Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.408
Filtrar
1.
Acta Otolaryngol ; : 1-8, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154208

RESUMO

BACKGROUND: Cochlear dimension measurements are critical in diagnosing and managing congenital sensorineural hearing loss. OBJECTIVES: To evaluate the feasibility and reliability of an automated landmark approach for measuring cochlear dimensions (A-, B- and H-values). MATERIAL AND METHODS: Cochlear parameters from 100 patients were measured by MPR, manual three-dimensional and ALPACA. We assessed intra- and inter-observer reliability as well as inter-method reliability. Statistical analyses were conducted to detect differences between the right and left ears, as well as to assess the relevance of the values obtained using ALPACA. RESULTS: All A-, B-, and H-values measured by the various methods showed a high intra-observer reliability with intra-class correlation coefficients (ICC) ranging from 0.70 to 0.99, and values gained by ALPACA reaching the highest ICC. Inter-method reliability was at a good level with ICC ranging from 0.51 to 0.86. There were no significant differences between the right and left ears' measured values. Obvious positive correlations existed among cochlear dimensions measured by ALPACA. CONCLUSIONS AND SIGNIFICANCE: The ALPACA method can be used to measure cochlear dimensions. Values obtained by the method demonstrate high reliability and consistency with a significant reduction in intra-observer variability compared to results from conventional MPR and manual 3D measurements.

2.
J Anat ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161228

RESUMO

Scapula shape is highly variable across humans and appears to be sexually dimorphic-differing significantly between biological males and females. However, previous investigations of sexual dimorphism in scapula shape have not considered the effects of allometry (the relationship between size and shape). Disentangling allometry from sexual dimorphism is necessary because apparent sex-based differences in shape could be due to inherent differences in body size. This study aimed to investigate sexual dimorphism in scapula shape and examine the role of allometry in sex-based variation. We used three-dimensional geometric morphometrics with Procrustes ANOVA to quantify scapula shape variation associated with sex and size in 125 scapulae. Scapula shape significantly differed between males and females, and males tended to have larger scapulae than females for the same body height. We found that males and females exhibited distinct allometric relationships, and sexually dimorphic shape changes did not align with male- or female-specific allometry. A secondary test revealed that sexual dimorphism in scapula shape persisted between males and females of similar body heights. Overall, our findings indicate that there are sex-based differences in scapula shape that cannot be attributed to size-shape relationships. Our results shed light on the potential role of sexual selection in human shoulder evolution, present new hypotheses for biomechanical differences in shoulder function between sexes, and identify relevant traits for improving sex classification accuracy in forensic analyses.

3.
Sci Rep ; 14(1): 17901, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095435

RESUMO

While brain size in primates and their relatives within Euarchontoglires is well-studied, less research has examined brain shape, or the allometric trajectories that underlie the relationship between size and shape. Defining these patterns is key to understanding evolutionary trends. 3D geometric morphometric analyses of endocranial shape were performed on 140 species of extant euarchontoglirans using digital cranial endocasts. Principal component analyses on Procrustes shape variables show a clear phylogenetic pattern in endocranial shape, supported by an ANOVA which identified significant differences in shape among several groups (e.g., Platyrrhini, Strepsirrhini, Scandentia, Rodentia, and Lagomorpha). ANOVAs of shape and size also indicate that allometry has a small but significant impact on endocranial shape across Euarchontoglires, with homogeneity of slopes tests finding significant differences in the scaling relationship between shape and size among these same groups. While most of these clades possess a distinct endocranial morphotype, the highly derived platyrrhines display the strongest relationship between size and shape. Rodents show the most diversity in endocranial shape, potentially attributed to their comparatively weak relationship between shape and size. These results suggest fundamental differences in how shape and size covary among Euarchontoglires, which may have facilitated the adaptive radiations that characterize members of this group.


Assuntos
Evolução Biológica , Filogenia , Crânio , Animais , Crânio/anatomia & histologia , Fósseis/anatomia & histologia , Análise de Componente Principal , Encéfalo/anatomia & histologia , Primatas/anatomia & histologia
4.
Heliyon ; 10(14): e33908, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100469

RESUMO

Ascoschoengastia indica is one of the dominant chigger species in Southeast Asia and a potential carrier of scrub typhus, due in part to its cosmopolitan nature. This study explored the possible biological significance of the observed dimorphism in the shape of its scutum sensilla. Sensilla are specialized structures that are generally adapted to perform specific functions related to sensory capabilities, so their shape and sizes are expected to vary between taxa. We describe morphological variation of the sensilla of A. indica in Thailand. The sensilla had either a round or an ovoid, club-shaped form, which was not dependent on the particularly locality or host. Ignoring the precise function of the sensilla and their morphological variation, our study attempted to answer the following single question: Do the distinct forms of the sensilla indicate possible heterogeneity of the A. indica species? The two forms, named S1 and S2, were compared by genetic and morphometric techniques. The genetic analysis was based on the COI sequences, while the morphometric comparison used the scutum, an organ shown to be of taxonomic value for chigger mites. Neither morphometric nor genetic data revealed any evidence of a speciation process underlying the morphological variation in sensillum types.

5.
J Morphol ; 285(8): e21759, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113262

RESUMO

Biological variation in the mammalian skull is the product of a series of factors including changes in gene expression, developmental timing, and environmental pressures. When considering the diversity of extant mammalian crania, it is important to understand these mechanisms that contribute to cranial growth and in turn, how differences in cranial morphology have been attained. Various researchers, including Dr. Sue Herring, have proposed a variety of mechanisms to explain the process of cranial growth. This work has set the foundation on which modern analysis of craniofacial morphology happens today. This study focused on the analysis of modularity in three mammalian taxa, all of which exhibit facial reduction. Specifically, we examined facial reduction as a morphological phenomenon through the use of two-module and six-module modularity hypotheses. We recorded three-dimensional coordinate data for 55 cranial landmarks that allowed us to analyze differences in cranial shape in these three taxa (primates n = 88, bats n = 64, dogs n = 81). When assessing modularity within the two-module modularity hypothesis specifically, dogs exhibited the lowest levels of modularity, while bats and primates both showed a slightly more modular covariance structure. We further assessed modularity in the same sample using the Goswami six-module model, where again dogs exhibited a low degree of modularity, with bats and primates being more moderate. We then broke the sample into subsets by analyzing each morphotype separately. We hypothesized that the modularity would be more pronounced in the brachycephalic morphotype. Surprisingly, we found that in brachycephalic dogs, normocephalic dogs, brachycephalic primates, and normocephalic primates, there was a moderate degree of modularity. Brachycephalic bats had a low degree of modularity, while normocephalic bats were the most modular group observed in this study. Based on these results, it is evident that facial reduction is a complex and multifaceted phenomenon with unique morphological changes observed in each of the three taxa studied.


Assuntos
Quirópteros , Face , Primatas , Crânio , Animais , Quirópteros/anatomia & histologia , Crânio/anatomia & histologia , Cães/anatomia & histologia , Primatas/anatomia & histologia , Face/anatomia & histologia , Evolução Biológica
6.
R Soc Open Sci ; 11(8): 240321, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39144489

RESUMO

Phylogenetic models are commonly used in palaeobiology to study the patterns and processes of organismal evolution. In the human sciences, phylogenetic methods have been deployed for reconstructing ancestor-descendant relationships using linguistic and material culture data. Within evolutionary archaeology specifically, phylogenetic analyses based on maximum parsimony and discrete traits dominate, which sets limitations for the downstream role cultural phylogenies, once derived, can play in more elaborate analytical pipelines. Recent methodological advances in Bayesian phylogenetics, however, now allow us to infer evolutionary dynamics using continuous characters. Capitalizing on these developments, we here present an exploratory analysis of cultural macroevolution of projectile point shape evolution in the European Final Palaeolithic and earliest Mesolithic (approx. 15 000-11 000 BP) using a Bayesian phylodynamic approach and the fossilized birth-death process model. This model-based approach leaps far beyond the application of parsimony, in that it not only produces a tree, but also divergence times, and diversification rates while incorporating uncertainties. This allows us to compare rates to the pronounced climatic changes that occurred during our time frame. While common in cultural evolutionary analyses of language, the extension of Bayesian phylodynamic models to archaeology arguably represents a major methodological breakthrough.

7.
Orthod Craniofac Res ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049695

RESUMO

OBJECTIVES: The cranial base plays a significant role in facial growth, and closer analyses of the morphological relationship between these two regions are needed to understand the morphogenesis of the face. Here, we aimed to study morphological integration between the sella turcica (ST) and facial bones during the fetal period using geometric morphometrics. MATERIALS AND METHODS: Magnetic resonance images of 47 human fetuses in the Kyoto Collection, with crown-rump lengths of 29.8-225 mm, were included in this study. Anatomical homologous landmarks and semilandmarks were registered on the facial bones and the midsagittal contour of the ST, respectively. The shape variations in the craniofacial skeleton and the ST were statistically investigated by reducing dimensionality using principal component analysis (PCA). Subsequently, the morphological integration between the facial bones and ST was investigated using two-block partial least squares (2B-PLS) analysis. RESULTS: PCA showed that small specimens represented the concave facial profile, including the mandibular protrusion and maxillary retrusion. The 2B-PLS showed a strong integration (RV coefficient = 0.523, r = .79, p < .01) between the facial bones and ST. The curvature of the anterior wall of the ST was highly associated with immature facial morphology characterized by a concave profile. CONCLUSION: The strong integration between the two regions suggested that the anterior ST may be associated with facial morphology. This result quantitatively confirms previous studies reporting ST deformities in facial anomalies and induces further research using postnatal subjects.

8.
R Soc Open Sci ; 11(5): 240233, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076823

RESUMO

The Triassic radiation of vertebrates saw the emergence of the modern vertebrate groups, as well as numerous extinct animals exhibiting conspicuous, unique anatomical characteristics. Among these, members of Tanystropheidae (Reptilia: Archosauromorpha) displayed cervical vertebral elongation to an extent unparalleled in any other vertebrate. Tanystropheids were exceptionally ecologically diverse and had a wide spatial and temporal distribution. This may have been related to their neck anatomy, yet its evolution and functional properties remain poorly understood. We used geometric morphometrics to capture the intraspecific variation between the vertebrae comprising the cervical column among early archosauromorphs, to trace the evolutionary history of neck elongation in these animals. Our results show that the cervical series of these reptiles can be divided into modules corresponding to those of extant animals. Tanystropheids achieved neck elongation through somite elongation and a shift between cervical and thoracic regions, without presacral vertebrae count increase-contrary to crown archosaurs. This suggests a peculiar developmental constraint that strongly affected the evolution of tanystropheids. The data obtained just at the base of the archosauromorph phylogenetic tree are crucial for further studies on the modularity of vertebral columns of not only Triassic reptile groups but extant and other extinct animals as well.

9.
R Soc Open Sci ; 11(7): 240548, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39021770

RESUMO

Breathing motion is based on the differential activity of the thoracic, diaphragmatic and abdominal muscles. Muscle contributions differ between rest and exercise conditions and depend on posture and other factors. Traditionally, these changes are investigated on volumetric data using optoelectronic plethysmography (OEP). OEP offers insight into size variations of different chest wall (CW) compartments but does not provide three-dimensional visualization methods of CW breathing kinematics. Here we explore the use of three-dimensional geometric morphometrics to analyse size and shape changes caused by spontaneous breathing motion during quiet (QB), and recovery breathing (REC, immediately after heavy exercise) in two different postures (SIT, sitting on cycle ergometer; STA, standing position). Our findings show that size and shape differ significantly between inspiration and expiration and that differences are greater in REC than in QB. However, this is achieved by stronger expiration in SIT but by greater expiratory and inspiratory movements in STA. Shape analysis suggests that these differences may be attributed to constrained mobility of the shoulder girdle and a minor thoracic spine extension during inspiration owing to position on the ergometer. Breathing motion in STA seems biomechanically less constrained. Geometric morphometrics analyses can provide additional insights into data obtained by OEP.

10.
Am J Biol Anthropol ; : e24997, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073316

RESUMO

INTRODUCTION: Our knowledge of the populations of sub-Saharan Africa in the periods before European colonization is limited. Few archeological sites containing human remains have been identified, and written sources for these periods are rare. The discovery in 2018 of the Iroungou sepulchral cave (Gabon), whose use predates the arrival of the Portuguese (14th-15th centuries CE), is an exceptional source of information: at least 28 individuals associated with numerous metal artifacts were found there. The anthropobiological remains were left in situ, but the eight best preserved crania were digitized. OBJECTIVES: This study focuses on the population affinities of these crania, whose morphology was described using 237 landmarks. MATERIALS AND METHODS: Geometric morphometric analyses were used to compare the eight Iroungou specimens with 154 individuals representing 12 well-defined African populations. After alignment (Generalized Procrustes Analysis), morphological affinity was assessed using Euclidean and Mahalanobis distances, and posterior probabilities of population membership (discriminant analysis). RESULTS: Results indicate that the eight Iroungou crania have, on average, more affinity with Bayaka Pygmy, followed by Central African Bantu. Nevertheless, individually, the Iroungou specimens show an important morphological variation and the eight crania can be separated into different affinity groups: Bayaka and Central African Bantu, KhoeSan, and East-African Bantu. Finally, one individual presents strong affinity with Somalis. CONCLUSION: This phenetic mapping of the Iroungou sample raises questions about the profile of the individuals deposited in the cave in a geographical area known for the Loango pre-colonial kingdom, which ruling class seemed to have had privileged relationships with the Pygmy populations.


INTRODUCTION: Nos connaissances sur les populations d'Afrique sub­saharienne des périodes précédant la colonisation européenne sont limitées. Peu de sites archéologiques contenant des restes humains ont été identifiés, et les sources écrites pour ces périodes sont rares. La découverte en 2018 de la grotte sépulcrale d'Iroungou (Gabon), dont l'utilisation remonte au XIVe­XVe siècles de notre ère, avant l'arrivée des Portugais, constitue une source d'information exceptionnelle: au moins 28 individus associés à de nombreux artefacts métalliques y ont été retrouvés. Les restes anthropobiologiques ont été laissés in situ, néanmoins, les huit crânes les mieux préservés ont été numérisés. OBJECTIFS: Cette étude s'intéresse aux affinités populationnelles de ces crânes, dont la morphologie a été décrite à l'aide de 237 points­repères répartis sur le massif facial supérieur et le calvarium. MATÉRIEL ET MÉTHODES: Des analyses par morphométrie géométrique ont permis de comparer les spécimens d'Iroungou avec 154 individus représentants 12 populations africaines bien définies. Après alignement des conformations (analyse Procrustes généralisée), l'affinité morphologique a été évaluée à l'aide des distances procrustes, euclidienne et mahalanobis, ainsi que des probabilités postérieures d'appartenance à une population (analyse discriminante). RÉSULTATS: Les résultats indiquent que les huit crânes d'Iroungou présentent en moyenne plus d'affinités avec les populations pygmées Bayaka, suivies des Bantus d'Afrique centrale. DISCUSSION: Cette affinité moyenne recouvre une réalité complexe: la population d'Iroungou est la plus hétérogène de notre échantillon et les huit crânes peuvent être séparés en différents groupes d'affinités: avec les Bayakas et les Bantus d'Afrique Centrale, les KhoeSan, et avec les Bantus d'Afrique de l'est. Enfin, un individu présente une affinité très forte avec les Somalis de notre échantillon. Cette cartographie phénétique de la population d'Iroungou interroge sur le profil des individus déposés dans la grotte dans une zone géographique connue le royaume précolonial Loango dont la classe dirigeante semble avoir eu des relations privilégiées avec les populations pygmées.

11.
Evol Anthropol ; : e22040, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951738

RESUMO

Up to now, Allen and Bergmann's rules have been studied in modern humans by analyzing differences in limb length, height, or body mass. However, there are no publications studying the effects of latitude in the 3D configuration of the ribcage. To assess this issue, we digitally reconstructed the ribcages of a balanced sample of 109 adult individuals of global distribution. Shape and size of the ribcage was quantified using geometric morphometrics. Our results show that the ribcage belonging to tropical individuals is smaller and slenderer compared to others living in higher latitudes, which is in line with Allen and Bergmann's rules and suggests an allometric relationship between size and shape. Although sexual dimorphism was observed in the whole sample, significant differences were only found in tropical populations. Our proposal is that, apart from potential sexual selection, avoiding heat loss might be the limiting factor for sexual dimorphism in cold-adapted populations.

12.
J Forensic Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992860

RESUMO

Geometric morphometrics (GMM) have been applied to understand morphological variation in biological structures. However, research studying cortical bone through geometric histomorphometrics (GHMM) is scarce. This research aims to develop a landmark-based GHMM protocol to depict osteonal shape variation in the femoral diaphysis, exploring the role of age and biomechanics in bone microstructure. Proximal, midshaft, and distal anatomical segments from the femoral diaphysis of six individuals were assessed, with 864 secondary intact osteons from eight periosteal sampling areas being manually landmarked. Observer error was tested using Procrustes ANOVA. Average osteonal shape and anatomical segment-specific variation were explored using principal component analysis. Osteon shape differences between segments were examined using canonical variate analysis (CVA). Sex differences were assessed through Procrustes ANOVA and discriminant function analysis (DFA). The impact of osteonal size on osteonal shape was investigated. High repeatability and reproducibility in osteon shape landmarking were reported. The average osteon shape captured was an elliptical structure, with PC1 reflecting more circular osteons. Significant differences in osteon shape were observed between proximal and distal segments according to CVA. Osteon shape differed between males and females, with DFA showing 52% cross-validation accuracies. No effect of size on shape was reported. Osteonal shape variation observed in this study might be explained by the elderly nature of the sample as well as biomechanical and physiological mechanisms playing different roles along the femoral diaphysis. Although a larger sample is needed to corroborate these findings, this study contributes to the best of our knowledge on human microanatomy, proposing a novel GHMM approach.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39027082

RESUMO

Haematobosca is a genus of biting fly within the subfamily Stomoxyinae of the family Muscidae. It is currently recognized to include 16 species worldwide. These species, acting as ectoparasites, are considered to have significant importance in the veterinary and medical fields. To address the color polymorphism related to the genus Haematobosca in Thailand, herein, we focused on the normal (legs mainly black) and yellow (legs mainly yellow) morphs of Haematobosca sanguinolenta and examined them for genetic differences using three molecular markers: the cytochrome c oxidase subunit 1 (cox1) and cytochrome b (cytb) genes from the mitochondrial genome as well as the internal transcribed spacer 2 (ITS2) region from the nuclear ribosomal DNA. In addition, we analyzed wing differences between the two morphs using geometric morphometrics (GM). The genetic divergences between the two morphs showed that cytb gene showed the greatest divergence, for which the average distance was 5.6%. This was followed by the combination of cox1-cytb-ITS2, exhibiting an average divergence of 4.5%, ITS2 with a divergence of 4.1%, and finally cox1, showing the lowest divergence of 3.5%. Phylogenetic analyses distinctly separated the two morphs of H. sanguinolenta; this separation was supported by high bootstrap values (97-100%). These results were further corroborated by three species delimitation methods, i.e. assemble species by automatic partitioning (ASAP), automated barcode gap discovery (ABGD), and Poisson tree processes (PTP), all of which suggested that the two morphs likely represent separate species. In addition, a GM study identified a statistically significant difference in wing shape between the two morphs of H. sanguinolenta (P < 0.05). This combination of genetic and morphometric results strongly supports the existence of two distinct species within H. sanguinolenta in Thailand.

14.
J Morphol ; 285(8): e21750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032031

RESUMO

Accurate identification of waterfowl bones in archaeological and fossil assemblages has potential to unlock new methods of past environmental reconstruction, as species have differing habitat preferences and migration patterns. Therefore, identifying the presence of avian species with different ecological niches is key to determining past environments and ultimately how prehistoric people responded to climatic and environmental realignments. However, the identification of osteological remains of waterbirds such as ducks to species level is notoriously challenging. We address this by presenting a new two-dimensional geometric morphometric protocol on wing elements from over 20 duck species and test the utility of these shape data for correct species identification. This is an ideal starting point to expand utilization of these types of approaches in avifaunal research and test applicability to an extremely difficult taxonomic group.


Assuntos
Patos , Asas de Animais , Animais , Asas de Animais/anatomia & histologia , Patos/anatomia & histologia , Osteologia , Europa (Continente) , Fósseis/anatomia & histologia
15.
Anat Rec (Hoboken) ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045807

RESUMO

The potential connection between trends of within species variation, such as those of allometric change in morphology, and phylogenetic divergence has been a central topic in evolutionary biology for more than a century, including in the context of human evolution. In this study, I focus on size-related shape change in craniofacial proportions using a sample of more than 3200 adult Old World monkeys belonging to 78 species, of which 2942 specimens of 51 species are selected for the analysis. Using geometric morphometrics, I assess whether the divergence in the direction of static allometries increases in relation to phyletic differences. Because both small samples and taxonomic sampling may bias the results, I explore the sensitivity of the main analyses to the inclusion of more or less taxa depending on the choice of a threshold for the minimum sample size of a species. To better understand the impact of sampling error, I also use randomized subsampling experiments in the largest species samples. The study shows that static allometries vary broadly in directions without any evident phylogenetic signal. This variation is much larger than previously found in ontogenetic trajectories of Old World monkeys, but the conclusion of no congruence with phylogenetic divergence is the same. Yet, the effect of sampling error clearly contributes to inaccuracies and tends to magnify the differences in allometric change. Thus, morphometric research at the boundary between micro- and macro-evolution in primates, and more generally in mammals, critically needs very large and representative samples. Besides sampling error, I suggest other non-mutually exclusive explanations for the lack of correspondence between allometric and phylogenetic divergence in Old World monkeys, and also discuss why directions might be more variable in static compared to ontogenetic trajectories. Even if allometric variation may be a poor source of information in relation to phylogeny, the evolution of allometry is a fascinating subject and the study of size-related shape changes remains a fundamental piece of the puzzle to understand morphological variation within and between species in primates and other animals.

16.
Insects ; 15(7)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39057241

RESUMO

To date, five species of reddish-brown Neotriplax have been described, but their highly similar body color and other phenotypic traits make accurate taxonomy challenging. To clarify species-level taxonomy and validate potential new species, the cytochrome oxidase subunit I (COI) was used for phylogenetic analysis and the geometric morphometrics of elytron, pronotum, and hind wing were employed to distinguish all reddish-brown Neotriplax species. Phylogenetic results using maximum likelihood and Bayesian analyses of COI sequences aligned well with the current taxonomy of the Neotriplax species group. Significant K2P divergences, with no overlap between intra- and interspecific genetic distances, were obtained in Neotriplax species. The automatic barcode gap discovery (ABGD), assemble species by automatic partitioning (ASAP), and generalized mixed Yule coalescent (GMYC) approaches concurred, dividing the similar species into eight molecular operational taxonomic units (MOTUs). Geometric morphometric analysis using pronotum, elytron, hind wing shape and wing vein patterns also validated the classification of all eight species. By integrating these analytical approaches with morphological evidence, we successfully delineated the reddish-brown species of Neotriplax into eight species with three new species: N. qinghaiensis sp. nov., N. maoershanensis sp. nov., and N. guangxiensis sp. nov. Furthermore, we documented the first record of N. lewisii in China. This study underscores the utility of an integrative taxonomy approach in species delimitation within Neotriplax and serves as a reference for the taxonomic revision of other morphologically challenging beetles through integrative taxonomy.

17.
Sci Rep ; 14(1): 15579, 2024 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971911

RESUMO

This work proposes a functional data analysis approach for morphometrics in classifying three shrew species (S. murinus, C. monticola, and C. malayana) from Peninsular Malaysia. Functional data geometric morphometrics (FDGM) for 2D landmark data is introduced and its performance is compared with classical geometric morphometrics (GM). The FDGM approach converts 2D landmark data into continuous curves, which are then represented as linear combinations of basis functions. The landmark data was obtained from 89 crania of shrew specimens based on three craniodental views (dorsal, jaw, and lateral). Principal component analysis and linear discriminant analysis were applied to both GM and FDGM methods to classify the three shrew species. This study also compared four machine learning approaches (naïve Bayes, support vector machine, random forest, and generalised linear model) using predicted PC scores obtained from both methods (a combination of all three craniodental views and individual views). The analyses favoured FDGM and the dorsal view was the best view for distinguishing the three species.


Assuntos
Aprendizado de Máquina , Análise de Componente Principal , Musaranhos , Animais , Musaranhos/anatomia & histologia , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Máquina de Vetores de Suporte , Análise Discriminante , Malásia
18.
Anat Histol Embryol ; 53(4): e13085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965917

RESUMO

At the top of many ecosystems, raptors, also known as birds of prey, hold major influence. They shape their surroundings through their powerful hunting skills and complex interactions with their environment. This study investigates the beak morphology of four prominent raptor species, Golden eagle (Aquila chrysaetos), Common buzzard (Buteo buteo), Peregrine falcon (Falco peregrinus) and Common kestrel (Falco tinnunculus), found in Türkiye. By employing geometric morphometric methods, we investigate shape variations in the beaks of these species to unravel the adaptive significance of their cranial structures. This analysis reveals distinct beak morphologies among the studied raptors, reflecting adaptations to their feeding habits, hunting techniques and ecological niches. The results from Principal component analysis and Canonical variate analysis demonstrate significant differences in beak morphology between the Falconiformes and Accipitriformes clades, as well as among all three groups. The overall mean beak shapes of Golden Eagles are quite similar to Common Buzzards, with both species having longer beaks. In contrast, Falcons exhibit a distinctly different beak morphology, characterized by wider and shorter beaks. Changes in beak shape can lead to changes depending on the skull. It is thought that skull shape variations among predator families may have an impact on beak shape. These findings highlight the importance of integrating morphometric analyses with ecological insights to enhance our understanding of the evolutionary processes shaping raptor beak morphology.


Assuntos
Bico , Falconiformes , Animais , Bico/anatomia & histologia , Falconiformes/anatomia & histologia , Falconiformes/fisiologia , Aves Predatórias/anatomia & histologia , Crânio/anatomia & histologia , Análise de Componente Principal , Águias/anatomia & histologia , Águias/fisiologia , Comportamento Predatório/fisiologia , Especificidade da Espécie
19.
Parasitol Res ; 123(7): 283, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042222

RESUMO

Mansonia uniformis (Diptera: Culicidae) is recognized as a vector of Brugia malayi and has been reported to transmit Wuchereria bancrofti, both causing lymphatic filariasis in humans. This study employed geometric morphometrics (GM) to investigate wing shape variation and analyzed genetic diversity through cytochrome c oxidase subunit 1 (COI) gene analyses in Ma. uniformis populations across Thailand. Wing GM analyses indicated significant differences in wing shape based on Mahalanobis distances among nearly all population pairs (p < 0.05), with no significant correlation between wing shape and geographic distance (r = 0.210, p > 0.05). Genetic analyses identified 63 haplotypes and 49 polymorphic sites, with the overall population exhibiting a nucleotide diversity of 0.006 (± 0.001) and a haplotype diversity of 0.912 (± 0.017). Deviations from neutrality, as indicated by Tajima's D and Fu's FS tests for the overall Ma. uniformis populations in Thailand, were statistically significant and negative, suggesting population expansion (both p < 0.05). Analysis of molecular variance revealed no significant genetic structure when all populations were categorized based on collection sites and geographic regions. However, significant differences in FST values were observed between some populations. These findings enhance our understanding of the geographical and genetic factors influencing Ma. uniformis populations, which are crucial for developing effective control strategies in Thailand.


Assuntos
DNA Mitocondrial , Complexo IV da Cadeia de Transporte de Elétrons , Variação Genética , Asas de Animais , Animais , Tailândia , DNA Mitocondrial/genética , Asas de Animais/anatomia & histologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Culicidae/genética , Culicidae/anatomia & histologia , Culicidae/classificação , Insetos Vetores/genética , Insetos Vetores/anatomia & histologia , Haplótipos
20.
Anat Histol Embryol ; 53(4): e13092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012157

RESUMO

The ossa coxae are the bones that connect the hindlimbs to the axial skeleton. The right and left os coxae join at the median plane to form the pelvis. In this study, variations in pelvis shape and the asymmetric structure of the pelvis were investigated across different classes of dogs. To achieve this, computed tomography images of the pelvis were obtained from 35 dogs, and 3D modelling of the pelvis was created. Subsequently, 45 landmarks were identified on these models. As a result of the Principal Component Analysis, the shape variation was observed in the pelvic canal and crista iliaca. Directional asymmetry between Principal Component 1 and Principal Component 2 accounted for 33.84% of the total variation, while fluctuating asymmetry contributed 23.66%. Canonical variate analysis revealed that canonical variate (CV) 1 explained 56.56% of the total variation between groups, with CV 2 explained 28.98%. Male dogs exhibited greater pelvic variation than females. Procrustes ANOVA indicated that the greatest proportion of shape variation corresponds to the effect of differences among individuals. While directional asymmetry was statistically significant, fluctuating asymmetry was not. Male dogs displayed more pronounced pelvic shape asymmetry, typically towards the right. Gundogs had a narrower pelvic canal and a wide crista iliaca, whereas terriers had a wider pelvic canal and smaller crista iliaca in shape. Geometric morphometry enables statistical analysis and the derivation of average shapes from samples, making it a vital tool in veterinary anatomy. This study provides insights into pelvic geometric morphometry across different classes of dogs.


Assuntos
Ossos Pélvicos , Pelve , Análise de Componente Principal , Tomografia Computadorizada por Raios X , Animais , Cães/anatomia & histologia , Masculino , Feminino , Tomografia Computadorizada por Raios X/veterinária , Ossos Pélvicos/anatomia & histologia , Pelve/anatomia & histologia , Pelve/diagnóstico por imagem , Imageamento Tridimensional/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA