RESUMO
Glyphosate (Gly) is a broad-spectrum herbicide responsible for the inhibition of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase known to be expressed exclusively in plants and not in animals. For decades Gly has been thought to be ineffective in mammals, including humans, until it was demonstrated that rodents treated with the Gly-based herbicide Roundup showed reduced content of neurotransmitters (e.g., serotonin, dopamine, norepinephrine, and acetylcholine), increased oxidative stress in the brain associated with anxiety and depression-like behaviors and learning and memory deficits. Despite compelling evidence pointing to a neurotoxic effect of Gly, an in-depth functional description of its effects on synaptic transmission is still lacking. To investigate the synaptic alterations dependent on Gly administration we performed whole-cell patch-clamp recordings and immunocytochemistry on mouse primary cultured hippocampal neurons. Our findings reveal that 30 min incubation of Gly at the acceptable daily intake dose severely impaired inhibitory GABAergic synapses. Further analysis pointed out that Gly decreased the number of postsynaptic GABAA receptors and reduced the amplitude of evoked inhibitory postsynaptic currents, the readily releasable pool size available for synchronous release and the quantal size. Finally, a decreased number of release sites has been observed. Consistently, morphological analyses showed that the density of both pre- and post-synaptic inhibitory compartments decorating pyramidal cell dendrites was reduced by Gly. In conclusion, our experiments define for the first time the effects induced by Gly on GABAergic synapses, and reveal that Gly significantly impairs both pre- and postsynaptic mechanisms.
RESUMO
Activity-dependent protein synthesis is crucial for long-lasting forms of synaptic plasticity. However, our understanding of translational mechanisms controlling GABAergic synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the mechanisms controlling plasticity-induced gephyrin translation remain unknown. We identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting inhibitory synaptic structure and function. iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and promoting de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Together, we delineate a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.
RESUMO
Molybdenum (Mo) is an essential micronutrient across all kingdoms of life, where it functions as a key component of the active centers of molybdenum-dependent enzymes. For these enzymes to gain catalytic activity, Mo must be complexed with a pterin scaffold to form the molybdenum cofactor (Moco). The final step of Moco biosynthesis is catalyzed by the enzyme Mo-insertase. This review focuses on eukaryotic Mo-insertases, with an emphasis on those found in plants and mammals, which have been instrumental in advancing the understanding of Mo biochemistry. Additionally, a historical perspective is provided, tracing the discovery of Mo-insertase from the early 1960s to the detailed characterization of its reaction mechanism in 2021. This review also highlights key milestones in the study of Mo-insertase, including mutant characterization, gene cloning, structural elucidation at the atomic level, functional domain assignment, and the spatial organization of the enzyme within cellular protein networks.
Assuntos
Metaloproteínas , Cofatores de Molibdênio , Pteridinas , Animais , Humanos , Metaloproteínas/metabolismo , Metaloproteínas/biossíntese , Metaloproteínas/química , Molibdênio/química , Molibdênio/metabolismo , Cofatores de Molibdênio/biossíntese , Pteridinas/metabolismo , Pteridinas/químicaRESUMO
GABAergic neurons and GABAA receptors (GABAARs) are critical elements of almost all neuronal circuits. Most GABAARs of the CNS are heteropentameric ion channels composed of two α, two ß, and one γ subunits. These receptors serve as important drug targets for benzodiazepine (BDZ) site agonists, which potentiate the action of GABA at GABAARs. Most GABAAR classifications rely on the heterogeneity of the α subunit (α1-α6) included in the receptor complex. Heterogeneity of the γ subunits (γ1-γ3), which mediate synaptic clustering of GABAARs and contribute, together with α subunits, to the benzodiazepine (BDZ) binding site, has gained less attention, mainly because γ2 subunits greatly outnumber the other γ subunits in most brain regions. Here, we have investigated a potential role of non-γ2 GABAARs in neural circuits of the spinal dorsal horn, a key site of nociceptive processing. Female and male mice were studied. We demonstrate that besides γ2 subunits, γ1 subunits are significantly expressed in the spinal dorsal horn, especially in its superficial layers. Unlike global γ2 subunit deletion, which is lethal, spinal cord-specific loss of γ2 subunits was well tolerated. GABAAR clustering in the superficial dorsal horn remained largely unaffected and antihyperalgesic actions of HZ-166, a nonsedative BDZ site agonist, were partially retained. Our results thus suggest that the superficial dorsal horn harbors functionally relevant amounts of γ1 subunits that support the synaptic clustering of GABAARs in this site. They further suggest that γ1 containing GABAARs contribute to the spinal control of nociceptive information flow.
Assuntos
Receptores de GABA-A , Animais , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Masculino , Camundongos , Feminino , Camundongos Endogâmicos C57BL , Nociceptividade/fisiologia , Medula Espinal/metabolismo , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Camundongos KnockoutRESUMO
Maternal separation (MS), a form of early life adversity, increases the risk of psychiatric disorders in adulthood by intricately linking cytokines and mood-regulating brain circuits. The Lateral Habenula (LHb) encodes aversive experiences, contributes to negative moods, and is pivotal in depression development. However, the precise impact of MS on LHb cytokine signaling and synaptic plasticity remains unclear. We reported that adolescent MS offspring mice displayed susceptibility to depression behavioral phylotypes, with neuronal hyperactivity and an imbalance in pro-inflammatory and anti-inflammatory cytokines in the LHb. Moreover, the decreased IL-10 level negatively correlated with depressive-like behaviors in susceptible mice. Functionally, LHb IL-10 overexpression restored decreased levels of PI3K, phosphorylated AKT (pAKT), gephyrin, and membrane GABAA receptor proteins while reducing abnormally elevated GSK3ß and Fos expression, rescuing the MS-induced depression. Conversely, LHb neuronal IL-10 receptor knockdown in naive mice increased Fos expression and elicited depression-like symptoms, potentially through impaired membrane GABAA receptor trafficking by suppressing the PI3K/pAKT/gephyrin cascades. Hence, this work establishes a mechanism by which MS promotes susceptibility to adolescent depression by impeding the critical role of IL-10 signaling on neuronal GABAA receptor function.
Assuntos
Depressão , Habenula , Interleucina-10 , Privação Materna , Receptores de GABA-A , Animais , Receptores de GABA-A/metabolismo , Camundongos , Interleucina-10/metabolismo , Depressão/metabolismo , Feminino , Habenula/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Suscetibilidade a Doenças/metabolismo , Neurônios/metabolismo , Transporte Proteico/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Citocinas/metabolismoRESUMO
Physical exercise has beneficial effect on anxiety disorders, but the underlying molecular mechanism remains largely unknown. Here, it is demonstrated that physical exercise can downregulate the S-nitrosylation of gephyrin (SNO-gephyrin) in the basolateral amygdala (BLA) to exert anxiolytic effects. It is found that the level of SNO-gephyrin is significantly increased in the BLA of high-anxiety rats and a downregulation of SNO-gephyrin at cysteines 212 and 284 produced anxiolytic effect. Mechanistically, inhibition of SNO-gephyrin by either Cys212 or Cys284 mutations increased the surface expression of GABAAR γ2 and the subsequent GABAergic neurotransmission, exerting anxiolytic effect in male rats. On the other side, overexpression of neuronal nitric oxide synthase in the BLA abolished the anxiolytic-like effects of physical exercise. This study reveals a key role of downregulating SNO-gephyrin in the anxiolytic effects of physical exercise, providing a new explanation for protein post-translational modifications in the brain after exercise.
Assuntos
Ansiedade , Complexo Nuclear Basolateral da Amígdala , Proteínas de Transporte , Regulação para Baixo , Proteínas de Membrana , Condicionamento Físico Animal , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ansiedade/metabolismo , Ansiedade/terapia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Comportamento Animal , Modelos Animais de DoençasRESUMO
Gephyrin is thought to play a critical role in clustering glycine receptors at synapses within the central nervous system (CNS). The main in vivo evidence for this comes from Gephyrin (Gphn)-null mice, where glycine receptors are depleted from synaptic regions. However, these mice die at birth, possibly due to impaired molybdenum cofactor (MoCo) synthesis, an essential role Gephyrin assumes throughout an animal. This complicates the interpretation of synaptic phenotypes in Gphn-null mice and raises the question whether the synaptic and enzymatic functions of Gephyrin can be investigated separately. Here, we generated a gephyrinb zebrafish mutant, vo84, that almost entirely lacks Gephyrin staining in the spinal cord. gephyrinbvo84 mutants exhibit normal gross morphology at both larval and adult stages. In contrast to Gphn-null mice, gephyrinbvo84 mutants exhibit normal motor activity and MoCo-dependent enzyme activity. Instead, gephyrinbvo84 mutants display impaired rheotaxis and increased mortality in late development. To investigate what may mediate these defects in gephyrinbvo84 mutants, we examined the cell density of neurons and myelin in the spinal cord and found no obvious changes. Surprisingly, in gephyrinbvo84 mutants, glycine receptors are still present in the synaptic regions. However, their abundance is reduced, potentially contributing to the observed defects. These findings challenge the notion that Gephyrin is absolutely required to cluster glycine receptors at synapses and reveals a new role of Gephyrin in regulating glycine receptor abundance and rheotaxis. They also establish a powerful new model for studying the mechanisms underlying synaptic, rather than enzymatic, functions of Gephyrin.
Assuntos
Proteínas de Transporte , Proteínas de Membrana , Mutação , Medula Espinal , Sinapses , Peixe-Zebra , Animais , Sinapses/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Medula Espinal/metabolismo , Mutação/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Receptores de Glicina/metabolismo , Receptores de Glicina/genética , Cofatores de Molibdênio , Pteridinas , Neurônios/metabolismo , Bainha de Mielina/metabolismo , Atividade Motora/fisiologia , Atividade Motora/genética , Animais Geneticamente ModificadosRESUMO
Synapses containing γ-aminobutyric acid (GABA) constitute the primary centers for inhibitory neurotransmission in our nervous system. It is unclear how these synaptic structures form and align their postsynaptic machineries with presynaptic terminals. Here, we monitored the cellular distribution of several GABAergic postsynaptic proteins in a purely glutamatergic neuronal culture derived from human stem cells, which virtually lacks any vesicular GABA release. We found that several GABAA receptor (GABAAR) subunits, postsynaptic scaffolds, and major cell-adhesion molecules can reliably coaggregate and colocalize at even GABA-deficient subsynaptic domains, but remain physically segregated from glutamatergic counterparts. Genetic deletions of both Gephyrin and a Gephyrin-associated guanosine di- or triphosphate (GDP/GTP) exchange factor Collybistin severely disrupted the coassembly of these postsynaptic compositions and their proper apposition with presynaptic inputs. Gephyrin-GABAAR clusters, developed in the absence of GABA transmission, could be subsequently activated and even potentiated by delayed supply of vesicular GABA. Thus, molecular organization of GABAergic postsynapses can initiate via a GABA-independent but Gephyrin-dependent intrinsic mechanism.
Assuntos
Proteínas de Transporte , Proteínas de Membrana , Terminações Pré-Sinápticas , Receptores de GABA-A , Sinapses , Ácido gama-Aminobutírico , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ácido gama-Aminobutírico/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genéticaRESUMO
Long-term potentiation (LTP) induced by theta-burst stimulation (TBS) undergoes postweaning developmental changes partially linked to GABAergic circuit maturation. Endogenous vasoactive intestinal peptide (VIP) acting on its VPAC1 receptor strongly influences LTP induced by theta-burst stimulation (TBS), an effect dependent on GABAergic transmission. Although VPAC1 receptor levels are developmentally regulated during embryogenesis, their variation along postweaning development is unknown, as is the VPAC1 modulation of LTP or its relation to hippocampal GABAergic circuit maturation. As such, we investigated how VPAC1 modulation of LTP adjusts from weaning to adulthood along with GABAergic circuit maturation. As described, LTP induced by mild TBS (5 bursts, 4 pulses delivered at 100 Hz) was increasingly greater from weaning to adulthood. The influence of the VPAC1 receptor antagonist PG 97-269 (100 nM) on TBS-induced LTP was much larger in juvenile (3-week-old) than in young adult (6-7-week-old) or adult (12-week-old) rats. This effect was not associated with a developmental decrease in synaptic VPAC1 receptor levels. However, an increase in pre and post-synaptic GABAergic synaptic markers suggests an increase in the number of GABAergic synaptic contacts that is more prominent than the one observed in glutamatergic connections during this period. Conversely, endogenous VPAC2 receptor activation did not significantly influence TBS-induced LTP. VPAC2 receptor levels enhance pronouncedly during postweaning development, but not at synaptic sites. Given the involvement of VIP interneurons in several aspects of hippocampal-dependent learning, neurodevelopmental disorders, and epilepsy, this could provide important insights into the role of VIP modulation of hippocampal synaptic plasticity during normal and altered brain development potentially contributing to epileptogenesis.
Assuntos
Potenciação de Longa Duração , Estimulação Magnética Transcraniana , Ratos , Animais , Potenciação de Longa Duração/fisiologia , Hipocampo , Plasticidade Neuronal , InterneurôniosRESUMO
Kinesin 1 (KIF5) is one major type of motor protein in neurons, but its members' function in the intact brain remains less studied. Using in vivo two-photon imaging, we find that conditional knockout of Kif5b (KIF5B cKO) in CaMKIIα-Cre-expressing neurons shows heightened turnover and lower stability of dendritic spines in layer 2/3 pyramidal neurons with reduced spine postsynaptic density protein 95 acquisition in the mouse cortex. Furthermore, the RNA-binding protein fragile X mental retardation protein (FMRP) is translocated to the proximity of newly formed spines several hours before the spine formation events in vivo in control mice, but this preceding transport of FMRP is abolished in KIF5B cKO mice. We further find that FMRP is localized closer to newly formed spines after fear extinction, but this learning-dependent localization is disrupted in KIF5B cKO mice. Our findings provide the crucial in vivo evidence that KIF5B is involved in the dendritic targeting of synaptic proteins that underlies dendritic spine plasticity.
Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Animais , Camundongos , Espinhas Dendríticas/metabolismo , Extinção Psicológica , Medo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade NeuronalRESUMO
Gephyrin is the main scaffolding protein at inhibitory postsynaptic sites, and its clusters are the signaling hubs where several molecular pathways converge. Post-translational modifications (PTMs) of gephyrin alter GABAA receptor clustering at the synapse, but it is unclear how this affects neuronal activity at the circuit level. We assessed the contribution of gephyrin PTMs to microcircuit activity in the mouse barrel cortex by slice electrophysiology and in vivo two-photon calcium imaging of layer 2/3 (L2/3) pyramidal cells during single-whisker stimulation. Our results suggest that, depending on the type of gephyrin PTM, the neuronal activities of L2/3 pyramidal neurons can be differentially modulated, leading to changes in the size of the neuronal population responding to the single-whisker stimulation. Furthermore, we show that gephyrin PTMs have their preference for selecting synaptic GABAA receptor subunits. Our results identify an important role of gephyrin and GABAergic postsynaptic sites for cortical microcircuit function during sensory stimulation.
Assuntos
Proteínas de Membrana , Receptores de GABA-A , Vibrissas , Animais , Receptores de GABA-A/metabolismo , Vibrissas/metabolismo , Proteínas de Transporte/metabolismo , Células Piramidais/metabolismo , Sinapses/metabolismoRESUMO
Glycine receptors (GlyRs) are glycine-gated inhibitory pentameric ligand-gated ion channels composed of α or α + ß subunits. A number of structures of these proteins have been reported, but to date, these have only revealed details of the extracellular and transmembrane domains, with the intracellular domain (ICD) remaining uncharacterised due to its high flexibility. The ICD is a region that can modulate function in addition to being critical for receptor localisation and clustering via proteins such as gephyrin. Here, we use modelling and molecular dynamics (MD) to reveal details of the ICDs of both homomeric and heteromeric GlyR. At their N and C ends, both the α and ß subunit ICDs have short helices, which are major sites of stabilising interactions; there is a large flexible loop between them capable of forming transient secondary structures. The α subunit can affect the ß subunit ICD structure, which is more flexible in a 4α2:1ß than in a 4α1:1ß GlyR. We also explore the effects of gephyrin binding by creating GlyR models bound to the gephyrin E domain; MD simulations suggest these are more stable than the unbound forms, and again there are α subunit-dependent differences, despite the fact the gephyrin binds to the ß subunit. The bound models also suggest that gephyrin causes compaction of the ICD. Overall, the data expand our knowledge of this important receptor protein and in particular clarify features of the underexplored ICD.
Assuntos
Simulação de Dinâmica Molecular , Receptores de Glicina , Receptores de Glicina/metabolismo , Proteínas de Transporte/metabolismo , GlicinaRESUMO
Neurotransmitter receptors partition into nanometer-scale subdomains within the postsynaptic membrane that are precisely aligned with presynaptic neurotransmitter release sites. While spatial coordination between pre- and postsynaptic elements is observed at both excitatory and inhibitory synapses, the functional significance of this molecular architecture has been challenging to evaluate experimentally. Here we utilized an optogenetic clustering approach to acutely alter the nanoscale organization of the postsynaptic inhibitory scaffold gephyrin while monitoring synaptic function. Gephyrin clustering rapidly enlarged postsynaptic area, laterally displacing GABAA receptors from their normally precise apposition with presynaptic active zones. Receptor displacement was accompanied by decreased synaptic GABAA receptor currents even though presynaptic release probability and the overall abundance and function of synaptic GABAA receptors remained unperturbed. Thus, acutely repositioning neurotransmitter receptors within the postsynaptic membrane profoundly influences synaptic efficacy, establishing the functional importance of precision pre-/postsynaptic molecular coordination at inhibitory synapses.
Assuntos
Receptores de GABA-A , Sinapses , Sinapses/fisiologia , Proteínas de Transporte , Receptores de Neurotransmissores , Ácido gama-AminobutíricoRESUMO
NG2 glia receive synaptic input from neurons, but the functional impact of this glial innervation is not well understood. In the developing cerebellum and somatosensory cortex the GABAergic input might regulate NG2 glia differentiation and myelination, and a switch from synaptic to extrasynaptic neuron-glia signaling was reported in the latter region. Myelination in the hippocampus is sparse, and most NG2 glia retain their phenotype throughout adulthood, raising the question of the properties and function of neuron-NG2 glia synapses in that brain region. Here, we compared spontaneous and evoked GABAA receptor-mediated currents of NG2 glia in juvenile and adult hippocampi of mice of either sex and assessed the mode of interneuron-glial signaling changes during development. With patch-clamp and pharmacological analyses, we found a decrease in innervation of hippocampal NG2 glia between postnatal days 10 and 60. At the adult stage, enhanced activation of extrasynaptic receptors occurred, indicating a spillover of GABA. This switch from synaptic to extrasynaptic receptor activation was accompanied by downregulation of γ2 and upregulation of the α5 subunit. Molecular analyses and high-resolution expansion microscopy revealed mechanisms of glial GABAA receptor trafficking and clustering. We found that gephyrin and radixin are organized in separate clusters along glial processes. Surprisingly, the developmental loss of γ2 and postsynaptic receptors were not accompanied by altered glial expression of scaffolding proteins, auxiliary receptor subunits or postsynaptic interaction proteins. The GABAergic input to NG2 glia might contribute to the release of neurotrophic factors from these cells and influence neuronal synaptic plasticity.
Assuntos
Receptores de GABA-A , Animais , Camundongos , Ácido gama-Aminobutírico , Hipocampo , Interneurônios , NeurogliaRESUMO
The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients.
Assuntos
Neurônios , Sinapses , Humanos , Receptor DCC/metabolismo , Netrina-1/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Sinapses/metabolismo , AnimaisRESUMO
Adult hippocampal neurogenesis enhances brain plasticity and contributes to the cognitive reserve during aging. Adult hippocampal neurogenesis is impaired in neurological disorders, yet the molecular mechanisms regulating the maturation and synaptic integration of new neurons have not been fully elucidated. GABA is a master regulator of adult and developmental neurogenesis. Here we engineered a novel retrovirus encoding the fusion protein Gephyrin:GFP to longitudinally study the formation and maturation of inhibitory synapses during adult hippocampal neurogenesis in vivo. Our data reveal the early assembly of inhibitory postsynaptic densities at 1 week of cell age. Glycogen synthase kinase 3 Beta (GSK-3ß) emerges as a key regulator of inhibitory synapse formation and maturation during adult hippocampal neurogenesis. GSK-3ß-overexpressing newborn neurons show an increased number and altered size of Gephyrin+ postsynaptic clusters, enhanced miniature inhibitory postsynaptic currents, shorter and distanced axon initial segments, reduced synaptic output at the CA3 and CA2 hippocampal regions, and impaired pattern separation. Moreover, GSK-3ß overexpression triggers a depletion of Parvalbumin+ interneuron perineuronal nets. These alterations might be relevant in the context of neurological diseases in which the activity of GSK-3ß is dysregulated.
Assuntos
Hipocampo , Neurônios , Humanos , Recém-Nascido , Encéfalo/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Neurogênese , Neurônios/metabolismo , AdultoRESUMO
Postsynaptic GABAergic receptors interact with various membrane and intracellular proteins to mediate inhibitory synaptic transmission. They form structural and/or signaling synaptic protein complexes that perform a variety of postsynaptic functions. In particular, the key GABAergic synaptic scaffold, gephyrin, and its interacting partners govern downstream signaling pathways that are essential for GABAergic synapse development, transmission, and plasticity. In this review, we discuss recent researches on GABAergic synaptic signaling pathways. We also outline the main outstanding issues that need to be addressed in this field and highlight the association of dysregulated GABAergic synaptic signaling with the onset of various brain disorders.
Assuntos
Receptores de GABA-A , Sinapses , Receptores de GABA-A/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Proteínas de Transporte/metabolismo , Plasticidade Neuronal/fisiologiaRESUMO
1-Nitropyrene (1-NP), a typical nitro-polycyclic aromatic hydrocarbon, is a developmental toxicant. This study was to evaluate gestational 1-NP-induced anxiety-like behavior in male adult offspring. Pregnant mice were orally administered to 1-NP daily throughout pregnancy. Anxiety-like behaviors, as determined by Elevated Plus-Maze (EPM) and Open-Field Test (OFT), were showed in male adult offspring whose mothers were exposed to 1-NP. Gestational 1-NP exposure reduced dendritic arborization, dendritic length and dendritic spine density in ventral hippocampus of male adult offspring. Additional experiments showed that gephyrin, an inhibitory synaptic marker, was reduced in fetal forebrain and hippocampus in male adult offspring. Nrg1 and Erbb4, two gephyrin-related genes, were reduced in 1-NP-exposed fetuses. Accordingly, 5hmC contents in two CpG sites (32008909 and 32009239) of Nrg1 gene and three CpG sites (69107743, 69107866 and 69107899) of Erbb4 gene were decreased in 1-NP-exposed fetuses. Mechanistically, ten-eleven translocation (TET) activity and alpha-ketoglutarate (α-KG) content were decreased in 1-NP-exposed fetal forebrain. Supplementation with α-KG alleviated 1-NP-induced downregulation of gephyrin-related genes, prevented hippocampal synaptic damage, and improved anxiety-like behavior in male adult offspring. These results indicate that early-life 1-NP exposure causes anxiety-like behavior in male adulthood partially by altering hippocampal epigenetic reprogramming of synaptic plasticity.
Assuntos
Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Camundongos , Masculino , Animais , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Hipocampo , Ansiedade/induzido quimicamente , Plasticidade Neuronal , Epigênese GenéticaRESUMO
Triptolide is an epoxidized diterpene lactone isolated from Tripterygium wilfordii. Studies have shown that triptolide exerts organ-protective effects. However, it remains unknown whether triptolide improves Alzheimer's disease (AD)-like presentations. Thirty healthy 8-week-old male C57BL/6J mice were randomly divided into control (n = 10), model (n = 10), and triptolide (n = 10) groups. Amyloid-ß (Aß)42 was injected bilaterally into the ventricles of mice in the model group. Triptolide was injected intraperitoneally daily after injecting Aß42 (a total of 30 days) in the triptolide group. Learning and memory were tested using the Morris water maze test. The deposition of Aß42 in the hippocampus was detected using immunohistochemical staining. In the hippocampus, three synaptic-associated proteins-gephyrin, collybistin, and GABRA1 -were detected by western blotting. Furthermore, we used ELISA to detect proinflammatory cytokines, including TNF-α and IL-1ß, in the blood and hippocampus. Moreover, superoxide dismutase (SOD), malondialdehyde (MDA), and GSH levels were measured using the corresponding kits. We found that triptolide improved spatial learning and memory in AD-like mice. Additionally, triptolide maintained the expression of gephyrin, collybistin, and GABRA1 and reduced Aß in these mice. Additionally, triptolide reduced the expression of inflammatory cytokines and decreased oxidative damage in AD-like mice. Our study suggests that triptolide attenuates AD-like changes in the mouse brain.
Assuntos
Doença de Alzheimer , Diterpenos , Camundongos , Masculino , Animais , Doença de Alzheimer/metabolismo , Camundongos Endogâmicos C57BL , Peptídeos beta-Amiloides/metabolismo , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Diterpenos/metabolismo , Hipocampo/metabolismo , Citocinas/metabolismo , Modelos Animais de DoençasRESUMO
Postsynaptic scaffolding proteins function as central organization hubs, ensuring the synaptic localization of neurotransmitter receptors, trans-synaptic adhesion proteins, and signaling molecules. Gephyrin is the major postsynaptic scaffolding protein at glycinergic and a subset of GABAergic inhibitory synapses. In contrast to cells outside the CNS, where one gephyrin isoform is predominantly expressed, neurons express different splice variants. In this study, we characterized the expression and scaffolding of neuronal gephyrin isoforms differing in the inclusion of the C4 cassettes located in the central C-domain. In hippocampal and cortical neuronal populations, gephyrin P1, lacking additional cassettes, is the most abundantly expressed isoform. In addition, alternative splicing generated isoforms carrying predominantly C4a, and minor amounts of C4c or C4d cassettes. We detected no striking difference in C4 isoform expression between different neuron types and a single neuron can likely express all C4 isoforms. To avoid the cytosolic aggregates that are commonly observed upon exogenous gephyrin expression, we used adeno-associated virus (AAV)-mediated expression to analyze the scaffolding behavior of individual C4 isoforms in murine dissociated hippocampal glutamatergic neurons. While all isoforms showed similar clustering at GABAergic synapses, a thorough quantitative analysis revealed localization differences for the C4c isoform (also known as P2). Specifically, synaptic C4c isoform clusters showed a more distal dendritic localization and reduced occurrence at P1-predominating synapses. Additionally, inhibitory currents displayed faster decay kinetics in the presence of gephyrin C4c compared with P1. Therefore, inhibitory synapse heterogeneity may be influenced, at least in part, by mechanisms relating to C4 cassette splicing.