits of combinatorial approaches including galectin inhibition.


Assuntos
Galectinas , Neoplasias , Humanos , Galectinas/metabolismo , Neoplasias/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Microambiente Tumoral/fisiologia
4.
Front Allergy ; 3: 840454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386657

RESUMO

The prebiotics, galacto-oligosaccharides (GOS), are small carbohydrate molecules with 1-7 galactose units linked to glucose and have been shown to trigger IgE-mediated anaphylaxis in some cases following ingestion. It is still an unresolved question of how GOS cross-links IgE on basophils. In this study, we examined whether human galectins, a class of lectins that bind specifically to ß-galactoside carbohydrates, are involved in GOS-induced basophil activation. Basophil activation test to GOS and control allergen, Blomia tropicalis (Blo t) extract were performed in the presence or absence of four sugar-based galectin inhibitors (lactose, thiodigalactoside [TDG], TD139, and GB1107) and one peptide-based inhibitor, G3-C12. Results showed that TD139, GB1107, and G3-C12 did not display a specific inhibitory effect on GOS-induced basophil activation as compared to control allergen. An inhibitory effect of lactose and TDG on GOS-induced basophil activation was observed and varied between subjects with up to 100% inhibition at low doses of GOS. The results of competitive ELISA suggest that the inhibitory effects of high dose lactose and TDG on the basophil activation is likely due to the cross-reactivity of GOS-specific IgE to lactose and TDG. Basophil activation is performed using purified basophils suggested that cell surface receptors on other blood cells were not required to induce basophil activation. In conclusion, our results suggest that GOS, a low molecular weight sugar, is able to cross-link IgE independently.

5.
Front Immunol ; 13: 1104625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703969

RESUMO

Galectins play relevant roles in tumor development, progression and metastasis. Accordingly, galectins are certainly enticing targets for medical intervention in cancer. To date, however, clinical trials based on galectin inhibitors reported inconclusive results. This review summarizes the galectin inhibitors currently being evaluated and discusses some of the biological challenges that need to be addressed to improve these strategies for the benefit of cancer patients.


Assuntos
Antineoplásicos , Galectinas , Neoplasias , Humanos , Galectinas/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/uso terapêutico
6.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208755

RESUMO

Although the approved vaccines are proving to be of utmost importance in containing the Coronavirus disease 2019 (COVID-19) threat, they will hardly be resolutive as new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, a single-stranded RNA virus) variants might be insensitive to the immune response they induce. In this scenario, developing an effective therapy is still a dire need. Different targets for therapeutic antibodies and diagnostics have been identified, among which the SARS-CoV-2 spike (S) glycoprotein, particularly its receptor-binding domain, has been defined as crucial. In this context, we aim to focus attention also on the role played by the S N-terminal domain (S1-NTD) in the virus attachment, already recognized as a valuable target for neutralizing antibodies, in particular, building on a cavity mapping indicating the presence of two druggable pockets and on the recent literature hypothesizing the presence of a ganglioside-binding domain. In this perspective, we aim at proposing S1-NTD as a putative target for designing small molecules hopefully able to hamper the SARS-CoV-2 attachment to host cells.


Assuntos
SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/terapia , COVID-19/virologia , Reposicionamento de Medicamentos , Humanos , Simulação de Dinâmica Molecular , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacologia , Ácido N-Acetilneuramínico/uso terapêutico , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/isolamento & purificação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Glicoproteína da Espícula de Coronavírus/química , Ligação Viral/efeitos dos fármacos
7.
Bioorg Med Chem ; 44: 116309, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34293617

RESUMO

Galectins, soluble lectins widely expressed intra- and extracellularly in different cell types, play major roles in deciphering the cellular glycocode. Galectin-1 (Gal-1), a prototype member of this family, presents a carbohydrate recognition domain (CRD) with specific affinity for ß-galactosides such as N-acetyllactosamine (ß-d-Galp-(1 â†’ 4)-d-GlcpNAc), and mediate numerous physiological and pathological processes. In this work, Gal-1 binding affinity for ß-(1 â†’ 6) galactosides, including ß-d-Galp-(1 â†’ 6)-ß-d-GlcpNAc-(1 â†’ 4)-d-GlcpNAc was evaluated, and their performance was compared to that of ß-(1 â†’ 4) and ß-(1 â†’ 3) galactosides. To this end, the trisaccharide ß-d-Galp-(1 â†’ 6)-ß-d-GlcpNAc-(1 â†’ 4)-d-GlcpNAc was enzymatically synthesized, purified and structurally characterized. To evaluate the affinity of Gal-1 for the galactosides, competitive solid phase assays (SPA) and isothermal titration calorimetry (ITC) studies were carried out. The experimental dissociation constants and binding energies obtained were compared to those calculated by molecular docking. These analyses evidenced the critical role of the glycosidic linkage between the terminal galactopyranoside residue and the adjacent monosaccharide, as galactosides bearing ß-(1 â†’ 6) glycosidic linkages showed dissociation constants six- and seven-fold higher than those involving ß-(1 â†’ 4) and ß-(1 â†’ 3) linkages, respectively. Moreover, docking experiments revealed the presence of hydrogen bond interactions between the N-acetyl group of the glucosaminopyranose moiety of the evaluated galactosides and specific amino acid residues of Gal-1, relevant for galectin-glycan affinity. Noticeably, the binding free energies (ΔGbindcalc) derived from the molecular docking were in good agreement with experimental values determined by ITC measurements (ΔGbindexp), evidencing a good correlation between theoretical and experimental approaches, which validates the in silico simulations and constitutes an important tool for the rational design of future optimized ligands.


Assuntos
Galactosídeos/química , Galectina 1/química , Açúcares/química , Acetilação , Configuração de Carboidratos , Humanos , Simulação de Acoplamento Molecular
8.
Eur J Med Chem ; 222: 113561, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146913

RESUMO

Lectins are a family of glycan-binding proteins, many of which have been established as key targets for therapeutic intervention. They play a central role in many physiological and cellular processes. With the advances in protein crystallography, NMR spectroscopy and computational power over the past couple of decades, the carbohydrate-receptor interactions are now well understood and characterized. Nevertheless, designing efficient carbohydrate inhibitors is a laborious endeavour. They are known to have weak affinities, unsuitable pharmacokinetic properties and highly cumbersome/complex synthetic routes. To circumvent these issues many non-carbohydrate strategies have been reported. Galectins are a sub-family of lectin proteins which have been recognized as crucial targets for a wide variety of diseases. Many candidates targeting galectins are currently in advanced stages of clinical trials. There have been a few reports of non-carbohydrate inhibitors targeting galectins which comprise of peptide-based inhibitors and a recent flourish of heterocyclic inhibitors. In this review, we have briefly highlighted the strategies like fragment-based drug-design and high-throughput screens utilized to identify non-carbohydrate based antagonists for proteins wherein the presence of a sugar was believed to be essential. Additionally, we have described the literature pertaining to non-carbohydrate inhibitors of galectins and how previous reports on rational substitution of a sugar motif could aid in design of heterocyclics that inhibit lectins/galectins. We have concluded with remarks on challenges, gap in our understanding and future perspectives concerned with rational design of non-carbohydrate molecules targeting lectins/galectins.


Assuntos
Galectinas/antagonistas & inibidores , Peptídeos/farmacologia , Relação Dose-Resposta a Droga , Galectinas/metabolismo , Estrutura Molecular , Peptídeos/química , Relação Estrutura-Atividade
9.
Carbohydr Res ; 472: 1-15, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30428394

RESUMO

Galectins are a family of carbohydrate-recognizing proteins that by interacting with specific glycoepitopes can mediate important biological processes, including immune cell homeostasis and activation of tolerogenic circuits. Among the different members of this family, Galectin 1 and 3 have shown pro-tumorigenic effects, being overexpressed in numerous neoplasic diseases, proving to be relevant in tumor immune escape, tumor progression and resistance to drug-induced apoptosis. Thus, generation of specific glycosides that could inhibit their pro-tumorigenic ability by blocking their carbohydrate recognition domain is one of the current major challenges in the field. Considering that galectin-ligand binding strength is closely related to the ligand structure, analysis of this relationship provides valuable information for rational design of high-affinity ligands that could work as effective galectin inhibitors. Taking profit of the ability of glycosidases to catalyze transglycosylation reactions we achieved the enzymatic synthesis of ß-d-Galp-(1 → 6)-ß-d-Galp-(1 → 4)-d-Glcp(2), a mixture of ß-d-Galp-(1 → 6)-ß-d-Glcp-(1 → 4)-d-Glcp(5) and ß-d-Galp-(1 → 3)-ß-d-Glcp-(1 → 4)-d-Glcp(6), and finally benzyl ß-d-galactopyranoside (9), with reaction yields between 16 and 27%. All the galactosides were purified, and characterized using 1H and 13C nuclear magnetic resonance spectroscopy. Docking results performed between the synthesized compounds and human Galectin 1 (hGal-1) and human Galectin 3 (hGal-3) showed that the replacement of a glucose moiety linked to the terminal galactose with a galactose moiety, decreases the affinity for these galectins. Moreover, regarding the interglycosidic bond the most favorable ß-Gal linkage seems to be ß(1 → 4) followed by ß(1 → 3) and ß(1 → 6) for hGal-1, and ß(1 → 4) followed by ß(1 → 6) and ß(1 → 3) for hGal-3. These results were in accordance with the IC50 values obtained with in vitro solid phase inhibition assays. Therefore, docking results obtained in this work proved to be a very good approximation for predicting binding affinity of novel galactosides.


Assuntos
Galactosídeos/biossíntese , Galectinas/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Trissacarídeos/biossíntese , Sítios de Ligação , Proteínas Sanguíneas , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Galactosídeos/química , Galactosídeos/farmacologia , Galectina 1/antagonistas & inibidores , Galectina 1/química , Galectina 3/antagonistas & inibidores , Galectina 3/química , Galectinas/química , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Trissacarídeos/química , Trissacarídeos/farmacologia
10.
Int J Mol Sci ; 19(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389859

RESUMO

Galectins are glycan-binding proteins that contain one or two carbohydrate domains and mediate multiple biological functions. By analyzing clinical tumor samples, the abnormal expression of galectins is known to be linked to the development, progression and metastasis of cancers. Galectins also have diverse functions on different immune cells that either promote inflammation or dampen T cell-mediated immune responses, depending on cognate receptors on target cells. Thus, tumor-derived galectins can have bifunctional effects on tumor and immune cells. This review focuses on the biological effects of galectin-1, galectin-3 and galectin-9 in various cancers and discusses anticancer therapies that target these molecules.


Assuntos
Galectina 1/metabolismo , Galectina 3/metabolismo , Galectinas/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/uso terapêutico , Proteínas Sanguíneas , Galectina 1/antagonistas & inibidores , Galectina 1/genética , Galectina 3/antagonistas & inibidores , Galectina 3/genética , Galectinas/antagonistas & inibidores , Galectinas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA