Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.502
Filtrar
1.
Water Res ; 261: 122005, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38968733

RESUMO

Organic loading rate (OLR) is crucial for determining the stability of dry anaerobic digestion (AD). Digestate recirculation contributes to reactor stability and enhances methane production. Nevertheless, the understanding of how OLR and digestate recirculation affect the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs), as well as the mechanisms involved in the dissemination of ARGs, remains limited. This study thoroughly investigated this critical issue through a long-term pilot-scale experiment. The metabolome analyses revealed the enrichment of various antibiotics, such as aminoglycoside, tetracycline, and macrolide, under low OLR conditions (OLR ≤ 4.0 g·VS/L·d) and the reactor instability. Antibiotics abundance decreased by approximately 19.66-31.69 % during high OLR operation (OLR ≥ 6.0 g·VS/L·d) with digestate recirculation. The metagenome analyses demonstrated that although low OLR promoted reactor stability, it facilitated the proliferation of antibiotic-resistant bacteria, such as Pseudomonas, and triggered functional profiles related to ATP generation, oxidative stress response, EPS secretion, and cell membrane permeability, thereby facilitating horizontal gene transfer (HGT) of ARGs. However, under stable operation at an OLR of 6.0 g·VS/L·d, there was a decrease in ARGs abundance but a notable increase in human pathogenic bacteria (HPB) and mobile genetic elements (MGEs). Subsequently, during reactor instability, the abundance of ARGs and HPB increased. Notably, during digestate recirculation at OLR levels of 6.0 and 7.0 g·VS/L·d, the process attenuated the risk of ARGs spread by reducing the diversity of ARGs hosts, minimizing interactions among ARGs hosts, ARGs, and MGEs, and weakening functional profiles associated with HGT of ARGs. Overall, digestate recirculation aids in reducing the abundance of antibiotics and ARGs under high OLR conditions. These findings provide advanced insights into how OLR and digestate recirculation affect the occurrence patterns of antibiotics and ARGs in dry AD.

2.
Sci Rep ; 14(1): 15500, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969684

RESUMO

The incidence of Pseudomonas aeruginosa infections in healthcare environments, particularly in low-and middle-income countries, is on the rise. The purpose of this study was to provide comprehensive genomic insights into thirteen P. aeruginosa isolates obtained from Egyptian healthcare settings. Phenotypic analysis of the antimicrobial resistance profile and biofilm formation were performed using minimum inhibitory concentration and microtiter plate assay, respectively. Whole genome sequencing was employed to identify sequence typing, resistome, virulome, and mobile genetic elements. Our findings indicate that 92.3% of the isolates were classified as extensively drug-resistant, with 53.85% of these demonstrating strong biofilm production capabilities. The predominant clone observed in the study was ST773, followed by ST235, both of which were associated with the O11 serotype. Core genome multi-locus sequence typing comparison of these clones with global isolates suggested their potential global expansion and adaptation. A significant portion of the isolates harbored Col plasmids and various MGEs, all of which were linked to antimicrobial resistance genes. Single nucleotide polymorphisms in different genes were associated with the development of antimicrobial resistance in these isolates. In conclusion, this pilot study underscores the prevalence of extensively drug-resistant P. aeruginosa isolates and emphasizes the role of horizontal gene transfer facilitated by a diverse array of mobile genetic elements within various clones. Furthermore, specific insertion sequences and mutations were found to be associated with antibiotic resistance.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Egito/epidemiologia , Humanos , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Sequenciamento Completo do Genoma/métodos , Genômica/métodos , Genoma Bacteriano , Evolução Molecular , Farmacorresistência Bacteriana/genética , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único , Farmacorresistência Bacteriana Múltipla/genética , Filogenia
3.
BMC Plant Biol ; 24(1): 644, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973002

RESUMO

BACKGROUND: Floating bamboo (Hygroryza aristata) is an endangered species with a narrow native distribution and is renowned for its unique aesthetic qualities, which holds significant ecological and ornamental value. However, the lack of genetic information research, with only one complete plastome available, significantly hampers conservation efforts and further research for this species. RESULTS: In this research, we sequenced and assembled the organelle genomes of floating bamboo, including the mitogenome (587,847 bp) and plastome (135,675 bp). The mitogenome can recombine into various configurations, which are mediated by 25 repeat pairs (13 SRs, 6 MRs, 1 LR, and 5 CRs). LR1 and SR5 are particularly notable as they have the ability to combine with other contigs, forming complex repeat units that facilitate further homologous recombination. The rate of homologous recombination varies significantly among species, yet there is still a pronounced positive correlation observed between the length of these repeat pairs and the rate of recombination they mediate. The mitogenome integrates seven intact protein-coding genes from the chloroplast. The codon usage patterns in both organelles are similar, with a noticeable bias towards C and T on the third codon. The gene map of Poales shows the entire loss of rpl6, succinate dehydrogenase subunits (sdh3 and sdh4). Additionally, the BOP clade retained more variable genes compared to the PACMAD clade. CONCLUSIONS: We provided a high-quality and well-annotated mitogenome for floating bamboo and demonstrated the presence of diverse configurations. Our study has revealed the correlation between repeat length and their corresponding recombination rate despite variations among species. Although the mitogenome can potentially exist in the form of a unicircular in vivo, this occurrence is rare and may not be stable.


Assuntos
Genoma Mitocondrial , Poaceae , Poaceae/genética , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico/genética , Genoma de Planta
4.
Biotechnol Bioeng ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963234

RESUMO

Bringing effective cancer therapy in the form of chimeric antigen receptor technology to untapped markets faces numerous challenges, including a global shortage of therapeutic lentiviral or retroviral vectors on which all current clinical therapies using genetically modified T cells are based. Production of these lentiviral vectors in academic settings in principle opens the way to local production of therapeutic cells, which is the only economically viable approach to make this therapy available to patients in developing countries. The conditions for obtaining and concentrating lentiviral vectors have been optimized and described. The calcium phosphate precipitation method was found to be suitable for transfecting high cell-density cultures, a prerequisite for high titers. We describe protocols for gradually increasing production from 6-well plates to P100 plates, T-175 flasks, and 5-layer stacks while maintaining high titers, >108 transducing units. Concentration experiments using ultracentrifugation revealed the advantage of lower centrifugation speeds compared to competing protocols. The resulting batches of lentiviral vectors had a titer of 1010 infectious particles and were used to transduce primary human T lymphocytes generating chimeric antigen receptor T cells, the quality of which was checked and found potential applicability for treatment.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39021167

RESUMO

The rapid emergence and global spread of antimicrobial resistance in recent years have raised significant concerns about the future of modern medicine. Superbugs and multidrugresistant bacteria have become endemic in many parts of the world, raising the specter of untreatable infections. The overuse and misuse of antimicrobials over the past 80 years have undoubtedly contributed to the development of antimicrobial resistance, placing immense pressure on healthcare systems worldwide. Nonetheless, the molecular mechanisms underlying antimicrobial resistance in bacteria have existed since ancient times. Some of these mechanisms and processes have served as the precursors of current resistance determinants, highlighting the ongoing arms race between bacteria and their antimicrobial adversaries. Moreover, the environment harbors many putative resistance genes, yet we cannot still predict which of these genes will emerge and manifest as pathogenic resistance phenotypes. The presence of antibiotics in natural habitats, even at sub-inhibitory concentrations, may provide selective pressures that favor the emergence of novel antimicrobial resistance apparatus and, thus, underscores the need for a comprehensive understanding of the factors driving the persistence and spread of antimicrobial resistance. As the development of antimicrobial strategies that evade resistance is urgently needed, a clear perception of these critical factors could ultimately pave the way for the design of innovative therapeutic targets.

6.
One Health ; 18: 100685, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39010965

RESUMO

Transmission of extended-spectrum ß-lactamase (ESBL) genes has increased the global prevalence of ESBL-producing bacteria, especially in developing countries. Human infection with these bacteria may be food-mediated but has not been fully elucidated. Therefore, we aimed to examine ESBL-producing bacteria in edible river fish and elucidate their potential for horizontal gene transfer. A total of 173 ESBL-producing Enterobacterales were isolated (Escherichia coli [n = 87], Klebsiella pneumoniae [n = 52], Enterobacter cloacae complex [n = 18], Citrobacter freundii complex [n = 14], Atlantibacter hermannii [n = 1] and Serratia fonticola [n = 1]) from 56 of 80 fish intestinal contents sampled. Among the bacterial bla CTX-M genotypes, bla CTX-M-55 was the most predominant, followed by bla CTX-M-15, bla CTX-M-27, and bla CTX-M-65. Furthermore, we found that ESBL-producing Enterobacterales were able to transfer their bla CTX-M genes to E. coli. In summary, our results suggest that ESBL-producing Enterobacterales transfer bla CTX-M to indigenous gut E. coli in humans, following the consumption of contaminated fish.

7.
Brain Res Bull ; 215: 111031, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002935

RESUMO

We have previously reported that the expression of miR-34c-5p was up-regulated during acupuncture treatment in the setting of a cerebral ischemia/reperfusion injury (CIRI), indicating that miR-34c-5p plays an important role in healing from a CIRI-induced brain injury. This study sought to evaluate the effects of acupuncture on miR-34c-5p expression and autophagy in the forward and reverse directions using a rat focal cerebral ischemia/reperfusion model. After 120 minutes of middle cerebral artery occlusion and reperfusion, rats were treated with acupuncture at the "Dazhui" (DU20), "Baihui" (DU26) and "Renzhong" (DU14) points. Neurologic function deficit score, cerebral infarct area ratio, neuronal apoptosis and miR-34c-5p expression were evaluated 72 hr after treatment. The autophagy agonist RAPA and the antagonist 3MA were used to evaluate the neuro protective effects of autophagy-mediated acupuncture. We found that acupuncture treatment improved autophagy in the brain tissue of CIRI rats. Acupuncture reversed the negative effects of 3MA on CIRI, and acupuncture combined with RAPA further enhanced autophagy. We also found that acupuncture could increase miR-34c-5p expression in hippocampal neurons after ischemia/reperfusion. Acupuncture and a miR-34c agomir were able to enhance autophagy, improve neurologic deficits, and reduce the cerebral infarct area ratio and apoptosis rate by promoting the expression of miR-34c-5p. Silencing miR-34c resulted in a significantly reduced activating effect of acupuncture on autophagy and increased apoptosis, neurologic deficit symptoms, and cerebral infarct area ratio. This confirms that acupuncture can upregulate miR-34c-5p expression, which is beneficial in the treatment of CIRI.

8.
ISME J ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001714

RESUMO

In recent years, phylogenetic reconciliation has emerged as a promising approach for studying microbial ecology and evolution. The core idea is to model how gene trees evolve along a species tree, and to explain differences between them via evolutionary events including gene duplications, transfers, and losses. Here, we describe how phylogenetic reconciliation provides a natural framework for studying genome evolution, and highlight recent applications including ancestral gene content inference, the rooting of species trees, and the insights into metabolic evolution and ecological transitions they yield. Reconciliation analyses have elucidated the evolution of diverse microbial lineages, from Chlamydiae to Asgard archaea, shedding light on ecological adaptation, host-microbe interactions, and symbiotic relationships. However, there are many opportunities for broader application of the approach in microbiology. Continuing improvements to make reconciliation models more realistic and scalable, and integration of ecological metadata such as habitat, pH, temperature and oxygen use, offer enormous potential for understanding the rich tapestry of microbial life.

9.
Methods Mol Biol ; 2842: 309-321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012603

RESUMO

Modern neuroscience research is increasingly discovering that alterations in epigenetic states within key brain cells is correlated with brain diseases. These epigenetic alterations may include changes in histone post-translational modifications and/or DNA modifications, all of which affect transcription and other gene expression programs within the brain cells that comprise central brain regions. However, the exact causal contribution of these epigenome changes to brain disease cannot be elucidated in the absence of direct in vivo manipulations in the implicated brain areas. Combining the design and creation of epigenetic editing constructs, gene delivery strategies, and stereotaxic surgery enables neuroscience researchers to target and manipulate the epigenetic state of the brain cells of laboratory rodents in a locus-specific manner and test its causal contribution to disease-related pathology and behaviors. Here, we describe the surgical protocol utilized by our group and others, which is optimized for herpes simplex virus delivery into the mouse brain, although the protocol outlined herein could be applied for delivery of adeno-associated viruses, lentiviruses, or nonviral gene-delivery methods in both mice and rats. The method allows for the overexpression of engineered DNA-binding proteins for direct and targeted epigenome editing in rodent brain with excellent spatiotemporal control. Nearly any brain region of interest can be targeted in rodents at every stage of postnatal life. Owing to the versatility, reproducibility, and utility of this technique, it is an important method for any laboratory interested in studying the cellular, circuit, and behavioral consequences of manipulating the brain epigenome in laboratory rodents.


Assuntos
Encéfalo , Epigênese Genética , Edição de Genes , Técnicas de Transferência de Genes , Técnicas Estereotáxicas , Animais , Camundongos , Edição de Genes/métodos , Encéfalo/metabolismo , Ratos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem
10.
Front Microbiol ; 15: 1416454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946899

RESUMO

Introduction: The dissemination of carbapenem-resistant Enterobacteriales (CRE) in nosocomial settings is primarily associated with the horizontal transfer of plasmids. However, limited research has focused on the in-host transferability of carbapenem resistance. In this study, ten isolates were collected from gut specimens of five individuals, each hosting two different species, including Escherichia coli, Klebsiella pneumoniae, Klebsiella aerogenes, Enterobacter cloacae, or Citrobacter koseri. Methods: Species identification and antimicrobial susceptibility were determined by MALDI-TOF MS and broth microdilution method. Carbapenemase genes were detected and localized using PCR, S1-PFGE and southern blot. The transferability of carbapenemase genes between species was investigated through filter mating experiments, and the genetic contexts of the plasmids were analyzed using whole genome sequencing. Results and discussion: Our results revealed that each of the ten isolates harbored a carbapenemase gene, including bla NDM-5, bla NDM-1, or bla KPC-2, on a plasmid. Five different plasmids were successfully transferred to recipient cells of E. coli, K. pneumoniae or A. baumannii by transconjugation. The genetic contexts of the carbapenemase gene were remarkably similar between the two CRE isolates from each individual. This study highlights the potential for interspecies plasmid transmission in human gut, emphasizing the colonization of CRE as a significant risk factor for the dissemination of carbapenemase genes within the host. These findings underscore the need for appropriate intestinal CRE screening and colonization prevention.

11.
BMC Biol ; 22(1): 148, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965531

RESUMO

BACKGROUND: Microbiomes are generally characterized by high diversity of coexisting microbial species and strains, and microbiome composition typically remains stable across a broad range of conditions. However, under fixed conditions, microbial ecology conforms with the exclusion principle under which two populations competing for the same resource within the same niche cannot coexist because the less fit population inevitably goes extinct. Therefore, the long-term persistence of microbiome diversity calls for an explanation. RESULTS: To explore the conditions for stabilization of microbial diversity, we developed a simple mathematical model consisting of two competing populations that could exchange a single gene allele via horizontal gene transfer (HGT). We found that, although in a fixed environment, with unbiased HGT, the system obeyed the exclusion principle, in an oscillating environment, within large regions of the phase space bounded by the rates of reproduction and HGT, the two populations coexist. Moreover, depending on the parameter combination, all three major types of symbiosis were obtained, namely, pure competition, host-parasite relationship, and mutualism. In each of these regimes, certain parameter combinations provided for synergy, that is, a greater total abundance of both populations compared to the abundance of the winning population in the fixed environment. CONCLUSIONS: The results of this modeling study show that basic phenomena that are universal in microbial communities, namely, environmental variation and HGT, provide for stabilization and persistence of microbial diversity, and emergence of ecological complexity.


Assuntos
Transferência Genética Horizontal , Microbiota , Microbiota/genética , Biodiversidade , Simbiose/genética , Modelos Teóricos , Modelos Biológicos
12.
Protist ; 175(4): 126048, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981407

RESUMO

The genomes of peridinin-containing dinoflagellate chloroplasts have a very unusual organisation. These genomes are highly fragmented and greatly reduced, with most of the usual complement of chloroplast genes relocated to the nucleus. Dinoflagellate chloroplasts highlight evolutionary changes that are found to varying extents in a number of other organelle genomes. These include the chloroplast genome of the green alga Boodlea and other Cladophorales, and the mitochondrial genomes of blood-sucking and chewing lice, the parasitic plant Rhopalocnemis phalloides, the red alga Rhodosorus marinus and other members of the Stylonematophyceae, diplonemid flagellates, and some Cnidaria. Consideration of the coding content of the remnant chloroplast genomes indicates that organelles may preferentially retain genes for proteins important in initiating assembly of complexes, and the same is largely true for mitochondria. We propose a new principle, of CO-location for COntrol of Assembly (COCOA), indicating the importance of retaining these genes in the organelle. This adds to, but does not invalidate, the existing hypotheses of the multisubunit completion principle, CO-location for Redox Regulation (CORR) and Control by Epistasy of Synthesis (CES).


Assuntos
Cloroplastos , Dinoflagellida , Dinoflagellida/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Genoma de Cloroplastos
13.
BMC Microbiol ; 24(1): 256, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987681

RESUMO

BACKGROUND: The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS: In the current study, one hundred extended spectrum ß-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS: The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several ß-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS: This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Fatores de Virulência , Sequenciamento Completo do Genoma , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/classificação , Humanos , Egito , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Fatores de Virulência/genética , Genoma Bacteriano/genética , beta-Lactamases/genética , Proteínas de Bactérias/genética , Plasmídeos/genética
14.
Curr Biol ; 34(14): 3189-3200.e5, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38964320

RESUMO

Plasmids are extrachromosomal genetic elements that reside in prokaryotes. The acquisition of plasmids encoding beneficial traits can facilitate short-term survival in harsh environmental conditions or long-term adaptation of new ecological niches. Due to their ability to transfer between cells, plasmids are considered agents of gene transfer. Nonetheless, the frequency of DNA transfer between plasmids and chromosomes remains understudied. Using a novel approach for detection of homologous loci between genome pairs, we uncover gene sharing with the chromosome in 1,974 (66%) plasmids residing in 1,016 (78%) taxonomically diverse isolates. The majority of homologous loci correspond to mobile elements, which may be duplicated in the host chromosomes in tens of copies. Neighboring shared genes often encode similar functional categories, indicating the transfer of multigene functional units. Rare transfer events of antibiotics resistance genes are observed mainly with mobile elements. The frequent erosion of sequence similarity in homologous regions indicates that the transferred DNA is often devoid of function. DNA transfer between plasmids and chromosomes thus generates genetic variation that is akin to workings of endosymbiotic gene transfer in eukaryotic evolution. Our findings imply that plasmid contribution to gene transfer most often corresponds to transfer of the plasmid entity rather than transfer of protein-coding genes between plasmids and chromosomes.


Assuntos
Cromossomos Bacterianos , Transferência Genética Horizontal , Plasmídeos , Plasmídeos/genética , Cromossomos Bacterianos/genética , Bactérias/genética , DNA Bacteriano/genética
15.
BMC Microbiol ; 24(1): 240, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961341

RESUMO

OBJECTIVE: We explored whether the Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification (R-M) systems are compatible and act together to resist plasmid attacks. METHODS: 932 global whole-genome sequences from GenBank, and 459 K. pneumoniae isolates from six provinces of China, were collected to investigate the co-distribution of CRISPR-Cas, R-M systems, and blaKPC plasmid. Conjugation and transformation assays were applied to explore the anti-plasmid function of CRISPR and R-M systems. RESULTS: We found a significant inverse correlation between the presence of CRISPR and R-M systems and blaKPC plasmids in K. pneumoniae, especially when both systems cohabited in one host. The multiple matched recognition sequences of both systems in blaKPC-IncF plasmids (97%) revealed that they were good targets for both systems. Furthermore, the results of conjugation assay demonstrated that CRISPR-Cas and R-M systems in K. pneumoniae could effectively hinder blaKPC plasmid invasion. Notably, CRISPR-Cas and R-M worked together to confer a 4-log reduction in the acquisition of blaKPC plasmid in conjugative events, exhibiting robust synergistic anti-plasmid immunity. CONCLUSIONS: Our results indicate the synergistic role of CRISPR and R-M in regulating horizontal gene transfer in K. pneumoniae and rationalize the development of antimicrobial strategies that capitalize on the immunocompromised status of KPC-KP.


Assuntos
Sistemas CRISPR-Cas , Conjugação Genética , Klebsiella pneumoniae , Plasmídeos , Klebsiella pneumoniae/genética , Plasmídeos/genética , beta-Lactamases/genética , Enzimas de Restrição-Modificação do DNA/genética , China , Infecções por Klebsiella/microbiologia , Transferência Genética Horizontal , Humanos , Genoma Bacteriano/genética
16.
J Hazard Mater ; 476: 135150, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986416

RESUMO

Antibiotic selective pressure in aquaculture systems often results in the antibiotic resistance genes (ARGs) proliferation. Nonetheless, a paucity of data exists concerning the mechanisms of ARGs development in aquaculture systems without the influences of antibiotics. This study utilized metagenomic approaches to elucidate the dynamics and transfer mechanisms of ARGs throughout the aquaculture of Pacific white shrimp. A marked change in the resistome was observed throughout the aquaculture without antibiotics. The total ARGs relative abundance increased from 0.05 to 0.33 by day 90 of cultivation, with even higher in mixed wastewater (0.44). Both bacterial communities and mobile genetic elements play pivotal roles in the development of ARGs. Metagenome-assembled genomes showed enrichment of environmentally intrinsic ARGs on chromosomes including macB and mdtK. The plasmid-mediated horizontal transfer was recognized as a principal factor contributing to the rise of ARGs, particularly for tetG and floR, and this led to an escalation of resistance risk, peaking at a risks core of 35.43 on day 90. This study demonstrates that horizontal gene transfer plays a crucial role in ARGs development without antibiotic pressure, which can provide a theoretical foundation for controlling ARGs proliferation in aquaculture systems.

17.
Braz J Microbiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028534

RESUMO

The increasing frequency of antibiotic-resistant bacteria is a constant threat to global human health. Therefore, the pathogens of the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter spp.) are among the most relevant causes of hospital infections responsible for millions of deaths every year. However, little has been explored about the danger of microorganisms resistant to biocides such as antiseptics and disinfectants. Widely used in domestic, industrial, and hospital environments, these substances reach the environment and can cause selective pressure for resistance genes and induce cross-resistance to antibiotics, further aggravating the problem. Therefore, it is necessary to use innovative and efficient strategies to monitor the spread of genes related to resistance to biocides. Whole genome sequencing and bioinformatics analysis aiming to search for sequences encoding resistance mechanisms are essential to help monitor and combat these pathogens. Thus, this work describes the construction of a bioinformatics tool that integrates different databases to identify gene sequences that may confer some resistance advantage about biocides. Furthermore, the tool analyzed all the genomes of Brazilian ESKAPE isolates deposited at NCBI and found a series of different genes related to resistance to benzalkonium chloride, chlorhexidine, and triclosan, which were the focus of this work. As a result, the presence of resistance genes was identified in different types of biological samples, environments, and hosts. Regarding mobile genetic elements (MGEs), around 52% of isolates containing genes related to resistance to these compounds had their genes identified in plasmids, and 48.7% in prophages. These data show that resistance to biocides can be a silent, underestimated danger spreading across different environments and, therefore, requires greater attention.

18.
BMC Microbiol ; 24(1): 247, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971740

RESUMO

BACKGROUND: Mercury (Hg) is highly toxic and has the potential to cause severe health problems for humans and foraging animals when transported into edible plant parts. Soil rhizobia that form symbiosis with legumes may possess mechanisms to prevent heavy metal translocation from roots to shoots in plants by exporting metals from nodules or compartmentalizing metal ions inside nodules. Horizontal gene transfer has potential to confer immediate de novo adaptations to stress. We used comparative genomics of high quality de novo assemblies to identify structural differences in the genomes of nitrogen-fixing rhizobia that were isolated from a mercury (Hg) mine site that show high variation in their tolerance to Hg. RESULTS: Our analyses identified multiple structurally conserved merA homologs in the genomes of Sinorhizobium medicae and Rhizobium leguminosarum but only the strains that possessed a Mer operon exhibited 10-fold increased tolerance to Hg. RNAseq analysis revealed nearly all genes in the Mer operon were significantly up-regulated in response to Hg stress in free-living conditions and in nodules. In both free-living and nodule environments, we found the Hg-tolerant strains with a Mer operon exhibited the fewest number of differentially expressed genes (DEGs) in the genome, indicating a rapid and efficient detoxification of Hg from the cells that reduced general stress responses to the Hg-treatment. Expression changes in S. medicae while in bacteroids showed that both rhizobia strain and host-plant tolerance affected the number of DEGs. Aside from Mer operon genes, nif genes which are involved in nitrogenase activity in S. medicae showed significant up-regulation in the most Hg-tolerant strain while inside the most Hg-accumulating host-plant. Transfer of a plasmid containing the Mer operon from the most tolerant strain to low-tolerant strains resulted in an immediate increase in Hg tolerance, indicating that the Mer operon is able to confer hyper tolerance to Hg. CONCLUSIONS: Mer operons have not been previously reported in nitrogen-fixing rhizobia. This study demonstrates a pivotal role of the Mer operon in effective mercury detoxification and hypertolerance in nitrogen-fixing rhizobia. This finding has major implications not only for soil bioremediation, but also host plants growing in mercury contaminated soils.


Assuntos
Transferência Genética Horizontal , Mercúrio , Óperon , Simbiose , Transcriptoma , Mercúrio/metabolismo , Mercúrio/toxicidade , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Microbiologia do Solo
19.
ISME J ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030691

RESUMO

Arthropods, such as houseflies, play a significant role on the dissemination of antimicrobial resistance (AMR); however, their impact has often been overlooked in comparison to other AMR vectors. Understanding the contribution of arthropods to the spread of AMR is critical for implementing robust policies to mitigate the spread of AMR across "One Health" sectors. Herein, we investigated the in-situ transfer of a gfp-labelled AMR plasmid (IncA/C carrying a mcr-8 gene, pA/C_MCR-8) in the gut microbiota of housefly (Musca domestica) by applying single-cell sorting, 16S rRNA gene amplicon sequencing, and whole genome sequencing. Our findings demonstrate that the pA/C_MCR-8 positive E. coli donor strain is capable of colonizing the gut microbiome of houseflies and persists in the housefly intestine for five days, however, no transfer was detectable above the detection threshold of 10-5 per cell. The conjugative plasmid, pA/C_MCR-8 demonstrated a high transfer frequency ranging from 4.1 × 10-3 to 5.0 × 10-3 per cell in vitro, and exhibited transfer across various bacterial phyla, primarily encompassing Pseudomonadota and Bacillota. Phylogenic analysis has revealed that Providencia stuartii, a human opportunistic pathogen, was a notable recipient of pA/C_MCR-8. The conjugation assays further revealed that newly formed P. stuartii transconjugants readily transfer pA/C_MCR-8 to other clinically relevant pathogens (e.g. Klebsiella pneumoniae). Our findings indicate the potential transfer of AMR plasmids from houseflies to human opportunistic pathogens and further advocates the adoption of a One Health approach in developing infection control policies that address AMR across clinical settings.

20.
PeerJ ; 12: e17747, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035164

RESUMO

Trichosanthes kirilowii (T. kirilowii) is a valuable plant used for both medicinal and edible purposes. It belongs to the Cucurbitaceae family. However, its phylogenetic position and relatives have been difficult to accurately determine due to the lack of mitochondrial genomic information. This limitation has been an obstacle to the potential applications of T. kirilowii in various fields. To address this issue, Illumina and Nanopore HiFi sequencing were used to assemble the mitogenome of T. kirilowii into two circular molecules with sizes of 245,700 bp and 107,049 bp, forming a unique multi-branched structure. The mitogenome contains 61 genes, including 38 protein-coding genes (PCGs), 20 tRNAs, and three rRNAs. Within the 38 PCGs of the T. kirilowii mitochondrial genome, 518 potential RNA editing sites were identified. The study also revealed the presence of 15 homologous fragments that span both the chloroplast and mitochondrial genomes. The phylogenetic analysis strongly supports that T. kirilowii belongs to the Cucurbitaceae family and is closely related to Luffa. Collinearity analysis of five Cucurbitaceae mitogenomes shows a high degree of structural variability. Interestingly, four genes, namely atp1, ccmFC, ccmFN, and matR, played significant roles in the evolution of T. kirilowii through selection pressure analysis. The comparative analysis of the T. kirilowii mitogenome not only sheds light on its functional and structural features but also provides essential information for genetic studies of the genus of Cucurbitaceae.


Assuntos
Genoma Mitocondrial , Filogenia , Plantas Medicinais , Trichosanthes , Trichosanthes/genética , Trichosanthes/química , Genoma Mitocondrial/genética , Plantas Medicinais/genética , Evolução Molecular , Medicina Tradicional Chinesa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA