Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 867
Filtrar
1.
Indian J Otolaryngol Head Neck Surg ; 76(5): 4386-4392, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39376418

RESUMO

Aim: The sound sensation that is experienced in the ears or brain and is unrelated to any external sources of stimulus is known as tinnitus. Tinnitus Functional Index (TFI) is used to establish the presence of the condition and determine symptom severity, its impact on the patient's quality of life, thus in this study, we aim to compare the efficacy of caroverine and Ginkgo Biloba in the management of idiopathic tinnitus using TFI. Methods: This clinical study was conducted in at a tertiary care hospital in North India, for a duration of one year, among patients with chronic tinnitus. The sample size for this study consisted of 60 patients in each of three groups (caroverine, gingko biloba, and multivitamin). Assessments of TFI and pure-tone audiometry were performed to evaluate the efficacy of the two medications. The information pertaining to the subjects was kept anonymous and confidential. During data analysis, an association was significant for p value < 0.05. Results: The patients in three groups were matched for the age, gender and duration of tinnitus. At 6 months of medication with Ginkgo Biloba, patients experienced a significant (p < 0.0001) decrease of 50.0% in tinnitus of moderate severity, and a complete resolution of severe tinnitus symptoms with a percentage change of -100.0%. Conclusion: In our study, Ginkgo Biloba Group has significantly improved the severity of idiopathic tinnitus. Tinnitus has diverse underlying mechanisms, can be a symptom of various underlying diseases, and is challenging to measure. Further research is warranted to validate and explore these treatment options further.

2.
Phytochem Anal ; 35(7): 1659-1673, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39353880

RESUMO

INTRODUCTION: Ginkgo Folium tablet (GFT) is a patented traditional Chinese medicine prepared from Ginkgo biloba leaves extract (GBE). However, the current quality indicators for GFT or GBE as designated by the Chinese Pharmacopoeia are insufficient in preventing counterfeit events. OBJECTIVE: This study aimed to putatively identify compounds in GFT and to further develop a quality marker (Q-marker) system for GFT. METHODS: A novel strategy utilizing database-aided ultrahigh-performance liquid chromatography-quadrupole-orbitrap mass spectrometry was employed to analyze the lyophilized aqueous powder of GFT. Subsequently, the identified compounds underwent quantum chemical calculations, network pharmacology, and molecular simulations through in silico approaches to evaluate the Q-marker principles of traceability, specificity, and efficiency-relevance. RESULTS: The results revealed the putative identification of a total of 66 compounds, including 36 flavonoids, 7 phenolic acids and derivatives, 5 terpene lactones, 4 fatty acids and derivatives, 3 alkaloids, 1 amino acid, and 10 other compounds. Particularly, 16 compounds were unexpectedly observed, and seven compounds met the Q-marker principles. CONCLUSION: This study recommends the seven compounds, namely, (-)-gallocatechin, matrine, (-)-epicatechin, ginkgolide C, ginkgolide A, ginkgolide B, and curdione, as the anti-counterfeiting pharmacopoeia Q-markers for GFT. The reconstruction of the Q-marker system for GFT not only enhances the understanding of the compounds in GFT and other GBE-based preparations but also provides valuable recommendations for the Pharmacopoeia Commission.


Assuntos
Ginkgo biloba , Ginkgo biloba/química , Cromatografia Líquida de Alta Pressão/métodos , Comprimidos , Farmacologia em Rede , Extratos Vegetais/química , Flavonoides/análise , Flavonoides/química , Espectrometria de Massas/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Folhas de Planta/química , Alcaloides/análise , Alcaloides/química , Extrato de Ginkgo
3.
Int J Biol Macromol ; 281(Pt 1): 136280, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368588

RESUMO

Ginkgo biloba, a deciduous tree from the Ginkgoaceae family, is widely cultivated globally. In China, it predominantly grows in the eastern and southern regions. The leaves can be harvested multiple times throughout the growing season, presenting a significant resource potential. Ginkgo biloba leaves are considered as a living fossil with both medicinal and edible properties in traditional Chinese medicine. Polysaccharides, the primary bioactive compounds in these leaves, exhibit numerous biological activities, including antioxidant, antitumor, anti-inflammatory, immunoregulatory activity, antidepressant effects, hepatoprotective, hypoglycemic activity and hair-growth promoting effect. This review highlights the advancements in the extraction separation purification, structural elucidation, and functional analysis of polysaccharides derived from Ginkgo biloba leaves over the past decade, aiming to provide valuable insights for future development and commercialization of Ginkgo biloba leave polysaccharides.

4.
CNS Neurosci Ther ; 30(9): e14914, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39238068

RESUMO

AIMS: Alzheimer's disease (AD) is a neurodegenerative disorder with limited treatment options. This study aimed to investigate the therapeutic effects of Ginkgo biloba leaf extract (GBE) on AD and explore its potential mechanisms of action. METHODS: Key chemical components of GBE, including quercetin, luteolin, and kaempferol, were identified using network pharmacology methods. Bioinformatics analysis revealed their potential roles in AD through modulation of the PI3K/AKT/NF-κB signaling pathway. RESULTS: Mouse experiments demonstrated that GBE improved cognitive function, enhanced neuronal morphology, and reduced serum inflammatory factors. Additionally, GBE modulated the expression of relevant proteins and mRNA. CONCLUSION: GBE shows promise as a potential treatment for AD. Its beneficial effects on cognitive function, neuronal morphology, and inflammation may be attributed to its modulation of the PI3K/AKT/NF-κB signaling pathway. These findings provide experimental evidence for the application of Ginkgo biloba leaf in AD treatment and highlight its potential mechanisms of action.


Assuntos
Doença de Alzheimer , Ginkgo biloba , Extratos Vegetais , Folhas de Planta , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Camundongos , Masculino , Folhas de Planta/química , NF-kappa B/metabolismo , Cognição/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Extrato de Ginkgo
5.
Nanomaterials (Basel) ; 14(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39269046

RESUMO

In this study, an easy, efficient, economical, and eco-friendly green bio-synthesis method was utilized to synthesize silver nanoparticles (AgNPs) using the extracts of four plants: Ginkgo biloba, Cichorium Intybus, Adiantum Capillus-Veneris, and Rosmarinus Officinalis. The synthesis of AgNPs was confirmed by using a uv-vis spectrometer, which showed distinct surface plasmon resonance (SPR) bands. The surface of AgNPs was characterized using scanning electron microscopy and Fourier-transform infrared spectroscopy. The anti-inflammatory activity of Tenoxicam/Meloxicam-loaded AgNPs has been studied using the inhibition of albumin denaturation method. Tenoxicam-loaded AgNPs showed higher % Inhibition, but Meloxicam-loaded AgNPs showed lower % Inhibition. Furthermore, the AgNPs showed excellent antimicrobial activity on both Gram-negative and Gram-positive bacteria.

6.
Int J Biol Macromol ; 279(Pt 4): 135240, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39250995

RESUMO

The heat shock protein 90 (HSP90) family members are not only widely involved in animal cellular immune response and signal transduction pathway regulation, but also play an important role in plant development and environmental stress response. Here,we identified a HSP90 family member in Ginkgo biloba, designated as GbHSP90, which performs a dual functional role to regulate telomere stability. GbHSP90 was screened by a yeast one-hybrid library using the Ginkgo biloba telomeric DNA (TTTAGGG)5. Fluorescence polarization, surface plasmon resonance(SPR) and EMSA technologyies revealed a specific interaction between GbHSP90 and the double-stranded telomeric DNA via its N-CR region, with no affinity for the single-stranded telomeric DNA or human double-stranded telomeric DNA. Furthermore, yeast two-hybrid system and Split-LUC assay demonstrated that GbHSP90 can interacts with two telomere end-binding proteins:the ginkgo telomerase reverse transcriptase (GbTERT) and the ginkgo Structural Maintenance of Chromosomes protein 1 (GbSMC1). Overexpression of GbHSP90 in human 293 T and HeLa cells increased cell growth rate, the content of telomerase reverse transcriptase (TERT), and promote cell division and inhibit cell apoptosis. Our results indicated GbHSP90 have dually functions: as a telomere-binding protein that binds specifically to double-stranded telomeric DNA and as a molecular chaperone that modulates cell differentiation and apoptosis by binding to telomere protein complexes in Ginkgo biloba. This study contributes to a significantly understanding of the unique telomere complex structure and regulatory mechanisms in Ginkgo biloba, a long-lived tree species.

7.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273200

RESUMO

Thrombosis is a key process that determines acute coronary syndrome and ischemic stroke and is the leading cause of morbidity and mortality in the world, together with cancer. Platelet adhesion and subsequent activation and aggregation are critical processes that cause thrombus formation after endothelial damage. To date, high hopes are associated with compounds of natural origin, which show anticoagulant action without undesirable effects and can be proposed as supportive therapies. We investigated the effect of the new combination of four natural compounds, escin-bromelain-ginkgo biloba-sage miltiorrhiza (EBGS), on the initial process of the coagulation cascade, which is the adhesion of platelets to activated vascular endothelium. Our results demonstrated that EBGS pretreatment of endothelial cells reduces platelet adhesion even in the presence of the monocyte-lymphocyte population. Our data indicate that EBGS exerts its effects by inhibiting the transcription of adhesion molecules, including P-selectin, platelet membrane glycoprotein GP1b, integrins αV and ß3, and reducing the secretion of the pro-inflammatory cytokines interleukin 6, interleukin 8, and the metalloproteinases MMP-2 and MMP-9. Furthermore, we demonstrated that EBGS inhibited the expression of focal adhesion kinase (FAK), strictly involved in platelet adhesion, and whose activity is correlated with that of integrin ß3. The results shown in this manuscript suggest a possible inhibitory role of the new combination EBGS in the reduction in platelet adhesion to activated endothelium, thus possibly preventing coagulation cascade initiation.


Assuntos
Endotélio Vascular , Adesividade Plaquetária , Transdução de Sinais , Fator de Necrose Tumoral alfa , Humanos , Adesividade Plaquetária/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Salvia miltiorrhiza/química , Quinase 1 de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Extratos Vegetais/farmacologia
8.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273532

RESUMO

Ginkgo biloba is a famous economic tree. Ginkgo leaves have been utilized as raw materials for medicines and health products due to their rich active ingredient composition, especially flavonoids. Since the routine measurement of total flavones is time-consuming and destructive, rapid, non-destructive detection of total flavones in ginkgo leaves is of significant importance to producers and consumers. Hyperspectral imaging technology is a rapid and non-destructive technique for determining the total flavonoid content. In this study, we discuss five modeling methods, and three spectral preprocessing methods are discussed. Bayesian Ridge (BR) and multiplicative scatter correction (MCS) were selected as the best model and the best pretreatment method, respectively. The spectral prediction results based on the BR + MCS treatment were very accurate (RTest2 = 0.87; RMSETest = 1.03 mg/g), showing a high correlation with the analytical measurements. In addition, we also found that the more and deeper the leaf cracks, the higher the flavonoid content, which helps to evaluate leaf quality more quickly and easily. In short, hyperspectral imaging is an effective technique for rapid and accurate determination of total flavonoids in ginkgo leaves and has great potential for developing an online quality detection system for ginkgo leaves.


Assuntos
Flavonoides , Ginkgo biloba , Folhas de Planta , Ginkgo biloba/química , Folhas de Planta/química , Flavonoides/análise , Aprendizado Profundo , Imageamento Hiperespectral/métodos , Extratos Vegetais/química , Extratos Vegetais/análise , Teorema de Bayes
9.
Heliyon ; 10(17): e36909, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286178

RESUMO

Ginkgo biloba seeds have been used as a traditional Chinese medicine for hundreds of years to treat diseases such as cervicitis, cough, asthma and other lung diseases. As a novel form, the dispensing granules (GSDG) of Ginkgo biloba seeds have been widely employed in clinic. However, its chemical profiling is not yet clear, which has restricted in-depth research in many fields. In this study, a high performance liquid chromatography coupled with quardrupole time-of-flight mass spectrometry method was used for the component characteration with the help of accurate molecular weights, fragmentation pathways, reported data, literatures and even some reference standards. Furthermore, in multiple-reaction monitoring mode, a high performance liquid chromatography coupled with quadrupole linear ion trap mass spectrometry method was developed and applied for simultaneous determination of the bioactive phytochemicals. As a result, a total of 56 components in GSDG were identified including 12 amino acids, 9 organic acids, 6 nucleosides and nucleobases, 6 flavonoids, 5 vitamins, 5 terpenoid lactones, 4 carbohydrates and 9 other compounds As for quantitative analysis, glutamic acid, asparatic acid, histidine, ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, eucomic acid, N-(N-glucopyranosyl)-indoleacetylaspartate and N-(N-glucopyranosyl)-indoleacetylglutamate were selected as the analytes for quanlity marker of GSDG. After necessary validation tests, the developed quantitative method was successfully put into use for 10 batches of GSDG. In all batches, N-(N-glucopyranosyl)-indoleacetylaspartate was the richest phytochemical with the amount of 17.3-25.7 mg/g while ginkgolide J (0.0197-0.0335 mg/g) was determined to be the poorest. The study is supposed to exhibit a comprehensive chemical profiling and to provide some strong basis for preparation technology, quality control and even for action mechanism of GSDG, this novel form of Chinese medicine.

10.
Antioxidants (Basel) ; 13(9)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39334763

RESUMO

The seeds of ginkgo biloba L (GB) have been widely used worldwide. This study investigated the bioefficacies of whole GB seed powder (WGP) retaining the full nutrients of ginkgo against aging, atherosclerosis, and fatigue. The experimental results indicated that WGP lowered brain monoamine oxidase and serum malondialdehyde levels, enhanced thymus/spleen indexes, and improved learning ability, and delayed aging in senescent mice. WGP regulated lipid levels and prevented atherosclerosis by reducing triglycerides, lowering low-density lipoprotein cholesterol, increasing high-density lipoprotein cholesterol, and decreasing the atherosclerosis index. WGP improved exercise performance by reducing blood lactate accumulation and extending exhaustive swimming and climbing times, improved energy storage by increasing muscle/liver glycogen levels, and relieved physical fatigue. Network pharmacology analysis revealed 270 potential targets of WGP that play roles in cellular pathways related to inflammation inhibition, metabolism regulation, and anti-cellular senescence, etc. Protein-protein interaction analysis identified 10 hub genes, including FOS, ESR1, MAPK8, and SP1 targets. Molecular docking and molecular dynamics simulations showed that the bioactive compounds of WGP bound well to the targets. This study suggests that WGP exerts prominent health-promoting effects through multiple components, targets, and pathways.

11.
Open Vet J ; 14(8): 2049-2056, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39308715

RESUMO

Background: Lead (Plumbum/Pb) has been identified as a potential cause of Parkinson's disease as well as possibly contributing to disease progression. Ginkgo biloba extract has been widely used to prevent and treat stroke which prevents brain cell apoptosis and neuroinflammation. This has been shown to be beneficial in cognitive recovery in stroke incidents. Aim: This study aimed to determine the effect of G. biloba on the expression of superoxide dismutase (SOD), malondialdehyde (MDA), and apoptosis-inducing factor (AIF) in the brain cells of rats (Rattus novergicus) exposed to Plumbum. Methods: The experimental animals used were 36 male white rats divided into 4 groups with different treatments of Plumbum and G. biloba at varying doses for 42 days, after which the brains were collected for examination of SOD, MDA, and AIF expressions using immunohistochemical methods and analyzed using analysis of variance and Duncan's test. Results: Plumbum administration caused a significant decrease in SOD expression and an increase in MDA and AIF expressions (p < 0.05). Ginkgo biloba administration significantly increased SOD expression and decreased MDA and AIF expressions (p < 0.05), with optimal increases in SOD, decreases in MDA, and modulation of AIF observed in the group exposed to 50 mg/kg BW Pb and 300 mg/kg BW G. biloba. Conclusion: Preventive administration of G biloba increased SOD expression, and reduced MDA and AIF expressions in Pb-exposed rats, with an optimal dose of 300 mg/kg BW, suggesting its potential as an affordable drug to prevent brain cell death-related diseases.


Assuntos
Apoptose , Encéfalo , Ginkgo biloba , Extratos Vegetais , Superóxido Dismutase , Animais , Ginkgo biloba/química , Masculino , Ratos , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Superóxido Dismutase/metabolismo , Malondialdeído/metabolismo , Fator de Indução de Apoptose/metabolismo , Extrato de Ginkgo
12.
Heliyon ; 10(18): e37811, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315214

RESUMO

Plant derived polysaccharides can enhance immune function in the human body, effectively prevent diseases, and reduce the probability of bacterial infections. Ginkgo crude polysaccharide (GCP) was obtained from Ginkgo biloba by ultrasonic-assisted hot water extraction. Our data showed that the best extraction conditions of GCP were as follows: extraction temperature 80 °C, ultrasonic time 35 min, extraction time 3 h, and solid‒liquid ratio 1:30. Fourier transform infrared spectrometer (FT-IR) data showed that this polysaccharide might be an acidic polysaccharide with a carboxylic acid ring structure. Further studies implied that GCP was mainly composed of glucose, galacturonic acid, rhamnose, galactose and arabinose, accounting for 39.45 %, 25.01 %, 15.40 %, 11.94 % and 4.25 %, respectively. 0.1, 1 and 10 mg/mL GCP reduced the release of inflammatory factors in RAW264.7 cells via inhibition of the nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) signalling pathway. GCP was separated into five components with different molecular weights by an ultrafiltration membrane. Our data showed that GPa with a molecular weight ≥100 kDa was the main component of GCP. 1 mg/mL GPa, GPb, GPc and GPd had anti-inflammatory activities, and 1 mg/mL GPa had the best anti-inflammatory activities. Our results preliminarily reveal the elements and biological activity of GCP, which will provide a reference for the development of Ginkgo biloba.

13.
Plants (Basel) ; 13(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39339550

RESUMO

Ginkgo biloba is an ancient plant that has survived up until the present day. Gingko biloba is a rich source of valuable secondary metabolites, particularly terpene trilactones (TTLs) such as ginkgolides and bilobalides, which are obtained from the leaves and seeds of the plant. TTLs have pharmacological properties, including anticancer, anti-dementia, antidepressant, antidiabetic, anti-inflammatory, anti-hypertensive, antiplatelet, immunomodulatory, and neuroprotective effects. However, ginkgo is a very-slow-growing tree that takes approximately 30 years to reach maturity. In addition, the accumulation of TTLs in these plants is affected by age, sex, and seasonal and geographical variations. Therefore, plant cell cultures have been established in ginkgo to produce TTLs. Extensive investigations have been conducted to optimize the culture media, growth regulators, nutrients, immobilization, elicitation, and precursor-feeding strategies for the production of TTLs in vitro. In addition, metabolic engineering and synthetic biology methods have been used for the heterologous production of TTLs. In this review, we present the research strategies applied to cell cultures for the production of TTLs.

14.
Nanotechnol Sci Appl ; 17: 189-210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346127

RESUMO

Purpose: Breast cancer is a significant global health issue, contributing to 15% of cancer-related deaths. Our laboratory has pioneered a novel approach, combining Ayurvedic principles with green nanotechnology, to develop a scientifically rigorous medical modality referred to as Nano-Ayurvedic Medicine, recently approved by the US Patents and Trademarks Office. Here in we report a new Nano-Ayurvedic medicine agent derived from gold nanoparticles encapsulated with phytochemicals from Ginkgo biloba plant (GB-AuNPs). Methods: We have developed biocompatible gold nanoparticles using electron-rich phytochemicals from Ginkgo biloba as reducing agent cocktail. Ginkgo biloba phytochemical-encapsulated gold nanoparticles (GB-AuNPs) were fully characterized, and their anticancer activity, including immunomodulatory profiles, were evaluated against breast (MDAMB-231) cancer cell lines. Results: Characterization revealed spherical morphology for GB-AuNPs and possessed optimum in vitro stability through high zeta potential of -34 mV for optimum in vivo stability. The core size of GB-AuNPs of 19 nm allows for penetration into tumor cells through both EPR effects as well as through the receptor-mediated endocytosis. The Antitumor efficacy of this nano-ayurvedic medicine agent revealed strong antitumor effects of GB-AuNPs towards MDAMB-231. Our investigations reveal that GB-AuNPs enhance anti-tumor cytokines (IL-12, TNF-α, IFN-γ) and reduce pro-tumor cytokines (IL-10, IL-6), promoting the conversion of protumor M2 macrophages into M1-like macrophage antitumor phenotype. Cellular studies show that GB-AuNPs offer superior anti-tumor efficacy and a better safety profile against breast tumors compared to cisplatin. Conclusion: Our investigations have demonstrated that the nano-ayurvedic medicine agent, GB-AuNPs, treats cancers through an immunomodulatory mechanism facilitated by elevated levels of anti-tumor cytokines (TNF-α, IFN-γ and IL-12) with concomitant downregulation of pro-tumor cytokines expression (IL-6 and IL-10). The green nanotechnology approach for the development of nano-ayurvedic medicine agent (GB-AuNPs), as described in this paper, presents new and attractive opportunities for treating human cancers and other debilitating diseases and disorders.

15.
J Drug Target ; : 1-14, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39133517

RESUMO

Nanotechnology has significantly impacted human life, particularly in overcoming the limitations associated with neurodegenerative diseases (NDs). Various nanostructures and vehicle systems, such as polymer nanoparticles, carbon nanotubes (CNTs), nanoliposomes, nano-micelles, lipid nanoparticles, lactoferrin, polybutylcyanoacrylate, and poly lactic-co-glycolic acid, have been shown to enhance drug efficacy, reduce side effects, and improve pharmacokinetics. NDs affect millions worldwide and are challenging to treat due to the blood-brain barrier (BBB), which hinders drug delivery to the central nervous system (CNS). Research suggests that natural ingredients can be formulated into nanoparticles, offering a promising approach for ND treatment. This review examines the advantages and disadvantages of herbal-based nanoformulations, highlighting their potential effectiveness when used alone or in combination with other medications. Herbal nanoparticles provide benefits over synthetic ones due to their biocompatibility, reduced toxicity, and potential for synergistic effects. The study's findings can be applied to develop more efficient drug delivery systems, improving the treatment of NDs by enhancing drug penetration across the BBB and targeting affected CNS areas more precisely.

16.
Biomed Chromatogr ; : e5980, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189506

RESUMO

The antioxidant activity of Ginkgo biloba leaf (GBL) extract is closely related to its efficacy against various diseases; however, the antioxidant activities of the specific constituents of GBL remain unclear. In this study, 194 GBL constituents were identified using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry, including 97 flavonoids, 37 terpenoids, 29 lignans, 19 carboxylic acids, 5 alkylphenolic acids, 5 alkylphenols, and 2 other compounds. The cleavage rules of the main constituents of GBL were dissected in detail. The 36 GBL constituents with high antioxidant activity were subsequently discovered using the oxygen radical absorbance capacity assay, including 30 flavonoids and six carboxylic acids. Finally, an HPLC analysis method was established to determine the content of the nine major antioxidants in the three batches of GBL. Among them, kaempferol 3-O-ß-D-(6″-p-coumaroyl) glucopyranosyl-(1-2)-α-L-rhamnopyranoside, kaempferol-3-O-rutinoside, and rutin exhibited high antioxidant activity and were found in significant amounts in GBL, with concentrations greater than 0.7 mg/g. These results provide an important reference for the development of pharmaceuticals and health products containing GBL.

17.
Front Plant Sci ; 15: 1367121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086912

RESUMO

Introduction: The research on plant leaf morphology is of great significance for understanding the development and evolution of plant organ morphology. As a relict plant, the G. biloba leaf morphology typically exhibits bifoliate and peltate forms. However, throughout its long evolutionary history, Ginkgo leaves have undergone diverse changes. Methods: This study focuses on the distinct "trumpet" leaves and normal fan-shaped leaves of G. biloba for analysis of their phenotypes, photosynthetic activity, anatomical observations, as well as transcriptomic and metabolomic analyses. Results: The results showed that trumpet-shaped G. biloba leaves have fewer cells, significant morphological differences between dorsal and abaxial epidermal cells, leading to a significantly lower net photosynthetic rate. Additionally, this study found that endogenous plant hormones such as GA, auxin, and JA as well as metabolites such as flavonoids and phenolic acids play roles in the formation of trumpet-shaped G. biloba leaves. Moreover, the experiments revealed the regulatory mechanisms of various key biological processes and gene expressions in the trumpet-shaped leaves of G. biloba. Discussion: Differences in the dorsal and abdominal cells of G. biloba leaves can cause the leaf to curl, thus reducing the overall photosynthetic efficiency of the leaves. However, the morphology of plant leaves is determined during the primordia leaf stage. In the early stages of leaf development, the shoot apical meristem (SAM) determines the developmental morphology of dicotyledonous plant leaves. This process involves the activity of multiple gene families and small RNAs. The establishment of leaf morphology is complexly regulated by various endogenous hormones, including the effect of auxin on cell walls. Additionally, changes in intracellular ion concentrations, such as fluctuations in Ca2+ concentration, also affect cell wall rigidity, thereby influencing leaf growth morphology.

18.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3784-3795, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099352

RESUMO

Based on high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS~E) and molecular docking technique, bitter compounds of Ginkgo biloba extract(GBE) were characterized, and their relationship with bitter efficacy was investigated. Firstly, UPLC-Q-TOF-MS~E was used for qualitative analysis of GBE components, and 60 chemical components were identified. These chemical components were molecular-docked with bitter receptors, and 26 bitter substances were selected, mainly flavonoids. Secondly, sensory and electronic tongue bitterness evaluation techniques were used to verify that total flavones of GBE were the main bitter substances, which was consistent with the molecular docking results. Finally, network pharmacology was used to predict and analyze bitter substances. The relationship between the target of bitter substance and bitter effect was explored. The key targets of bitter substances are CYP2B6, ALOX15, and PTGS2, etc., and bitter substances may exert a bitter efficacy by ac-ting on related disease targets, indicating that bitter substances of GBE are the material basis of the bitter effect. In summary, the study indicated that the molecular docking technique had a guiding effect on the screening of bitter substances in traditianal Chinese medicine(TCM), and bitter substances of GBE had a bitter efficacy. It provides ideas and references for the study of the "taste-efficacy relationship" of TCM in the future.


Assuntos
Ginkgo biloba , Simulação de Acoplamento Molecular , Extratos Vegetais , Espectrometria de Massas em Tandem , Paladar , Ginkgo biloba/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Extrato de Ginkgo
19.
Front Neurol ; 15: 1402978, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144706

RESUMO

Objectives: We aimed to evaluate the drug utilization of Ginkgo biloba extract (Gbe), systemic corticosteroids (CSs), and pentoxifylline (PTXF) for the treatment of acute tinnitus by analyzing electronic patient health record data. In addition, we assessed whether the different drug treatments were associated with different frequencies of repeat visits to ear, nose, and throat (ENT) doctors. Methods: This retrospective cohort study used data from the IQVIA Disease Analyzer (DA) database. It included patients with an initial diagnosis of tinnitus between January 2005 and December 2021, treated by ENT specialists in Germany. Results: Of 111,629 patients meeting all selection criteria, 51,205 received prescriptions of Gbe, 34,817 of systemic CSs, and 25,607 of PTXF. Gbe prescription was associated with significantly lower odds of a repeat consultation due to tinnitus compared to systemic CSs [odds ratio (OR) 0.91; 95% confidence interval (CI): 0.88-0.95] as well as PTXF (OR 0.74; 95% CI: 0.72-0.77). This association was significant in both men and women and in some age groups. Conclusion: Gbe is the most frequently ENT specialist-prescribed drug for the treatment of acute tinnitus. It is associated with a reduced likelihood of patients consulting their ENT specialist for tinnitus again compared to systemic CSs and PTXF.

20.
Plants (Basel) ; 13(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124240

RESUMO

Ginkgo biloba is abundant in secondary metabolites, including flavonoids and terpenoids. While the majority of research has focused on the role of these compounds in disease resistance, their specific contribution to pathogen defense has been rarely explored. In this study, we collected root exudates from hydroponically cultivated ginkgo seedlings and conducted a metabolomic analysis. We identified several primary metabolites mainly comprising amino acids and nucleotides, while secondary metabolites consisted of various compounds, including bioactive compounds such as flavonoids and terpenoids. Focusing on the secondary metabolites with relatively higher abundance in the exudates, we selected a mixture of flavonoids and terpenoids for in vitro inhibition experiments against two soil-borne fungal pathogens, Fusarium oxysporum f. sp. cucumerinum that causes cucumber wilt and Rhizoctonia solani AG-8 that causes wheat root rot. The results indicated that the growth rate of both fungus cells was significantly reduced with the increasing concentration of the flavonoid and terpenoid mixture extracted from ginkgo and was completely inhibited at a concentration of 5 mg/mL. Further experiments revealed that this mixture of flavonoids and terpenoids had a destructive effect on the cellular structure of both fungi, thereby reducing cell viability and achieving an antifungal effect. These findings provide a foundation for further research into the use of ginkgo extracts in biological control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA