Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Front Immunol ; 15: 1391848, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983856

RESUMO

Background: For Rheumatoid Arthritis (RA), a long-term chronic illness, it is essential to identify and describe patient subtypes with comparable goal status and molecular biomarkers. This study aims to develop and validate a new subtyping scheme that integrates genome-scale transcriptomic profiles of RA peripheral blood genes, providing a fresh perspective for stratified treatments. Methods: We utilized independent microarray datasets of RA peripheral blood mononuclear cells (PBMCs). Up-regulated differentially expressed genes (DEGs) were subjected to functional enrichment analysis. Unsupervised cluster analysis was then employed to identify RA peripheral blood gene expression-driven subtypes. We defined three distinct clustering subtypes based on the identified 404 up-regulated DEGs. Results: Subtype A, named NE-driving, was enriched in pathways related to neutrophil activation and responses to bacteria. Subtype B, termed interferon-driving (IFN-driving), exhibited abundant B cells and showed increased expression of transcripts involved in IFN signaling and defense responses to viruses. In Subtype C, an enrichment of CD8+ T-cells was found, ultimately defining it as CD8+ T-cells-driving. The RA subtyping scheme was validated using the XGBoost machine learning algorithm. We also evaluated the therapeutic outcomes of biological disease-modifying anti-rheumatic drugs. Conclusions: The findings provide valuable insights for deep stratification, enabling the design of molecular diagnosis and serving as a reference for stratified therapy in RA patients in the future.


Assuntos
Artrite Reumatoide , Perfilação da Expressão Gênica , Transcriptoma , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/diagnóstico , Humanos , Antirreumáticos/uso terapêutico , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Biomarcadores , Linfócitos T CD8-Positivos/imunologia
2.
Cancer Rep (Hoboken) ; 7(7): e2080, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967113

RESUMO

BACKGROUND: Glioblastoma (GBM) is a malignant brain tumor that frequently occurs alongside other central nervous system (CNS) conditions. The secretome of GBM cells contains a diverse array of proteins released into the extracellular space, influencing the tumor microenvironment. These proteins can serve as potential biomarkers for GBM due to their involvement in key biological processes, exploring the secretome biomarkers in GBM research represents a cutting-edge strategy with significant potential for advancing diagnostic precision, treatment monitoring, and ultimately improving outcomes for patients with this challenging brain cancer. AIM: This study was aimed to investigate the roles of secretome biomarkers and their pathwayes in GBM through bioinformatics analysis. METHODS AND RESULTS: Using data from the Gene Expression Omnibus and the Cancer Genome Atlas datasets-where both healthy and cancerous samples were analyzed-we used a quantitative analytical framework to identify differentially expressed genes (DEGs) and cell signaling pathways that might be related to GBM. Then, we performed gene ontology studies and hub protein identifications to estimate the roles of these DEGs after finding disease-gene connection networks and signaling pathways. Using the GEPIA Proportional Hazard Model and the Kaplan-Meier estimator, we widened our analysis to identify the important genes that may play a role in both progression and the survival of patients with GBM. In total, 890 DEGs, including 475 and 415 upregulated and downregulated were identified, respectively. Our results revealed that SQLE, DHCR7, delta-1 phospholipase C (PLCD1), and MINPP1 genes are highly expressed, and the Enolase 2 (ENO2) and hexokinase-1 (HK1) genes are low expressions. CONCLUSION: Hence, our findings suggest novel mechanisms that affect the occurrence of GBM development, growth, and/or establishment and may also serve as secretory biomarkers for GBM prognosis and possible targets for therapy. So, continued research in this field may uncover new avenues for therapeutic interventions and contribute to the ongoing efforts to combat GBM effectively.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Células-Tronco Neoplásicas , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Secretoma/metabolismo , Perfilação da Expressão Gênica , Transdução de Sinais , Prognóstico , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Microambiente Tumoral
3.
Artigo em Inglês | MEDLINE | ID: mdl-39034527

RESUMO

INTRODUCTION: Preterm delivery (PTD) is the leading cause of death in children under 5 years of age. Cervical shortening detected by ultrasound can be used to predict PTD, but prediction is not perfect, and complementary diagnostic markers are needed. Recently, specific plasma microribonucleic acid (miRNAs) detected in early second trimester were shown to be associated with spontaneous PTD in high-risk women with a singleton pregnancy. The aim of this study was to explore to what extent these miRNAs are associated with spontaneous PTD and cervical length in a general population. MATERIAL AND METHODS: This study is a nested case-control study within the CERVIX study. The CERVIX study evaluated the ability of cervical length screening with transvaginal ultrasound to identify women at risk of PTD. In the present study, women who delivered spontaneously <34 weeks (n = 61) were compared with a control group of women who delivered at full term (39 + 0 to 40 + 6 gestational weeks, n = 205). Archived serum samples were analyzed with RT-qPCR for miRNA expression levels of let-7a-5p, miR-150-5p, miR-15b-5p, miR-185-5p, miR-191-5p, miR-19b-3p, miR-23a-3p, miR-374a-5p, and miR-93-5p. The mean relative expression was compared between the groups. Sub-analyses were performed for women delivering <32, <30, and <28 weeks versus the full-term group. RESULTS: The analyzed miRNAs were not significantly differentially expressed in women delivering <34 weeks compared to those delivering at full term. MiR-191-5p and miR-93-5p were significantly overexpressed in women who delivered <32 weeks, and further increase in fold change was observed with decreasing gestational age at delivery. The level of miR-15b-5p was significantly higher in women delivering at <30 weeks compared to those delivering at full term. CONCLUSIONS: Our study shows that overexpression of miR-93-5p, miR-15b-5p, and miR-191-5p in serum at early gestation is associated with spontaneous PTD in a general population. Further research is needed to evaluate the potential of these miRNAs as future biomarkers for spontaneous PTD, as well as their pathophysiological role in spontaneous PTD.

4.
JAAD Int ; 15: 157-164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38882039

RESUMO

Background: Although highly efficacious, immune checkpoint inhibitors induce a multitude of immune-related adverse events including lichenoid skin reactions (irLP) that are often therapy-resistant. Objectives: To compare the clinical, histological, and transcriptional features of irLP with spontaneous lichen planus (LP). Methods: Clinical and histological presentations of irLP and LP, as well as the gene expression profiles of irLP and LP lesional and healthy skin were assessed. Results: irLP differed considerably from LP with regard to the distribution pattern of skin lesions with irLP appearing mostly in an exanthematous form, whereas lesions were more localized in the LP group. Histologically, dermal lymphocyte infiltration was significantly lower in irLP compared with LP, whereas lymphocyte exocytosis and apoptotic keratinocytes were significantly higher in irLP. Gene expression analysis revealed irLP to have a more inflammatory profile with elevated IFNG levels and a possible role of phagosome signaling compared with LP. Limitations: The study is descriptive and necessitates further investigation with larger cohorts and broader analyses. Conclusion: irLP differs from spontaneous LP on the clinical, histopathological, and gene expression level. The inflammatory gene signature in irLP suggests that topical JAK inhibitors could be an effective treatment, targeting local skin inflammation without systemic immunosuppression.

5.
New Phytol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863314

RESUMO

Nicotiana benthamiana is predominantly distributed in arid habitats across northern Australia. However, none of six geographically isolated accessions shows obvious xerophytic morphological features. To investigate how these tender-looking plants withstand drought, we examined their responses to water deprivation, assessed phenotypic, physiological, and cellular responses, and analysed cuticular wax composition and wax biosynthesis gene expression profiles. Results showed that the Central Australia (CA) accession, globally known as a research tool, has evolved a drought escape strategy with early vigour, short life cycle, and weak, water loss-limiting responses. By contrast, a northern Queensland (NQ) accession responded to drought by slowing growth, inhibiting flowering, increasing leaf cuticle thickness, and altering cuticular wax composition. Under water stress, NQ increased the heat stability and water impermeability of its cuticle by extending the carbon backbone of cuticular long-chain alkanes from c. 25 to 33. This correlated with rapid upregulation of at least five wax biosynthesis genes. In CA, the alkane chain lengths (c. 25) and gene expression profiles remained largely unaltered. This study highlights complex genetic and environmental control over cuticle composition and provides evidence for divergence into at least two fundamentally different drought response strategies within the N. benthamiana species in < 1 million years.

6.
J Vasc Res ; 61(4): 166-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880090

RESUMO

INTRODUCTION: Heart failure with preserved ejection fraction (HFpEF) is a common syndrome with high morbidity and mortality but without available evidence-based therapies. It is essential to investigate changes in gene expression profiles in preclinical HFpEF animal models, with the aim of searching for novel therapeutic targets. METHODS: Wild-type male C57BL/6J mice were administrated with a combination of high-fat diet (HFD) and inhibition of constitutive nitric oxide synthase using N-nitro-l-arginine methyl ester (l-NAME) for 5 and 7 weeks. RNA sequencing was conducted to detect gene expression profiles, and bioinformatic analysis was performed to identify the core genes, pathways, and biological processes involved. RESULTS: A total of 1,347 genes were differentially expressed in the heart at week 5 and 7 post-intervention. Gene Ontology enrichment analysis indicated that these greatly changed genes were involved mainly in cell adhesion, neutrophil chemotaxis, cell communication, and other functions. Using hierarchical cluster analysis, these differentially expressed genes were classified into 16 profiles. Of these, three significant profiles were ultimately identified. Gene co-expression network analysis suggested troponin T type 1 (Tnnt1) directly regulated 31 neighboring genes and was considered to be at the core of the associated gene network. CONCLUSION: The combined application of RNA sequencing, hierarchical cluster analysis, and gene network analysis identified Tnnt1 as the most important gene in the development of HFpEF.


Assuntos
Modelos Animais de Doenças , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Insuficiência Cardíaca , Camundongos Endogâmicos C57BL , Volume Sistólico , Transcriptoma , Função Ventricular Esquerda , Animais , Masculino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , RNA-Seq , Transdução de Sinais , Dieta Hiperlipídica , Regulação da Expressão Gênica , NG-Nitroarginina Metil Éster/farmacologia , Troponina T/genética , Troponina T/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , Camundongos
7.
Cell J ; 26(4): 250-258, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38736409

RESUMO

OBJECTIVE: Intraocular retinoblastoma (RB) is common in kids. Although the cause of this disease is a mutation in the RB1 gene, the formed cancerous mass in different patients is seen in non-invasive states, limited to the ocular cavity or in invasive states distributed to other parts of the body. Because this tumor's aggressiveness cannot be predicted early, these patients receive systemic chemotherapy with multiple drugs. Treating non-invasive and invasive tumors separately reduces chemical drug side effects. The aim of this study was to identify diagnostic biomarkers by separating miRNAs in blood serum from invasive and non-invasive RB patients. MATERIALS AND METHODS: In this experimental study, selected three gene expression omnibus (GEO) datasets. Two were related to serum and tumor tissue miRNAs, and one was related to non-invasive and invasive RB gene expression. Examined RB gene-miRNA relationships. Then, we performed real-time polymerase chain reaction (PCR) on candidate miRNAs in the Y79 cell line and patient blood samples in non-invasive and invasive retinoblastoma. RESULTS: Fourteen high-expression and 7 low-expression miRNAs resulted. MiR-181, miR-135a, miR-20a, miR-373, and miR-191 were common genes with differential genes between invasive and non-invasive retinoblastoma. Only MiR-181 was upregulated in the Y79 RB cell line. Other candidate miRNAs expressed less. Invasive retinoblastomas increased serum miR-20a and miR-191. CONCLUSION: Integrated and regular bioinformatics analyses found important miRNAs in patients' and miR-20a, miR- 191, and miR-135a can distinguish non-invasive and invasive retinoblastoma, suggesting further research.

8.
BMC Genomics ; 25(1): 493, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762533

RESUMO

BACKGROUND: Insects rely on sophisticated sensitive chemosensory systems to sense their complex chemical environment. This sensory process involves a combination of odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) in the chemosensory system. This study focused on the identification and characterization of these three types of chemosensory receptor genes in two closely related Phthorimaea pest species, Phthorimaea operculella (potato tuber moth) and Phthorimaea absoluta (tomato leaf miner). RESULTS: Based on manual annotation of the genome, we identified a total of 349 chemoreceptor genes from the genome of P. operculella, including 93 OR, 206 GR and 50 IR genes, while for P. absoluta, we identified 72 OR, 122 GR and 46 IR genes. Through phylogenetic analysis, we observed minimal differences in the number and types of ORs and IRs between the potato tuber moth and tomato leaf miner. In addition, we found that compared with those of tomato leaf miners, the gustatory receptor branch of P. operculella has undergone a large expansion, which may be related to P. absoluta having a narrower host range than P. operculella. Through analysis of differentially expressed genes (DEGs) of male and female antennae, we uncovered 45 DEGs (including 32ORs, 9 GRs, and 4 IRs). CONCLUSIONS: Our research provides a foundation for exploring the chemical ecology of these two pests and offers new insights into the dietary differentiation of lepidopteran insects, while simultaneously providing molecular targets for developing environmentally friendly pest control methods based on insect chemoreception.


Assuntos
Evolução Molecular , Mariposas , Filogenia , Receptores Odorantes , Animais , Mariposas/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Família Multigênica , Adaptação ao Hospedeiro/genética , Genômica/métodos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
9.
PeerJ ; 12: e17182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646482

RESUMO

Background: Corallium japonicum, a prized resource in Japan, plays a vital role in traditional arts and fishing industries. Because of diminished stock due to overexploitation, ongoing efforts are focused on restoration through transplantation. This study aimed to enhance our understanding of the reproductive biology of these valuable corals and find more efficient methods for sex determination, which may significantly contribute to conservation initiatives. Methods: We used 12 three-month aquarium reared C. japonicum colony fragments, conducted histological analysis for maturity and sex verification, and performed transcriptome analysis via de novo assembly and mapping using the C. rubrum transcriptome to explore gene expression differences between female and male C. japonicum. Results: Our histological observations enabled sex identification in 33% of incompletely mature samples. However, the sex of the remaining 67% of samples, classified as immature, could not be identified. RNA-seq yielded approximately 21-31 million short reads from 12 samples. De novo assembly yielded 404,439 highly expressed transcripts. Among them, 855 showed significant differential expression, with 786 differentially expressed transcripts between females and males. Heatmap analysis highlighted 283 female-specific and 525 male-specific upregulated transcripts. Transcriptome assembly mapped to C. rubrum yielded 28,092 contigs, leading to the identification of 190 highly differentially expressed genes, with 113 upregulated exclusively in females and 70 upregulated exclusively in males. Blastp analysis provided putative protein annotations for 83 female and 72 male transcripts. Annotation analysis revealed that female biological processes were related to oocyte proliferation and reproduction, whereas those in males were associated with cell adhesion. Discussion: Transcriptome analysis revealed sex-specific gene upregulation in incompletely mature C. japonicum and shared transcripts with C. rubrum, providing insight into its gene expression patterns. This study highlights the importance of using both de novo and reference-based assembly methods. Functional enrichment analysis showed that females exhibited enrichment in cell proliferation and reproduction pathways, while males exhibited enrichment in cell adhesion pathways. To the best of our knowledge, this is the first report on the gene expressions of each sex during the spawning season. Our findings offer valuable insights into the physiological ecology of incompletely mature red Japanese precious corals and suggest a method for identifying sex using various genes expressed in female and male individuals. In the future, techniques such as transplantation, artificial fertilization, and larval rearing may involve sex determination methods based on differences in gene expression to help conserve precious coral resources and ecosystems.


Assuntos
Antozoários , Gametogênese , Transcriptoma , Animais , Feminino , Masculino , Antozoários/genética , Antozoários/metabolismo , Gametogênese/genética , Perfilação da Expressão Gênica/métodos , Japão
10.
Artif Intell Med ; 152: 102864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640702

RESUMO

Predicting the response of tumor cells to anti-tumor drugs is critical to realizing cancer precision medicine. Currently, most existing methods ignore the regulatory relationships between genes and thus have unsatisfactory predictive performance. In this paper, we propose to predict anti-tumor drug efficacy via learning the activity representation of tumor cells based on a priori knowledge of gene regulation networks (GRNs). Specifically, the method simulates the cellular biosystem by synthesizing a cell-gene activity network and then infers a new low-dimensional activity representation for tumor cells from the raw high-dimensional expression profile. The simulated cell-gene network mainly comprises known gene regulatory networks collected from multiple resources and fuses tumor cells by linking them to hotspot genes that are over- or under-expressed in them. The resulting activity representation could not only reflect the shallow expression profile (hotspot genes) but also mines in-depth information of gene regulation activity in tumor cells before treatment. Finally, we build deep learning models on the activity representation for predicting drug efficacy in tumor cells. Experimental results on the benchmark GDSC dataset demonstrate the superior performance of the proposed method over SOTA methods with the highest AUC of 0.954 in the efficacy label prediction and the best R2 of 0.834 in the regression of half maximal inhibitory concentration (IC50) values, suggesting the potential value of the proposed method in practice.


Assuntos
Antineoplásicos , Redes Reguladoras de Genes , Neoplasias , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias/genética , Neoplasias/tratamento farmacológico , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Medicina de Precisão/métodos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos
11.
J Fungi (Basel) ; 10(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535173

RESUMO

Bud Rot, caused by Phytophthora palmivora, is considered one of the main diseases affecting African oil palm (Elaeis guineensis). In this study, we investigated the in vitro molecular dynamics of the pathogen-host interaction by analyzing gene expression profiles from oil palm genotypes that were either susceptible or resistant to the disease. We observed distinct interactions of P. palmivora with resistant and susceptible oil palms through co-expression network analysis. When interacting with susceptible genotypes, P. palmivora exhibited upregulation of carbohydrate and sulfate transport genes. These genes demonstrated co-expression with apoplastic and cytoplasmic effectors, including cell wall degrading enzymes, elicitins, and RxLR motif effectors. The pathogen manipulated susceptible oil palm materials, exacerbating the response and compromising the phenylpropanoid pathway, ultimately leading to susceptibility. In contrast, resistant materials exhibited control over their response through putative Heat Shock Proteins (HSP) that maintained homeostasis between primary metabolism and biotic defense. Co-expressed genes related to flavonoids, WRKY transcripts, lectin-type receptors, and LRR receptors may play important roles in pathogen control. Overall, the study provides new knowledge of the molecular mechanisms underlying the interaction between E. guineensis and P. palmivora, which can contribute to controlling Bud Rot in oil palms and gives new insights into the interactions of P. palmivora with their hosts.

12.
JOR Spine ; 7(1): e1304, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38304329

RESUMO

Background: Marfan syndrome (MFS) is a rare genetic disorder caused by mutations in the Fibrillin-1 gene (FBN1) with significant clinical features in the skeletal, cardiopulmonary, and ocular systems. To gain deeper insights into the contribution of epigenetics in the variability of phenotypes observed in MFS, we undertook the first analysis of integrating DNA methylation and gene expression profiles in whole blood from MFS and healthy controls (HCs). Methods: The Illumina 850K (EPIC) DNA methylation array was used to detect DNA methylation changes on peripheral blood samples of seven patients with MFS and five HCs. Associations between methylation levels and clinical features of MFS were analyzed. Subsequently, we conducted an integrated analysis of the outcomes of the transcriptome data to analyze the correlation between differentially methylated positions (DMPs) and differentially expressed genes (DEGs) and explore the potential role of methylation-regulated DEGs (MeDEGs) in MFS scoliosis. The weighted gene co-expression network analysis was used to find gene modules with the highest correlation coefficient with target MeDEGs to annotate their functions in MFS. Results: Our study identified 1253 DMPs annotated to 236 genes that were primarily associated with scoliosis, cardiomyopathy, and vital capacity. These conditions are typically associated with reduced lifespan in untreated MFS. We calculated correlations between DMPs and clinical features, such as cobb angle to evaluate scoliosis and FEV1% to assess pulmonary function. Notably, cg20223687 (PTPRN2) exhibited a positive correlation with cobb angle of scoliosis, potentially playing a role in ERKs inactivation. Conclusions: Taken together, our systems-level approach sheds light on the contribution of epigenetics to MFS and offers a plausible explanation for the complex phenotypes that are linked to reduced lifespan in untreated MFS patients.

13.
Plant Mol Biol ; 114(1): 15, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329633

RESUMO

Uncaria rhynchophylla is an evergreen vine plant, belonging to the Rubiaceae family, that is rich in terpenoid indole alkaloids (TIAs) that have therapeutic effects on hypertension and Alzheimer's disease. GATA transcription factors (TF) are a class of transcription regulators that participate in the light response regulation, chlorophyll synthesis, and metabolism, with the capability to bind to GATA cis-acting elements in the promoter region of target genes. Currently the charactertics of GATA TFs in U. rhynchophylla and how different light qualities affect the expression of GATA and key enzyme genes, thereby affecting the changes in U. rhynchophylla alkaloids have not been investigated. In this study, 25 UrGATA genes belonging to four subgroups were identified based on genome-wide analysis. Intraspecific collinearity analysis revealed that only segmental duplications were identified among the UrGATA gene family. Collinearity analysis of GATA genes between U. rhynchophylla and four representative plant species, Arabidopsis thaliana, Oryza sativa, Coffea Canephora, and Catharanthus roseus was also performed. U. rhynchophylla seedlings grown in either red lights or under reduced light intensity had altered TIAs content after 21 days. Gene expression analysis reveal a complex pattern of expression from the 25 UrGATA genes as well as a number of key TIA enzyme genes. UrGATA7 and UrGATA8 were found to have similar expression profiles to key enzyme TIA genes in response to altered light treatments, implying that they may be involved in the regulation TIA content. In this research, we comprehensively analyzed the UrGATA TFs, and offered insight into the involvement of UrGATA TFs from U. rhynchophylla in TIAs biosynthesis.


Assuntos
Arabidopsis , Alcaloides de Triptamina e Secologanina , Uncaria , Luz , Luz Vermelha , Fatores de Transcrição GATA
14.
BMC Genomics ; 25(1): 212, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408895

RESUMO

Geoherb usually represents high-quality medicinal herbs with better clinical therapeutic effects, and elucidating the geoherbalism is essential for the quality improvement of traditional Chinese Medicine. However, few researches were conducted to clarify the geoherbalism based on a large scale of transcriptomics. In the present study, we compared the transcriptomes of Rheum palmatum complex derived from top-geoherb and non-geoherb areas to show the geoherbalism properties of rhubarb. A total of 412.32 Gb clean reads were obtained with unigene numbers of 100,615 after assembly. Based on the obtained transcriptome datasets, key enzyme-encoding genes involved in the anthraquinones biosynthesis were also obtained. We also found that 21 anthraquinone-related unigenes were differentially expressed between two different groups, and some of these DEGs were correlated to the content accumulation of five free anthraquinones, indicating that the gene expression profiles may promote the geoherbalism formation of rhubarb. In addition, the selective pressure analyses indicated that most paired orthologous genes between these two groups were subject to negative selection, and only a low proportion of orthologs under positive selection were detected. Functional annotation analyses indicated that these positive-selected genes related to the functions such as gene expression, substance transport, stress response and metabolism, indicating that discrepant environment also enhanced the formation of geoherbalism. Our study not only provided insights for the genetic mechanism of geoherbalism of rhubarb, but also laid more genetic cues for the future rhubarb germplasms improvement and utilization.


Assuntos
Medicamentos de Ervas Chinesas , Rheum , Transcriptoma , Rheum/genética , Antraquinonas , Perfilação da Expressão Gênica
15.
Artigo em Inglês | MEDLINE | ID: mdl-37827426

RESUMO

The heterogeneity of Alzheimer's disease (AD) poses a challenge to precision medicine. We aimed to identify distinct subtypes of AD based on the individualized structural covariance network (IDSCN) analysis and to research the underlying neurobiology mechanisms. In this study, 187 patients with AD (age = 73.57 ± 6.00, 50% female) and 143 matched normal controls (age = 74.30 ± 7.80, 44% female) were recruited from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project database, and T1 images were acquired. We utilized the IDSCN analysis to generate individual-level altered structural covariance network and performed k-means clustering to subtype AD based on structural covariance network. Cognition, disease progression, morphological features, and gene expression profiles were further compared between subtypes, to characterize the heterogeneity in AD. Two distinct AD subtypes were identified in a reproducible manner, and we named the two subtypes as slow progression type (subtype 1, n = 104, age = 76.15 ± 6.44, 42% female) and rapid progression type (subtype 2, n = 83, age = 71.98 ± 8.72, 47% female), separately. Subtype 1 had better baseline visuospatial function than subtype 2 (p < 0.05), whereas subtype 2 had better baseline memory function than subtype 1 (p < 0.05). Subtype 2 showed worse progression in memory (p = 0.003), language (p = 0.003), visuospatial function (p = 0.020), and mental state (p = 0.038) than subtype 1. Subtype 1 often shared increased structural covariance network, mainly in the frontal lobe and temporal lobe regions, whereas subtype 2 often shared increased structural covariance network, mainly in occipital lobe regions and temporal lobe regions. Functional annotation further revealed that all differential structural covariance network between the two AD subtypes were mainly implicated in memory, learning, emotion, and cognition. Additionally, differences in gray matter volume (GMV) between AD subtypes were identified, and genes associated with GMV differences were found to be enriched in the terms potassium ion transport, synapse organization, and histone modification and the pathways viral infection, neurodegeneration-multiple diseases, and long-term depression. The two distinct AD subtypes were identified and characterized with neuroanatomy, cognitive trajectories, and gene expression profiles. These comprehensive results have implications for neurobiology mechanisms and precision medicine.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/metabolismo , Cognição
16.
Ticks Tick Borne Dis ; 15(1): 102256, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734164

RESUMO

Amblyomma americanum, also known as the lone star tick, is a small arachnid that feeds on blood and can spread disease to humans and other animals. Despite the overlapped ecological niche, geographic distribution, and host selection, there is no proof that A. americanum transmits the pathogen Borrelia burgdorferi that causes Lyme disease. Studies have shown that phospholipase A2 (PLA2) may act as a tool to eliminate B. burgdorferi, but particular PLA2 genes in A. americanum have not been identified and functionally characterized. Using the de novo sequencing method, we identified 42 putative A. americanum PLA2 (pAaPLA2) homologs in the present study, of which three pAaPLA2 had calcium binding sites and canonical histidine catalytic sites. Then, we determined phylogenetic relationships, sequence alignments, and conserved protein motifs of these pAaPLA2s. Protein structural analysis demonstrated that pAaPLA2s primarily consisted of α-helices, ß-sheets, and random coils. These genes were predicted to be engaged in the phospholipid metabolic process, arachidonic acid secretion, and PLA2 activity by functional annotation analysis. A transcriptional factor (Bgb) was discovered that interacted with pAaPLA2 proteins that may have unrecognized roles in regulating neuronal development. Based on the RNA-seq data, we surveyed expression profiles of key pAaPLA2-related genes to reveal putative modulatory networks of these genes. RNAi knockdown of pAaPLA2_1, a dominant isoform in A. americanum, led to decreased bacterial inhibition ability, suggesting pAaPLA2 may play an important role in mediating immune responses. Collectively, this study provides essential evidence of the identification, gene structure, phylogeny, and expression analysis of pAaPLA2 genes in A. americanum, and offers a deeper understanding of the putative borreliacidal roles in the lone star tick.


Assuntos
Amblyomma , Ixodidae , Humanos , Animais , Amblyomma/genética , Ixodidae/microbiologia , Interferência de RNA , Filogenia , Fosfolipases A2/genética , Perfilação da Expressão Gênica
17.
Open Life Sci ; 18(1): 20220755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941785

RESUMO

Speckle type BTB/POZ protein (SPOP) may have cancer promoting or inhibiting effects. At present, the role of SPOP in hepatocellular carcinoma (HCC) has rarely been studied. In this study, to investigate the effects of SPOP in HCC and elucidate the underlying molecular mechanisms of its relationship with genes, differentially expressed genes (DEGs) were classified through RNA sequencing. The gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes functional pathway analysis were used to further predict the function of DEGs after the overexpression of SPOP. The biological function of SPOP-regulated alternative splicing events in cells is comprehensively assessed. The Cancer Genome Atlas database and Gene Expression Omnibus dataset were performed to evaluate the correlation between SPOP and HCC progression. Due to SPOP overexpression, 56 DEGs in the HCC related pathway were further identified. The results showed that SPOP overexpression facilitated the cell proliferation and changed the gene expression profiles of human normal hepatocytes. SPOP-regulated alternative splicing events were involved in pathways associated with cellular processes, metabolism, environmental information procession, organismal systems, and so on. In conclusion, SPOP may potentially exhibit tumor-promoting effects, necessitating further investigations to unveil its molecular mechanisms comprehensively.

18.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894918

RESUMO

Millions of people around the world are exposed to elevated levels of arsenic through food or drinking water. Epidemiological studies have linked chronic arsenic exposure to an increased risk of several cancers, cardiovascular disease, central nervous system neuropathies, and genotoxic as well as immunotoxic effects. In addition to the induction of oxidative stress and inhibition of DNA repair processes, epigenetic effects, including altered DNA methylation patterns resulting in aberrant gene expression, may contribute to carcinogenicity. However, the underlying mechanisms by which chronic micromolar concentrations of arsenite affect the methylation status of DNA are not fully understood. In this study, human HepG2 hepatocarcinoma cells were treated with 0.5-10 µM sodium arsenite for 24 h, 10, or 20 days. During these periods, the effects on global DNA methylation, cell cycle phase distribution, and gene expression were investigated. While no impact on DNA methylation was seen after short-term exposure, global hypomethylation was observed at both long-term exposure periods, with concomitant induction of the DNA methyltransferase genes DNMT1 and DNMT3B, while DNMT3A was slightly down-regulated. Pronounced time- and concentration-dependent effects were also seen in the case of genes involved in DNA damage response and repair, inflammation, oxidative stress response, and metal homeostasis. These results suggest that chronic low-dose arsenite exposure can lead to global hypomethylation. As an underlying mechanism, the consistent down-regulation of DNA methyltransferase genes could be excluded; alternatively, interactions at the protein level could play an important role.


Assuntos
Arsênio , Arsenitos , Neoplasias Hepáticas , Humanos , Metilação de DNA , Arsenitos/toxicidade , Arsênio/toxicidade , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias Hepáticas/genética , DNA/metabolismo , Expressão Gênica
19.
Dev Cell ; 58(23): 2789-2801.e5, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37890488

RESUMO

Transcription factor combinations play a key role in shaping cellular identity. However, the precise relationship between specific combinations and downstream effects remains elusive. Here, we investigate this relationship within the context of the Drosophila eve locus, which is controlled by gap genes. We measure spatiotemporal levels of four gap genes in heterozygous and homozygous gap mutant embryos and correlate them with the striped eve activity pattern. Although changes in gap gene expression extend beyond the manipulated gene, the spatial patterns of Eve expression closely mirror canonical activation levels in wild type. Interestingly, some combinations deviate from the wild-type repertoire but still drive eve activation. Although in homozygous mutants some Eve stripes exhibit partial penetrance, stripes consistently emerge at reproducible positions, even with varying gap gene levels. Our findings suggest a robust molecular canalization of cell fates in gap mutants and provide insights into the regulatory constraints governing multi-enhancer gene loci.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica , Proteínas de Homeodomínio/metabolismo
20.
Fish Shellfish Immunol ; 143: 109132, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797870

RESUMO

Protein kinases of the MAPK cascade family (MAPKKK-MAPKK-MAPK) play an important role in the growth and development of organisms and their response to environmental stress. The MAPKK gene families in the Chinese mitten crab Eriocheir sinensis have never been systematically analyzed. We identified four MAPKK family genes, EsMEK, EsMAPKK4, EsMAPKK6, and EsMAPKK7, in E. sinensis and analyzed their molecular features and expression patterns. All four MAPKK genes are composed of multiple exons and introns, all have a conserved domain, and all have 10 conserved motifs (except EsMEK and EsMAPKK7 which are missing motif 10). The four MAPKK genes are on four different chromosomes and have no gene duplications, and the results of phylogenetic tree analysis indicate that the ESMAPKK gene family is highly conserved evolutionarily. The EsMAPKK genes were widely expressed in all the examined tissues with higher expression in hemocytes, hepatopancreas, and gills. Notably, EsMAPKK6 was also highly expressed in the ovary. Vibrio parahaemolyticus infection significantly increased the mRNA levels of the EsMAPKK genes in hemocytes. Further disruption of the EsMAPKK gene family expression affects the expression levels of multiple antimicrobial peptides in hemocytes. Our experimental results provide a starting point for a more in-depth study of the innate immunity functional roles of members of the MAPKK gene families in E. sinensis.


Assuntos
Braquiúros , Vibrioses , Animais , Sequência de Aminoácidos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Filogenia , Sistema de Sinalização das MAP Quinases , Braquiúros/genética , Braquiúros/metabolismo , Imunidade Inata/genética , Proteínas de Artrópodes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA