Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.937
Filtrar
1.
Food Chem ; 463(Pt 4): 141414, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39383797

RESUMO

In this paper, Spirulina platensis protein-based emulsion gels were investigated as fat substitutes in meat analogs and compared with conventional fat sources like palm oil, oleogel, and soybean oil. Evaluating parameters such as cooking loss, shrinkage, texture, appearance, and moisture distribution across various cooking methods. Emulsion gels imparted superior juiciness to meat analogs whereas palm oil and oleogel led to drier meat textures. Besides they also resulted in comparable cooking loss and shrinkage to traditional fats, indicating preferred fat options for incorporation of emulsion gels. The novel emulsion gel-filled meat analogs exhibited robust tolerance across three distinct cooking methods, boiling, steaming, and deep-frying. Steamed meat analogs exhibited brighter MRI signals, while fried counterparts displayed peripheral hollowing, attributed to steam's energy transfer and humidity-induced water migration, respectively. Overall, the study underscores the efficacy of these fat analogs in meat analogs, offering insights into their potential as viable alternatives in food formulations.

2.
Int J Biol Macromol ; : 136398, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389491

RESUMO

Polysaccharides have emerged as versatile materials capable of forming gels through diverse induction methods, with alcohol-induced polysaccharide gels demonstrating significant potential across food, medicinal, and other domains. The existing research mainly focused on the phenomena and mechanisms of alcohol-induced gel formation in specific polysaccharides. Therefore, this review provides a comprehensive overview of the intricate mechanisms underpinning alcohol-triggered gelation of different polysaccharides and surveys their prominent application potentials through rheological, mechanical, and other characterizations. The mechanism underlying the enhancement of polysaccharide network structures by alcohol is elucidated, where alcohol displaces water to establish hydrogen bonding and hydrophobic interactions with polysaccharide chains. Specifically, alcohols change the arrangement of water molecules, and the partial hydration shell surrounding polysaccharide molecules is disrupted, exposing polysaccharides' hydrophobic groups and enhancing hydrophobic interactions. Moreover, the pivotal influences of alcohol concentration and addition method on polysaccharide gelation kinetics are scrutinized, revealing nuanced dependencies such as the different gel-promoting capabilities of polyols versus monohydric alcohols and the critical threshold concentrations dictating gel formation. Notably, immersion of polysaccharide gels in alcohol augments gel strength, while direct alcohol addition to polysaccharide solutions precipitates gel formation. Future investigations are urged to unravel the intricate nexus between the mechanisms underpinning alcohol-induced polysaccharide gelation and their practical utility, thereby paving the path for tailored manipulation of environmental conditions to engineer bespoke alcohol-induced polysaccharide gels.

3.
J Biomater Sci Polym Ed ; : 1-19, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331526

RESUMO

Emphasizing the viscoelasticity of ophthalmic gels is crucial for understanding the residence time, structure, and stability of hydrogels. This study primarily aimed to propose an innovative rheology analysis method for ophthalmic gels, considering complex eye movements. This method was applied to select ophthalmic gels with favorable rheological characteristics. Additionally, the physical characteristics and in vitro release of the selected Panax notoginseng total saponins (PNS) gel were demonstrated. The selected PNS gel significantly increased the activities of SOD and decreased intracellular levels of MDA, TNF-α, and IL-1ß in H2O2-treated ARPE-19 cells. Finally, the optimal formulation was selected as a suitable platform for ophthalmic delivery and was shown to significantly rescue ARPE-19 cells from oxidative cellular damage.

4.
Chemistry ; : e202402961, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325557

RESUMO

We report the successful assembly of a tripeptide in the presence of nanodiamonds (NDs) into nanocomposite hydrogels. The presence of NDs does not hinder peptide self-assembly and gelation, whilst improving the viscoelastic properties of the hydrogels. Gelation kinetics are not affected by NDs, while the elastic moduli of the peptide hydrogels are significantly increased by the NDs. Increased resistance of the gels against applied stress can also be attained depending on the amount of NDs loaded in the nanocomposite. Raman micro-spectroscopy and TEM confirmed the presence of NDs on the surface, and not in the interior, of peptide nanofibers. Peptide-ND non-covalent interactions are also probed by Raman and Fourier-transformed infrared spectroscopies. Overall, this work enables the embedding of NDs into nanocomposite hydrogels formed through the self-assembly of a simple tripeptide at physiological pH, and it provides key insights to open the way for their future applications in biomaterials, for instance exploiting their luminescence and near-infrared responsiveness.

5.
Int J Biol Macromol ; : 135711, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39349338

RESUMO

Photocurable gels have broad application prospects in biomedicine, bionics, flexible wearable devices and other fields. However, there are still some problems in the current photocurable gels, such as notch sensitivity, that is, poor tear resistance. In this study, we provided a photocurable gel with excellent tear resistance. The gel prepolymer is mainly composed of hydroxymethylacrylamide (NAM) and cellulose nanocrystals (CNC) modified with dopamine hydrochloride (DA), referred to as DA@CNC. After photocuring, the prepared gels show excellent mechanical properties such as tear resistance, elasticity and toughness. The introduction of DA@CNC not only endows gels with a large amount of energy dissipation through hydrogen bond crosslinking, but also effectively resists crack expansion as a nano-sized reinforcing phase, which greatly improves the tear resistance of the gels. Even at a 40 % gap, the elongation at break of the gel can still reach 1445 %. In addition, the DA can endow the gel with good electrical conductivity and excellent sensitivity (GF = 23.8). Some flexible wearable devices like finger sleeve and wristband can be customized by photocurable 3D printing using the gel with high toughness. This high-performance gel has great application potential in flexible wearable devices.

6.
Pharmaceutics ; 16(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339265

RESUMO

The aim of the study was to propose pharmacy-compounded oral gels as a new and alternative dosage form that is attractive to children as having a better masking taste than syrups and reducing the risk of spilling. The application and physical properties of the gels prepared with cellulose derivatives (hydroxyethylcellulose and carmellose sodium) or carbomers were evaluated. The results of the study showed the most suitable consistency, viscosity, and organoleptic properties for gels prepared with carbomer and cellulose derivatives at concentrations of 0.75% and 2.0%, respectively. The microbial stability of the gels was guaranteed by the use of methylparaben and potassium sorbate. VAL (valsartan) and CC (candesartan cilexetil) tablets, often used off-label in children, were pulverized and suspended in the hydrogel bases, resulting in final drug concentrations of 4 mg/g and 1 mg/g, respectively. There was no significant change in viscosity and consistency parameters when the pulverized tablets were added, and only small changes in viscosity and consistency were observed during 35 days of storage, especially in the gels with sodium carmellose and candesartan. On the basis of the drug assay, an expiry date of 25 °C was recommended: 35 days for valsartan and 14 days for candesartan preparations.

7.
Food Res Int ; 195: 114944, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277222

RESUMO

The gelation of milk proteins can be achieved by various means, enabling the development of diverse products. In this study, heat-set milk protein gels (15 % protein) of diverse textures were made by pH modulation and two gels were selected for dynamic in vitro gastric digestion: a spoonable soft gel (SG, pH 6.55' G' of ∼100 Pa) and a sliceable firm gel (FG, pH 5.65; G' of ∼7000 Pa). The two gels displayed markedly different structural changes and digestion kinetics during gastric digestion. The SG underwent substantial structural compaction during the first 120 min of gastric digestion into a denser and firmer gastric chyme (26.3 % crude protein, G* of ∼8500 Pa) than the chyme of the FG (15.7 % crude protein, G* of ∼3000 Pa). These contrasting intragastric structural changes of the gels reversed their original textural differences, which led to slower digestion and gastric emptying of proteins from the SG compared with the FG. The different intragastric pH profiles during the digestion of the two gels likely played a key role by modulating the proteolytic activity and specificity (to κ-casein) of pepsin. Preferential early cleavage of κ-casein in SG stimulated coagulation and compaction of solid chyme, whereas rapid hydrolysis of αS- and ß-caseins in the FG weakened coagulation. This study provided new insights into controlling the structural development of dairy-based foods during gastric digestion and modulating digestion kinetics.


Assuntos
Digestão , Géis , Temperatura Alta , Proteínas do Leite , Géis/química , Digestão/fisiologia , Concentração de Íons de Hidrogênio , Cinética , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Esvaziamento Gástrico , Caseínas/química , Caseínas/metabolismo , Pepsina A/metabolismo , Animais , Manipulação de Alimentos/métodos , Proteólise
8.
Int J Biol Macromol ; 280(Pt 1): 135769, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299424

RESUMO

In this paper, the capabilities of NIR spectroscopy and LF-NMR data were compared for rapidly predicting the rheological properties of polysaccharide gels and assessing their printability. Seven machine learning (ML) models were established for rheological property prediction based on partial least squares regression (PLSR), support vector regression (SVR), back propagation artificial neural network (BPANN), one-dimensional convolutional neural network (1D CNN), recurrent neural network (RNN), long short-term memory (LSTM), and Transformer. The results showed that among the seven models, the SVR, BPANN, and 1D CNN models based on NIR spectroscopy effectively predicted the rheological parameters of polysaccharide gels, with the highest R2 in the prediction set reaching 0.9796 and the highest RPD reaching 7.0708. For most polysaccharide gels, using the LF-NMR relaxation time distribution curves provided better predictions of rheological properties than using transverse relaxation time and peak area. Among the seven models, the PLSR, SVR, 1D CNN, and Transformer models effectively predicted the rheological characteristics based on LF-NMR parameters, with the highest R2 in the prediction set reaching 0.9869 and the highest RPD reaching 8.7220. This study successfully established a prediction system for the rheological behaviors and 3D printing performance of polysaccharide gels using NIR spectroscopy and LF-NMR data combined with ML methods, achieving an intelligent assessment of the 3D printing behavior of polysaccharide gels.

9.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274091

RESUMO

The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, and a structure of a multi-component polymer-containing material. Determination of a relation between the structure of a complex material, the structure and properties of its constituent elements, and the rheological properties of the material as a whole is the subject of structural rheology-a valuable tool for the development and study of novel materials. This work summarizes the author's structural-rheological studies of complex polymer materials for determining the conditions and rheo-manifestations of their micro- and nanostructuring. The complicated chemical composition of macromolecular chains and its role in polymer structuring via block segregation and cooperative hydrogen bonds in melt and solutions is considered using tri- and multiblock styrene/isoprene and vinyl acetate/vinyl alcohol copolymers. Specific molecular interactions are analyzed in solutions of cellulose; its acetate butyrate; a gelatin/carrageenan combination; and different acrylonitrile, oxadiazole, and benzimidazole copolymers. A homogeneous structuring may result from a conformational transition, a mesophase formation, or a macromolecular association caused by a complex chain composition or specific inter- and supramolecular interactions, which, however, may be masked by macromolecular entanglements when determining a rheological behavior. A heterogeneous structure formation implies a microscopic phase separation upon non-solvent addition, temperature change, or intense shear up to a macroscopic decomposition. Specific polymer/particle interactions have been examined using polyethylene oxide solutions, polyisobutylene melts, and cellulose gels containing solid particles of different nature, demonstrating the competition of macromolecular entanglements, interparticle interactions, and adsorption polymer/particle bonds in governing the rheological properties. Complex chain architecture has been considered using long-chain branched polybutylene-adipate-terephthalate and polyethylene melts, cross-linked sodium hyaluronate hydrogels, asphaltene solutions, and linear/highly-branched polydimethylsiloxane blends, showing that branching raises the viscosity and elasticity and can result in limited miscibility with linear isomonomer chains. Finally, some examples of composite adhesives, membranes, and greases as structured polymeric functional materials have been presented with the demonstration of the relation between their rheological and performance properties.

10.
Materials (Basel) ; 17(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39274827

RESUMO

1H spin-lattice relaxation experiments have been performed for gels based on fish collagen in order to analyze water dynamics. The covered frequency range ranges from 10 kHz to 10 MHz; in some cases, the temperature has varied as well. The relaxation data have been reproduced in terms of two models of water motion-a model including two relaxation contributions associated with the diffusion of water molecules on the macromolecular surfaces and a second model being just a phenomenological power law. The concept of surface diffusion has led to a very good agreement with the experimental data and a consistent set of parameters, with the diffusion coefficients being about five orders of magnitude slower compared to bulk water for one of the pools and considerably faster for the second one (smaller by factors between 2 and 20 compared to bulk water). In some cases, the attempt to reproduce the data in terms of a power law has led to a good agreement with the experimental data (the power law factor varying between 0.41 and 0.57); however, in other cases, the discrepancies are significant. This outcome favors the concept of surface diffusion.

11.
Int J Biol Macromol ; 279(Pt 3): 135397, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39245115

RESUMO

Food gel is a kind of macromolecular biopolymer with viscoelasticity, which has good water retention and gelling ability, especially gels formed by protein and/or polysaccharide. The addition of calcium ions triggers gelation by interacting with the gel matrix, enhancing gels' textural and rheological properties like hardness, viscosity and elasticity. Thus calcium ions enrich the range of applications of food gels. This review focuses on forming a calcium-induced gel and improving the texture properties. It summarizes the mechanisms of gelation induced by calcium ions in polysaccharide, protein, and polysaccharide-protein systems and their gel properties. The effects of influencing factors in calcium ion concentration, types and mixing ratios of matrices, acid, and alkaline environments, as well as treatment methods on calcium-induced gel characteristics, are presented. Additionally, the current applications of calcium-induced gels in food industries and challenges are presented.


Assuntos
Cálcio , Géis , Polissacarídeos , Polissacarídeos/química , Géis/química , Cálcio/química , Reologia , Proteínas/química , Viscosidade , Alimentos , Íons/química
12.
Commun Mater ; 5(1): 197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309138

RESUMO

Nanofiber-based hydrogel delivery systems have recently shown great potential in biomedical applications, specifically due to their high surface-to-volume ratio of ultra-fine nanofibers and their ability to carry low solubility drugs. Herein, we introduce a visible light-triggered in situ-gelling drug vehicle (GAP Gel) composed of ascorbyl palmitate (AP) nanofibers and gelatin methacryloyl polymer. AP nanofibers form self-assembled structures through intermolecular interactions with a hydrophobic drug-loading core. We demonstrate that the hydrophilic periphery of AP nanofibers allows them to interact with other hydrophilic molecules via hydrogen bonds. The presence of AP nanofibers significantly enhances the viscoelasticity of GAP Gel in a concentration-dependent manner. Further, GAP Gel shows in vitro biocompatibility and sustained drug delivery efficacy when loaded with a hydrophobic antibiotic. Likewise, GAP Gel shows excellent in vivo biocompatibility when implanted in immunocompetent mice in various forms. Lastly, GAP Gels maintain cell viability when cultured in a 3D-environment over 7 days, establishing it as a promising and versatile hydrogel platform for the delivery of biotherapeutics.

13.
Macromol Rapid Commun ; : e2400564, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254520

RESUMO

The kinetics of gelation in the Activators Regenerated by Electron Transfer Atom Transfer Radical Polymerization (ARGET ATRP) of styrene, using a bifunctional initiator and no crosslinking agents are investigated. By applying the method of moments, we develop a system of differential equations that accounts for the formation of polymer rings. The kinetic rate constants of this model are optimized on the experimentally determined kinetics, varying the reaction temperature and ethanol fraction. Subsequently, we explore how variations in the amounts of catalyst, initiator, and reducing agents affect the simulated equilibria of ARGET ATRP, the emergence of gelation, and the swelling properties of the resulting networks. These findings suggest that favoring ring formation enhances the gelation phenomenon, supporting the hypothesis that the networks formed under the reported reaction conditions are olympic gels.

14.
Gels ; 10(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39330154

RESUMO

We report the synthesis of novel cobalt complexes-based catalysts designed for the oscillatory Belousov-Zhabotinsky (BZ) reaction. For the first time, we introduce cobalt complex-based self-oscillating gels that demonstrate autonomous color oscillations within a BZ reagent solution, functioning without the need for any external stimuli. We created acrylamide-based self-oscillating gels containing immobilized tris(2,2'-bipyridine)cobalt(II) or tris(1,10-phenanthroline)cobalt(II) complexes and gels containing covalently bound (5-acrylamido-1,10-phenanthroline)bis(2,2'-bipyridine)cobalt(II), (5-acrylamido-1,10-phenanthroline)bis(1,10-phenanthroline) cobalt(II), or tris(5-acrylamido-1,10-phenanthroline)cobalt(II) complexes. When the BZ reaction takes place within the gels, it results in the observation of moving chemical waves and reversible color changes. We believe that Co-complexes-based self-oscillating gels have potential applications in the design of soft actuators and chemical devices for signal processing.

15.
Gels ; 10(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39330155

RESUMO

Despite the numerous ongoing research studies in the area of conducting polymer-based electrode materials for supercapacitors, the implementation has been inadequate for commercialization. Further understanding is required for the design and synthesis of suitable materials like conducting polymer-based gels as electrode materials for supercapacitor applications. Among the polymers, conductive polymer gels (CPGs) have generated great curiosity for their use as supercapacitors, owing to their attractive qualities like integrated 3D porous nanostructures, softness features, very good conductivity, greater pseudo capacitance, and environmental friendliness. In this review, we describe the current progress on the synthesis of CPGs for supercapacitor applications along with their morphological behaviors and thermal properties. We clearly explain the synthesis approaches and related phenomena, including electrochemical approaches for supercapacitors, especially their potential applications as supercapacitors based on these materials. Focus is also given to the recent advances of CPG-based electrodes for supercapacitors, and the electrochemical performances of CP-based promising composites with CNT, graphene oxides, and metal oxides is discussed. This review may provide an extensive reference for forthcoming insights into CPG-based supercapacitors for large-scale applications.

16.
Gels ; 10(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39330161

RESUMO

Starch nanocrystals (SNCs) to stabilize high internal phase emulsions (HIPEs) always suffer low production efficiency from acid hydrolysis. Due to its small granule size, Quinoa starch (QS) was selected to produce SNCs as a function of acid hydrolysis time (0-4 days), and their structural changes and potential application as HIPEs' stabilizers were further explored. With increasing the acid hydrolysis time from 1 day to 4 days, the yield of QS nanocrystals decreased from 30.4% to 10.8%, with the corresponding degree of hydrolysis increasing from 51.2% to 87.8%. The occurrence of QS nanocrystals was evidenced from the Tyndall effect and scanning electron microscopy with particle size distribution. The relative crystallinity of QS subjected to different hydrolysis times (0-4 days) increased from 22.27% to 26.18%. When the acid hydrolysis time of QS was 3 and 4 days, their HIPEs showed self-standing after inversion, known as high internal phase emulsion gels (HIPE gels), closely related to their densely packed interfacial architecture around oil droplets, seen on an optical microscope, and relatively high apparent viscosity. This study could provide a theoretical guidance for the efficient production and novel emulsification of SNCs from QS to HIPE gels.

17.
Gels ; 10(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39330168

RESUMO

In this work an innovative approach was developed to address a significant challenge in the field of radiation dosimetry: the accurate measurement of spatial dose distributions using Fricke gel dosimeters. Hydrogels are widely used in radiation dosimetry due to their ability to simulate the tissue-equivalent properties of human tissue, making them ideal for measuring and mapping radiation dose distributions. Among the various gel dosimeters, Fricke gels exploit the radiation-induced oxidation of ferrous ions to ferric ions and are particularly notable due to their sensitivity. The concentration of ferric ions can be measured using various techniques, including magnetic resonance imaging (MRI) or spectrophotometry. While Fricke gels offer several advantages, a significant hurdle to their widespread application is the diffusion of ferric ions within the gel matrix. This phenomenon leads to a blurring of the dose distribution over time, compromising the accuracy of dose measurements. To mitigate the issue of ferric ion diffusion, researchers have explored various strategies such as the incorporation of additives or modification of the gel composition to either reduce the mobility of ferric ions or stabilize the gel matrix. The computational method proposed leverages the power of artificial intelligence, particularly deep learning, to mitigate the effects of ferric ion diffusion that can compromise measurement precision. By employing Physics Informed Neural Networks (PINNs), the method introduces a novel way to apply physical laws directly within the learning process, optimizing the network to adhere to the principles governing ion diffusion. This is particularly advantageous for solving the partial differential equations that describe the diffusion process in 2D and 3D. By inputting the spatial distribution of ferric ions at a given time, along with boundary conditions and the diffusion coefficient, the model can backtrack to accurately reconstruct the original ion distribution. This capability is crucial for enhancing the fidelity of 3D spatial dose measurements, ensuring that the data reflect the true dose distribution without the artifacts introduced by ion migration. Here, multidimensional models able to handle 2D and 3D data were developed and tested against dose distributions numerically evolved in time from 20 to 100 h. The results in terms of various metrics show a significant agreement in both 2D and 3D dose distributions. In particular, the mean square error of the prediction spans the range 1×10-6-1×10-4, while the gamma analysis results in a 90-100% passing rate with 3%/2 mm, depending on the elapsed time, the type of distribution modeled and the dimensionality. This method could expand the applicability of Fricke gel dosimeters to a wider range of measurement tasks, from simple planar dose assessments to intricate volumetric analyses. The proposed technique holds great promise for overcoming the limitations imposed by ion diffusion in Fricke gel dosimeters.

18.
Gels ; 10(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39330184

RESUMO

The aim of this study is to develop a nanoemulgel encapsulating a Tunisian Prickly Pear (Opuntia ficus-indica L.) seed oil (PPSO) to assess, for the first time, the in vivo efficacy of this nanoformulation on wound healing. Phytocompounds of this oil have been reported in the literature as having powerful pharmacological activities. However, it remains poorly exploited due to low bioavailability. A nanoemulsion (NE) was designed by determining the required hydrophilic-lipophilic balance (HLB) and subsequently characterized. The mean droplet size was measured at 56.46 ± 1.12 nm, with a polydispersity index (PDI) of 0.23 ± 0.01 using dynamic light scattering. The zeta potential was -31.4 ± 1.4 mV, and the morphology was confirmed and assessed using transmission electron microscopy (TEM). These characteristics align with the typical properties of nanoemulsions. The gelification process resulted in the formation of a nanoemulgel from the optimum nanoemulsion. The high wound healing efficiency of the nanoemulgel was confirmed compared to that of a medicinally marketed cream. The outcomes of this research contribute valuable insights, for the first time, into the potential therapeutic applications of PPSO and its innovative pharmaceutical formulation for wound healing.

19.
ACS Appl Mater Interfaces ; 16(37): 48927-48936, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39238144

RESUMO

Ionic gels are emerging as a promising solution for improving the functionality of electrochromic devices. They are increasingly drawing attention in the fields of electrochemistry and functional materials due to their potential to address issues associated with traditional liquid electrolytes, such as volatility, toxicity, and leakage. In extreme scenarios and/or the design of flexible devices, ionic gel electrolytes offer unique and invaluable advantages. This perspective delves into the application of ionic gels in electrochromic devices, exploring various methods to enhance their performance. After briefly introducing developments in ionic gels for electrochromic devices, the trends and key points of future development are discussed in detail.

20.
ACS Nano ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321316

RESUMO

Soft gels, formed via the self-assembly of particulate materials, exhibit intricate multiscale structures that provide them with flexibility and resilience when subjected to external stresses. This work combines particle simulations and topological data analysis (TDA) to characterize the complex multiscale structure of soft gels. Our TDA analysis focuses on the use of the Euler characteristic, which is an interpretable and computationally scalable topological descriptor that is combined with filtration operations to obtain information on the geometric (local) and topological (global) structure of soft gels. We reduce the topological information obtained with TDA using principal component analysis (PCA) and show that this provides an informative low-dimensional representation of the gel structure. We use the proposed computational framework to investigate the influence of gel preparation (e.g., quench rate, volume fraction) on soft gel structure and to explore dynamic deformations that emerge under oscillatory shear in various response regimes (linear, nonlinear, and flow). Our analysis provides evidence of the existence of hierarchical structures in soft gels, which are not easily identifiable otherwise. Moreover, our analysis reveals direct correlations between topological changes of the gel structure under deformation and mechanical phenomena distinctive of gel materials, such as stiffening and yielding. In summary, we show that TDA facilitates the mathematical representation, quantification, and analysis of soft gel structures, extending traditional network analysis methods to capture both local and global organization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA