Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.570
Filtrar
2.
Mitochondrial DNA B Resour ; 9(7): 851-855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957225

RESUMO

Syzygium buxifolium. Hook. Et Arn.1833 is a member of the Myrtaceae family. This species is used in traditional Chinese medicines. It possesses numerous synonyms, reflecting the ambiguity in its taxonomy. The chloroplast genome has been widely used for species identification and phylogenetic analysis. Regrettably, there is a lack of information regarding the chloroplast genome of S. buxifolium. Here, we intend to obtain the chloroplast genome of S. buxifolium to resolve its classification problems. In particular, we utilized Illumina sequencing technology to sequence, GetOrganelle to assemble, and CPGAVAS2 to characterize the chloroplast genome of S. buxifolium. The chloroplast genome of S. buxifolium had a length of 158,581 bp and consisted of 111 unique genes, comprising 78 protein-coding genes, 29 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. In addition, we identified 86 Simple Sequence Repeats, 345 tandem repetitive sequences, and 34 dispersed repetitive sequences using modules implemented in CPGAVAS2. Lastly, we carried out phylogenetic analysis using Phylosuite. The results indicated a close relationship between S. buxifolium and S. grijsii. This study offers novel genetic data for the molecular identification and subsequent phylogenetic analysis of the Syzygium genus.

3.
Plant Physiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991561

RESUMO

Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of two hybrids, an intraspecific hybrid between two maize (Zea may ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Zea may ssp. parviglumis), utilizing a combination of PacBio High Fidelity (HiFi) sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well-phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a bi-parental genome graph, the haplotypic assemblies can facilitate downstream short-reads-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.

4.
F1000Res ; 13: 556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984017

RESUMO

Background: Determining the appropriate computational requirements and software performance is essential for efficient genomic surveillance. The lack of standardized benchmarking complicates software selection, especially with limited resources. Methods: We developed a containerized benchmarking pipeline to evaluate seven long-read assemblers-Canu, GoldRush, MetaFlye, Strainline, HaploDMF, iGDA, and RVHaplo-for viral haplotype reconstruction, using both simulated and experimental Oxford Nanopore sequencing data of HIV-1 and other viruses. Benchmarking was conducted on three computational systems to assess each assembler's performance, utilizing QUAST and BLASTN for quality assessment. Results: Our findings show that assembler choice significantly impacts assembly time, with CPU and memory usage having minimal effect. Assembler selection also influences the size of the contigs, with a minimum read length of 2,000 nucleotides required for quality assembly. A 4,000-nucleotide read length improves quality further. Canu was efficient among de novo assemblers but not suitable for multi-strain mixtures, while GoldRush produced only consensus assemblies. Strainline and MetaFlye were suitable for metagenomic sequencing data, with Strainline requiring high memory and MetaFlye operable on low-specification machines. Among reference-based assemblers, iGDA had high error rates, RVHaplo showed the best runtime and accuracy but became ineffective with similar sequences, and HaploDMF, utilizing machine learning, had fewer errors with a slightly longer runtime. Conclusions: The HIV-64148 pipeline, containerized using Docker, facilitates easy deployment and offers flexibility to select from a range of assemblers to match computational systems or study requirements. This tool aids in genome assembly and provides valuable information on HIV-1 sequences, enhancing viral evolution monitoring and understanding.


Assuntos
Biologia Computacional , Genômica , HIV-1 , Software , HIV-1/genética , Biologia Computacional/métodos , Genômica/métodos , Humanos , Genoma Viral/genética
5.
Cell ; 187(14): 3541-3562.e51, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996487

RESUMO

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.


Assuntos
Genoma , Mamutes , Pele , Animais , Mamutes/genética , Genoma/genética , Feminino , Elefantes/genética , Cromatina/genética , Fósseis , DNA Antigo/análise , Camundongos , Humanos , Cromossomo X/genética
6.
DNA Res ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946223

RESUMO

Tamarix austromongolica is endemic to the Yellow River Basin and has adapted to diverse ecological settings in the region, including the arid areas of northwestern China and the saline soil regions of the Yellow River Delta. However, the genetic basis of its local adaptation remains unclear. We report a chromosome-level assembly of the T. austromongolica genome based on PacBio high-fidelity sequencing and Hi-C technology. The 12 pseudochromosomes cover 98.44% of the 1.32 Gb assembly, with a contig N50 of 52.57 Mb and a BUSCO score of 98.2%. The genome comprises 913.6 Mb (68.83%) of repetitive sequences and 22,374 protein-coding genes. Genome evolution analyses suggest that genes under positive selection and significantly expanded gene families have facilitated T. austromongolica's adaptability to diverse environmental factors and high resistance to diseases. Using genotyping-by-sequencing, we conducted population structure and selection analyses of 114 samples from 15 sites. Two genetic groups were identified, and 114 and 289 candidate genes were assigned to the populations of the northwestern and eastern parts of the Yellow River, respectively. Furthermore, we discovered numerous candidate genes associated with high-altitude adaptability and salt tolerance. This research provides valuable genomic resources for the evolutionary study and genetic breeding of tamarisk.

8.
G3 (Bethesda) ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973709

RESUMO

The giant freshwater prawn (Macrobrachium rosenbergii) is a key species in the aquaculture industry in several Asian, African and South American countries. Despite a considerable growth in its production worldwide, the genetic complexities of M. rosenbergii various morphotypes pose challenges in cultivation. This study reports the first chromosome-scale reference genome and a high-quality full-length transcriptome assembly for M. rosenbergii. We employed the PacBio High Fidelity (HiFi) sequencing to obtain an initial draft assembly and further scaffolded it with the chromatin contact mapping (Hi-C) technique to achieve a final assembly of 3.73-Gb with an N50 scaffold length of 33.6 Mb. Repetitive elements constituted nearly 60% of the genome assembly, with simple sequence repeats and retrotransposons being the most abundant. The availability of both the chromosome-scale assembly and the full-length transcriptome assembly enabled us to thoroughly probe alternative splicing events in M. rosenbergii. Among the 2,041 events investigated, exon skipping represented the most prevalent class, followed by intron retention. Interestingly, specific isoforms were observed across multiple tissues. Additionally, within a single tissue type, transcripts could undergo alternative splicing, yielding multiple isoforms. We believe that the availability of a chromosome-level reference genome for M. rosenbergii along with its full-length transcriptome will be instrumental in advancing our understanding of the giant freshwater prawn biology and enhancing its molecular breeding programs, paving the way for the development of M. rosenbergii with valuable traits in commercial aquaculture.

9.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000250

RESUMO

Beef is a major global source of protein, playing an essential role in the human diet. The worldwide production and consumption of beef continue to rise, reflecting a significant trend. However, despite the critical importance of beef cattle resources in agriculture, the diversity of cattle breeds faces severe challenges, with many breeds at risk of extinction. The initiation of the Beef Cattle Genome Project is crucial. By constructing a high-precision functional annotation map of their genome, it becomes possible to analyze the genetic mechanisms underlying important traits in beef cattle, laying a solid foundation for breeding more efficient and productive cattle breeds. This review details advances in genome sequencing and assembly technologies, iterative upgrades of the beef cattle reference genome, and its application in pan-genome research. Additionally, it summarizes relevant studies on the discovery of functional genes associated with key traits in beef cattle, such as growth, meat quality, reproduction, polled traits, disease resistance, and environmental adaptability. Finally, the review explores the potential of telomere-to-telomere (T2T) genome assembly, structural variations (SVs), and multi-omics techniques in future beef cattle genetic breeding. These advancements collectively offer promising avenues for enhancing beef cattle breeding and improving genetic traits.


Assuntos
Genoma , Animais , Bovinos/genética , Genômica/métodos , Cruzamento/métodos , Sequenciamento Completo do Genoma/métodos , Carne Vermelha , Locos de Características Quantitativas
10.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38946321

RESUMO

Oecanthus is a genus of cricket known for its distinctive chirping and distributed across major zoogeographical regions worldwide. This study focuses on Oecanthus rufescens, and conducts a comprehensive examination of its genome through genome sequencing technologies and bioinformatic analysis. A high-quality chromosome-level genome of O. rufescens was successfully obtained, revealing significant features of its genome structure. The genome size is 877.9 Mb, comprising ten pseudo-chromosomes and 70 other sequences, with a GC content of 41.38% and an N50 value of 157,110,771 bp, indicating a high level of continuity. BUSCO assessment results demonstrate that the genome's integrity and quality are high (of which 96.8% are single-copy and 1.6% are duplicated). Comprehensive genome annotation was also performed, identifying approximately 310 Mb of repetitive sequences, accounting for 35.3% of the total genome sequence, and discovering 15,481 tRNA genes, 4,082 rRNA genes, and 1,212 other noncoding genes. Furthermore, 15,031 protein-coding genes were identified, with BUSCO assessment results showing that 98.4% (of which 96.3% are single-copy and 1.6% are duplicated) of the genes were annotated.


Assuntos
Genoma de Inseto , Anotação de Sequência Molecular , Animais , Cromossomos de Insetos/genética , Gryllidae/genética , Ortópteros/genética , Ortópteros/classificação
11.
DNA Res ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017645

RESUMO

Gentiana straminea Maxim. is a perennial herb and mainly distributed in the Qinghai-Tibetan Plateau. To adapt to the extreme environment, it has developed particular morphological, physiological and genetic structures. Also, rich in iridoids, it is one of the original plants of traditional Chinese herb "Qinjiao". Herein, we present its first chromosome-level genome sequence assembly, and compare it with the genomes of other Gentiana species to facilitate the analysis of genomic characteristics. The assembled genome size of G. straminea was 1.25 Gb, with a contig N50 of 7.5 Mb. A total of 96.08% of the genome sequences was anchored on 13 pseudochromosomes, with a scaffold N50 of 92.70 Mb. A total of 54,310 protein-coding genes were predicted, 80.25% of which were functionally annotated. Comparative genomic analyses indicated that G. straminea experienced two whole-genome duplication events after the γ whole-genome triplication with other eudicots, and it diverged from other Gentiana species at ~3.2 Mya. A total of 142 enzyme-coding genes related to iridoid biosynthesis were identified in its genome. Additionally, we identified differences in the number and expression patterns of iridoid biosynthetic pathway genes in G. straminea compared with two other Gentiana species by integrating whole-genome sequence and transcriptomic analyses.

12.
BMC Genom Data ; 25(1): 70, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009995

RESUMO

OBJECTIVES: Ants are ecologically dominant insects in most terrestrial ecosystems, with more than 14,000 extant species in about 340 genera recorded to date. However, genomic resources are still scarce for most species, especially for species endemic in East or Southeast Asia, limiting the study of phylogeny, speciation and adaptation of this evolutionarily successful animal lineage. Here, we assemble and annotate the genomes of Odontoponera transversa and Camponotus friedae, two ant species with a natural distribution in China, to facilitate future study of ant evolution. DATA DESCRIPTION: We obtained a total of 16 Gb and 51 Gb PacBio HiFi data for O. transversa and C. friedae, respectively, which were assembled into the draft genomes of 339 Mb for O. transversa and 233 Mb for C. friedae. Genome assessments by multiple metrics showed good completeness and high accuracy of the two assemblies. Gene annotations assisted by RNA-seq data yielded a comparable number of protein-coding genes in the two genomes (10,892 for O. transversa and 11,296 for C. friedae), while repeat annotations revealed a remarkable difference of repeat content between these two ant species (149.4 Mb for O. transversa versus 49.7 Mb for C. friedae). Besides, complete mitochondrial genomes for the two species were assembled and annotated.


Assuntos
Formigas , Genoma de Inseto , Animais , Formigas/genética , Formigas/classificação , Genoma de Inseto/genética , Anotação de Sequência Molecular , Filogenia , Genômica/métodos
14.
G3 (Bethesda) ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861393

RESUMO

The nine-spined stickleback (Pungitius pungitius) has been increasingly used as a model system in studies of local adaptation and sex chromosome evolution but its current reference genome assembly is far from perfect, lacking distinct sex chromosomes. We generated an improved assembly of the nine-spined stickleback reference genome (98.3% BUSCO completeness) with the aid of linked-read mapping. While the new assembly (v8) was of similar size as the earlier version (v7), we were able to assign 4.4 times more contigs to the linkage groups and improve the contiguity of the genome. Moreover, the new assembly contains a ∼22.8 Mb Y-linked scaffold (LG22) consisting mainly of previously assigned X-contigs, putative Y-contigs, putative centromere contigs and highly repetitive elements. The male individual showed an even mapping depth on LG12 (pseudo X chromosome) and LG22 (Y-linked scaffold) in the segregating sites, suggesting near-pure X and Y representation in the v8 assembly. A total of 26,803 genes were annotated, and about 33% of the assembly was found to consist of repetitive elements. The high proportion of repetitive elements in LG22 (53.10%) suggests it can be difficult to assemble the complete sequence of the species' Y chromosome. Nevertheless, the new assembly is a significant improvement over the previous version and should provide a valuable resource for genomic studies of stickleback fishes.

15.
G3 (Bethesda) ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861413

RESUMO

The implementation of a new genomic assembly pipeline named only the best (otb) has effectively addressed various challenges associated with data management during the development and storage of genome assemblies. otb, which incorporates a comprehensive pipeline involving a setup layer, quality checks, templating, and the integration of Nextflow and Singularity. The primary objective of otb is to streamline the process of creating a HiFi/HiC genome, aiming to minimize the manual intervention required in the genome assembly process. The Two-lined spittlebug, (Prosapia bicincta, Hemiptera: Cercopidae), a true bug insect herbivore, serves as a practical test case for evaluating otb. The two-lined spittlebug is both a crucial agricultural pest and a genomically understudied insect belonging to the order Hemiptera. This insect is a significant threat to grasslands and pastures, leading to plant wilting and phytotoxemia when infested. Its presence in tropical and subtropical regions around the world poses a long-term threat to the composition of plant communities in grassland landscapes, impacting rangelands, and posing a substantial risk to cattle production.

16.
Microbiol Resour Announc ; : e0023724, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847537

RESUMO

Setu is an efficient pipeline integrating currently available open source bioinformatic tools to perform rapid de novo assembly to assist tracking of severe acute respiratory syndrome coronavirus 2 genome evolution in clinical data, being particularly useful for institutions with limited computing resources or personnel not familiar with bioinformatic pipelines.

17.
Microorganisms ; 12(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930609

RESUMO

Dermacoccus barathri is the first reported pathogen within the Dermacoccus genus to cause a catheter-related bloodstream infection, which occurred in 2015. In this study, the complete genome assembly of Dermacoccus barathri was constructed, and the complete genome of Dermacoccus barathri FBCC-B549 consists of a single chromosome (3,137,745 bp) without plasmids. The constructed genome of D. barathri was compared with those of two closely related species within the Dermacoccus genus. D. barathri exhibited a pattern similar to Dermacoccus abyssi in terms of gene clusters and synteny analysis. Contrary to previous studies, biosynthetic gene cluster (BGC) analysis for predicting secondary metabolites revealed the presence of the LAP biosynthesis pathway in the complete genome of D. barathri, predicting the potential synthesis of the secondary metabolite plantazolicin. Furthermore, an analysis to investigate the potential pathogenicity of D. barathri did not reveal any antibiotic resistance genes; however, nine virulence factors were identified in the Virulence Factor Database (VFDB). According to these matching results in the VFDB, despite identifying a few factors involved in biofilm formation, further research is required to determine the actual impact of D. barathri on pathogenicity. The complete genome of D. barathri is expected to serve as a valuable resource for future studies on D. barathri, which currently lack sufficient genomic sequence information.

18.
Viruses ; 16(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932149

RESUMO

DNA viruses that produce persistent infections have been proposed as potential causes for the extinction of Neanderthals, and, therefore, the identification of viral genome remnants in Neanderthal sequence reads is an initial step to address this hypothesis. Here, as proof of concept, we searched for viral remnants in sequence reads of Neanderthal genome data by mapping to adenovirus, herpesvirus and papillomavirus, which are double-stranded DNA viruses that may establish lifelong latency and can produce persistent infections. The reconstructed ancient viral genomes of adenovirus, herpesvirus and papillomavirus revealed conserved segments, with nucleotide identity to extant viral genomes and variable regions in coding regions with substantial divergence to extant close relatives. Sequence reads mapped to extant viral genomes showed deamination patterns of ancient DNA, and these ancient viral genomes showed divergence consistent with the age of these samples (≈50,000 years) and viral evolutionary rates (10-5 to 10-8 substitutions/site/year). Analysis of random effects showed that the Neanderthal mapping to genomes of extant persistent viruses is above what is expected by random similarities of short reads. Also, negative control with a nonpersistent DNA virus does not yield statistically significant assemblies. This work demonstrates the feasibility of identifying viral genome remnants in archaeological samples with signal-to-noise assessment.


Assuntos
DNA Antigo , Genoma Viral , Homem de Neandertal , Animais , Homem de Neandertal/genética , Homem de Neandertal/virologia , DNA Antigo/análise , Evolução Molecular , DNA Viral/genética , Análise de Sequência de DNA/métodos , Humanos , Filogenia , Vírus de DNA/genética , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Fósseis/virologia
19.
Viruses ; 16(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38932245

RESUMO

BACKGROUND: Respiratory viruses significantly impact global morbidity and mortality, causing more disease in humans than any other infectious agent. Beyond pathogens, various viruses and bacteria colonize the respiratory tract without causing disease, potentially influencing respiratory diseases' pathogenesis. Nevertheless, our understanding of respiratory microbiota is limited by technical constraints, predominantly focusing on bacteria and neglecting crucial populations like viruses. Despite recent efforts to improve our understanding of viral diversity in the human body, our knowledge of viral diversity associated with the human respiratory tract remains limited. METHODS: Following a comprehensive search in bibliographic and sequencing data repositories using keyword terms, we retrieved shotgun metagenomic data from public repositories (n = 85). After manual curation, sequencing data files from 43 studies were analyzed using EVEREST (pipEline for Viral assEmbly and chaRactEriSaTion). Complete and high-quality contigs were further assessed for genomic and taxonomic characterization. RESULTS: Viral contigs were obtained from 194 out of the 868 FASTQ files processed through EVEREST. Of the 1842 contigs that were quality assessed, 8% (n = 146) were classified as complete/high-quality genomes. Most of the identified viral contigs were taxonomically classified as bacteriophages, with taxonomic resolution ranging from the superkingdom level down to the species level. Captured contigs were spread across 25 putative families and varied between RNA and DNA viruses, including previously uncharacterized viral genomes. Of note, airway samples also contained virus(es) characteristic of the human gastrointestinal tract, which have not been previously described as part of the lung virome. Additionally, by performing a meta-analysis of the integrated datasets, ecological trends within viral populations linked to human disease states and their biogeographical distribution along the respiratory tract were observed. CONCLUSION: By leveraging publicly available repositories of shotgun metagenomic data, the present study provides new insights into viral genomes associated with specimens from the human respiratory tract across different disease spectra. Further studies are required to validate our findings and evaluate the potential impact of these viral communities on respiratory tract physiology.


Assuntos
Genoma Viral , Metagenômica , Sistema Respiratório , Viroma , Vírus , Humanos , Metagenômica/métodos , Sistema Respiratório/virologia , Vírus/genética , Vírus/classificação , Vírus/isolamento & purificação , Metagenoma , Simulação por Computador , Filogenia , Biologia Computacional/métodos , Microbiota , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação
20.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928393

RESUMO

This study is the first report to characterize the Rhodus uyekii genome and study the development of microsatellite markers and their markers applied to the genetic structure of the wild population. Genome assembly was based on PacBio HiFi and Illumina HiSeq paired-end sequencing, resulting in a draft genome assembly of R. uyekii. The draft genome was assembled into 2652 contigs. The integrity assessment of the assemblies indicates that the quality of the draft assemblies is high, with 3259 complete BUSCOs (97.2%) in the database of Verbrata. A total of 31,166 predicted protein-coding genes were annotated in the protein database. The phylogenetic tree showed that R. uyekii is a close but distinct relative of Onychostoma macrolepis. Among the 10 fish genomes, there were significant gene family expansions (8-2387) and contractions (16-2886). The average number of alleles amplified by the 21 polymorphic markers ranged from 6 to 23, and the average PIC value was 0.753, which will be useful for evolutionary and genetic analysis. Using population genetic analysis, we analyzed genetic diversity and the genetic structures of 120 individuals from 6 populations. The average number of alleles per population ranged from 7.6 to 9.9, observed heterozygosity ranged from 0.496 to 0.642, and expected heterozygosity ranged from 0.587 to 0.783. Discriminant analysis of principal components According to the analysis method, the population was divided into three populations (BS vs. DC vs. GG, GC, MS, DC). In conclusion, our study provides a useful resource for comparative genomics, phylogeny, and future population studies of R. uyekii.


Assuntos
Variação Genética , Repetições de Microssatélites , Filogenia , Repetições de Microssatélites/genética , República da Coreia , Animais , Genética Populacional , Cyprinidae/genética , Cyprinidae/classificação , Genoma , Sequenciamento Completo do Genoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA