Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123987

RESUMO

The agile remote sensing satellite scheduling problem (ARSSSP) for large-scale tasks needs to simultaneously address the difficulties of complex constraints and a huge solution space. Taking inspiration from the quantum genetic algorithm (QGA), a multi-adaptive strategies-based higher-order quantum genetic algorithm (MAS-HOQGA) is proposed for solving the agile remote sensing satellites scheduling problem in this paper. In order to adapt to the requirements of engineering applications, this study combines the total task number and the total task priority as the optimization goal of the scheduling scheme. Firstly, we comprehensively considered the time-dependent characteristics of agile remote sensing satellites, attitude maneuverability, energy balance, and data storage constraints and established a satellite scheduling model that integrates multiple constraints. Then, quantum register operators, adaptive evolution operations, and adaptive mutation transfer operations were introduced to ensure global optimization while reducing time consumption. Finally, this paper demonstrated, through computational experiments, that the MAS-HOQGA exhibits high computational efficiency and excellent global optimization ability in the scheduling process of agile remote sensing satellites for large-scale tasks, while effectively avoiding the problem that the traditional QGA has, namely low solution efficiency and the tendency to easily fall into local optima. This method can be considered for application to the engineering practice of agile remote sensing satellite scheduling for large-scale tasks.

2.
J Comput Chem ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152778

RESUMO

We have developed a global optimization program named PGA based on particle swarm optimization algorithm coupled with genetic operators for the structures of atomic clusters. The effectiveness and efficiency of the PGA program can be demonstrated by efficiently obtaining the tetrahedral Au20 and double-ring tubular B20, and identifying the ground state ZrSi 17 - 20 - $$ {\mathrm{ZrSi}}_{17\hbox{--} 20}^{-} $$ clusters through the comparison between the simulated and the experimental photoelectron spectra (PESs). Then, the PGA was applied to search for the global minimum structures of Mg n - $$ {\mathrm{Mg}}_n^{-} $$ (n = 3-30) clusters, new structures have been found for sizes n = 6, 7, 12, 14, and medium-sized 21-30 were first determined. The high consistency between the simulated spectra and the experimental ones once again demonstrates the efficiency of the PGA program. Based on the ground-state structures of these Mg n - $$ {\mathrm{Mg}}_n^{-} $$ (n = 3-30) clusters, their structural evolution and electronic properties were subsequently explored. The performance on Au20, B20, ZrSi 17 - 20 - $$ {\mathrm{ZrSi}}_{17\hbox{--} 20}^{-} $$ , and Mg n - $$ {\mathrm{Mg}}_n^{-} $$ (n = 3-30) clusters indicates the promising potential of the PGA program for exploring the global minima of other clusters. The code is available for free upon request.

3.
Neural Netw ; 179: 106525, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39042949

RESUMO

In this paper, two two-timescale projection neural networks are proposed based on the majorization-minimization principle for nonconvex optimization and distributed nonconvex optimization. They are proved to be globally convergent to Karush-Kuhn-Tucker points. A collaborative neurodynamic approach leverages multiple two-timescale projection neural networks repeatedly re-initialized using a meta-heuristic rule for global optimization and distributed global optimization. Two numerical examples are elaborated to demonstrate the efficacy of the proposed approaches.

4.
Sci Rep ; 14(1): 15701, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977743

RESUMO

As countries attach importance to environmental protection, clean energy has become a hot topic. Among them, solar energy, as one of the efficient and easily accessible clean energy sources, has received widespread attention. An essential component in converting solar energy into electricity are solar cells. However, a major optimization difficulty remains in precisely and effectively calculating the parameters of photovoltaic (PV) models. In this regard, this study introduces an improved rime optimization algorithm (RIME), namely ERINMRIME, which integrates the Nelder-Mead simplex (NMs) with the environment random interaction (ERI) strategy. In the later phases of ERINMRIME, the ERI strategy serves as a complementary mechanism for augmenting the solution space exploration ability of the agent. By facilitating external interactions, this method improves the algorithm's efficacy in conducting a global search by keeping it from becoming stuck in local optima. Moreover, by incorporating NMs, ERINMRIME enhances its ability to do local searches, leading to improved space exploration. To evaluate ERINMRIME's optimization performance on PV models, this study conducted experiments on four different models: the single diode model (SDM), the double diode model (DDM), the three-diode model (TDM), and the photovoltaic (PV) module model. The experimental results show that ERINMRIME reduces root mean square error for SDM, DDM, TDM, and PV module models by 46.23%, 59.32%, 61.49%, and 23.95%, respectively, compared with the original RIME. Furthermore, this study compared ERINMRIME with nine improved classical algorithms. The results show that ERINMRIME is a remarkable competitor. Ultimately, this study evaluated the performance of ERINMRIME across three distinct commercial PV models, while considering varying irradiation and temperature conditions. The performance of ERINMRIME is superior to existing similar algorithms in different irradiation and temperature conditions. Therefore, ERINMRIME is an algorithm with great potential in identifying and recognizing unknown parameters of PV models.

5.
Materials (Basel) ; 17(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063830

RESUMO

Fly ash-slag-based alkali-activated materials have excellent mechanical performance and a low carbon footprint, and they have emerged as a promising alternative to Portland cement. Therefore, replacing traditional Portland cement with slag-desulfurization gypsum-based alkali-activated materials will help to make better use of the waste, protect the environment, and improve the materials' performance. In order to better understand it and thus better use it in engineering, it needs to be characterized for performance and compositional design. This study developed a novel framework for performance characterization and composition design by combining Categorical Gradient Boosting (CatBoost), simplicial homology global optimization (SHGO), and laboratory tests. The CatBoost characterization model was evaluated and discussed based on SHapley Additive exPlanations (SHAPs) and a partial dependence plot (PDP). Through the proposed framework, the optimal composition of the slag-desulfurization gypsum-based alkali-activated materials with the maximum flexural strength and compressive strength at 1, 3, and 7 days is Ca(OH)2: 3.1%, fly ash: 2.6%, DG: 0.53%, alkali: 4.3%, modulus: 1.18, and W/G: 0.49. Compared with the material composition obtained from the traditional experiment, the actual flexural strength and compressive strength at 1, 3, and 7 days increased by 26.67%, 6.45%, 9.64%, 41.89%, 9.77%, and 7.18%, respectively. In addition, the results of the optimal composition obtained by laboratory tests are very close to the predictions of the developed framework, which shows that CatBoost characterizes the performance well based on test data. The developed framework provides a reasonable, scientific, and helpful way to characterize the performance and determine the optimal composition for civil materials.

6.
Comput Biol Med ; 178: 108780, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909447

RESUMO

Colon adenocarcinoma (COAD) is a type of colon cancers with a high mortality rate. Its early symptoms are not obvious, and its late stage is accompanied by various complications that seriously endanger patients' lives. To assist in the early diagnosis of COAD and improve the detection efficiency of COAD, this paper proposes a multi-level threshold image segmentation (MIS) method based on an enhanced particle swarm algorithm for segmenting COAD images. Firstly, this paper proposes a multi-strategy fusion particle swarm optimization algorithm (DRPSO) with a replacement mechanism. The non-linear inertia weight and sine-cosine learning factors in DRPSO help balance the exploration and exploitation phases of the algorithm. The population reorganization strategy incorporating MGO enhances population diversity and effectively prevents the algorithm from stagnating prematurely. The mutation-based final replacement mechanism enhances the algorithm's ability to escape local optima and helps the algorithm to obtain highly accurate solutions. In addition, comparison experiments on the CEC2020 and CEC2022 test sets show that DRPSO outperforms other state-of-the-art algorithms in terms of convergence accuracy and speed. Secondly, by combining the non-local mean 2D histogram and 2D Renyi entropy, this paper proposes a DRPSO algorithm based MIS method, which is successfully applied to the segments the COAD pathology image problem. The results of segmentation experiments show that the above method obtains relatively higher quality segmented images with superior performance metrics: PSNR = 23.556, SSIM = 0.825, and FSIM = 0.922. In conclusion, the MIS method based on the DRPSO algorithm shows great potential in assisting COAD diagnosis and in pathology image segmentation.


Assuntos
Algoritmos , Neoplasias do Colo , Humanos , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Processamento de Imagem Assistida por Computador/métodos
7.
Biomimetics (Basel) ; 9(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38921214

RESUMO

As the fields of engineering, energy, and geology become increasingly complex, decision makers face escalating challenges that require skilled solutions to meet practical production needs. Evolutionary algorithms, inspired by biological evolution, have emerged as powerful methods for tackling intricate optimization problems without relying on gradient data. Among these, the tree-seed algorithm (TSA) distinguishes itself due to its unique mechanism and efficient searching capabilities. However, an imbalance between its exploitation and exploration phases can lead it to be stuck in local optima, impeding the discovery of globally optimal solutions. This study introduces an improved TSA that incorporates water-cycling and quantum rotation-gate mechanisms. These enhancements assist the algorithm in escaping local peaks and achieving a more harmonious balance between its exploitation and exploration phases. Comparative experimental evaluations, using the CEC 2017 benchmarks and a well-known metaheuristic algorithm, demonstrate the upgraded algorithm's faster convergence rate and enhanced ability to locate global optima. Additionally, its application in optimizing reservoir production models underscores its superior performance compared to competing methods, further validating its real-world optimization capabilities.

8.
Artif Intell Med ; 153: 102886, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749310

RESUMO

Tuberculous pleural effusion poses a significant threat to human health due to its potential for severe disease and mortality. Without timely treatment, it may lead to fatal consequences. Therefore, early identification and prompt treatment are crucial for preventing problems such as chronic lung disease, respiratory failure, and death. This study proposes an enhanced differential evolution algorithm based on colony predation and dispersed foraging strategies. A series of experiments conducted on the IEEE CEC 2017 competition dataset validated the global optimization capability of the method. Additionally, a binary version of the algorithm is introduced to assess the algorithm's ability to address feature selection problems. Comprehensive comparisons of the effectiveness of the proposed algorithm with 8 similar algorithms were conducted using public datasets with feature sizes ranging from 10 to 10,000. Experimental results demonstrate that the proposed method is an effective feature selection approach. Furthermore, a predictive model for tuberculous pleural effusion is established by integrating the proposed algorithm with support vector machines. The performance of the proposed model is validated using clinical records collected from 140 tuberculous pleural effusion patients, totaling 10,780 instances. Experimental results indicate that the proposed model can identify key correlated indicators such as pleural effusion adenosine deaminase, temperature, white blood cell count, and pleural effusion color, aiding in the clinical feature analysis of tuberculous pleural effusion and providing early warning for its treatment and prediction.


Assuntos
Algoritmos , Derrame Pleural , Máquina de Vetores de Suporte , Tuberculose Pleural , Humanos , Derrame Pleural/microbiologia , Tuberculose Pleural/diagnóstico , Adenosina Desaminase/metabolismo , Contagem de Leucócitos
9.
Comput Biol Med ; 176: 108498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744011

RESUMO

With advancements in science and technology, the depth of human research on COVID-19 is increasing, making the investigation of medical images a focal point. Image segmentation, a crucial step preceding image processing, holds significance in the realm of medical image analysis. Traditional threshold image segmentation proves to be less efficient, posing challenges in selecting an appropriate threshold value. In response to these issues, this paper introduces Inner-based multi-strategy particle swarm optimization (IPSOsono) for conducting numerical experiments and enhancing threshold image segmentation in COVID-19 medical images. A novel dynamic oscillatory weight, derived from the PSO variant for single-objective numerical optimization (PSOsono) is incorporated. Simultaneously, the historical optimal positions of individuals in the particle swarm undergo random updates, diminishing the likelihood of algorithm stagnation and local optima. Moreover, an inner selection learning mechanism is proposed in the update of optimal positions, dynamically refining the global optimal solution. In the CEC 2013 benchmark test, PSOsono demonstrates a certain advantage in optimization capability compared to algorithms proposed in recent years, proving the effectiveness and feasibility of PSOsono. In the Minimum Cross Entropy threshold segmentation experiments for COVID-19, PSOsono exhibits a more prominent segmentation capability compared to other algorithms, showing good generalization across 6 CT images and further validating the practicality of the algorithm.


Assuntos
Algoritmos , COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina
10.
Waste Manag ; 184: 28-36, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795538

RESUMO

Carbon fiber-reinforced polymer composites (CFRPs) have gained widespread usage due to their promising physiochemical properties, while this causes large amounts of waste CFRPs worldwide. In this study, carbon fibers were successfully recovered from waste CFRPs through the pyrolysis-oxidation method, and the recovered fibers were reused in remanufacturing the secondary generation CFRPs. Moreover, the individual and interactive effects of pyrolysis-oxidation recovering parameters on the mechanical strength of the resulting remanufactured CFRPs (reCFRPs) were investigated. The recovered carbon fibers displayed surface chemical structures similar to virgin fibers but with high contents of oxygen-containing bonds. The tensile strength retention (TSR) of the reCFRPs was primarily influenced by oxidation temperature. Notably, a higher oxidation temperature, especially exceeding 560 °C, amplified the impact of oxidation duration on the TSR value. Similarly, concerning interlaminar shear strength retention (ISSR), the oxidation stage had a more substantial effect compared to the pyrolysis stage. As the oxidation temperature increased from 500 °C to 600 °C, the ISSR value initially increased and then decreased, irrespective of variations in pyrolysis parameters. Additionally, through integrating the response surface methodology (RSM) analysis and multi-island genetic algorithm (MIGA) global optimization, three recovery strategies, along with the corresponding processing parameters, were proposed to meet diverse requirements. The conclusions could provide valuable insights for optimizing the recovery and reuse of carbon fibers from waste CFRPs.


Assuntos
Fibra de Carbono , Oxirredução , Pirólise , Reciclagem , Fibra de Carbono/química , Reciclagem/métodos , Resistência à Tração , Polímeros/química , Carbono/química
11.
Sci Rep ; 14(1): 10081, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698032

RESUMO

Utilization of optimization technique is a must in the design of contemporary antenna systems. Often, global search methods are necessary, which are associated with high computational costs when conducted at the level of full-wave electromagnetic (EM) models. In this study, we introduce an innovative method for globally optimizing reflection responses of multi-band antennas. Our approach uses surrogates constructed based on response features, smoothing the objective function landscape processed by the algorithm. We begin with initial parameter space screening and surrogate model construction using coarse-discretization EM analysis. Subsequently, the surrogate evolves iteratively into a co-kriging model, refining itself using accumulated high-fidelity EM simulation results, with the infill criterion focusing on minimizing the predicted objective function. Employing a particle swarm optimizer (PSO) as the underlying search routine, extensive verification case studies showcase the efficiency and superiority of our procedure over benchmarks. The average optimization cost translates to just around ninety high-fidelity EM antenna analyses, showcasing excellent solution repeatability. Leveraging variable-resolution simulations achieves up to a seventy percent speedup compared to the single-fidelity algorithm.

12.
J Optim Theory Appl ; 201(2): 583-608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736457

RESUMO

Efficient global optimization is a widely used method for optimizing expensive black-box functions. In this paper, we study the worst-case oracle complexity of the efficient global optimization problem. In contrast to existing kernel-specific results, we derive a unified lower bound for the oracle complexity of efficient global optimization in terms of the metric entropy of a ball in its corresponding reproducing kernel Hilbert space. Moreover, we show that this lower bound nearly matches the upper bound attained by non-adaptive search algorithms, for the commonly used squared exponential kernel and the Matérn kernel with a large smoothness parameter ν. This matching is up to a replacement of d/2 by d and a logarithmic term logRϵ, where d is the dimension of input space, R is the upper bound for the norm of the unknown black-box function, and ϵ is the desired accuracy. That is to say, our lower bound is nearly optimal for these kernels.

13.
Comput Biol Med ; 175: 108447, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691912

RESUMO

Deep vein thrombosis (DVT) represents a critical health concern due to its potential to lead to pulmonary embolism, a life-threatening complication. Early identification and prediction of DVT are crucial to prevent thromboembolic events and implement timely prophylactic measures in high-risk individuals. This study aims to examine the risk determinants associated with acute lower extremity DVT in hospitalized individuals. Additionally, it introduces an innovative approach by integrating Q-learning augmented colony predation search ant colony optimizer (QL-CPSACO) into the analysis. This algorithm, then combined with support vector machines (SVM), forms a bQL-CPSACO-SVM feature selection model dedicated to crafting a clinical risk prognostication model for DVT. The effectiveness of the proposed algorithm's optimization and the model's accuracy are assessed through experiments utilizing the CEC 2017 benchmark functions and predictive analyses on the DVT dataset. The experimental results reveal that the proposed model achieves an outstanding accuracy of 95.90% in predicting DVT. Key parameters such as D-dimer, normal plasma prothrombin time, prothrombin percentage activity, age, previously documented DVT, leukocyte count, and thrombocyte count demonstrate significant value in the prognostication of DVT. The proposed method provides a basis for risk assessment at the time of patient admission and offers substantial guidance to physicians in making therapeutic decisions.


Assuntos
Máquina de Vetores de Suporte , Trombose Venosa , Humanos , Feminino , Masculino , Algoritmos , Pessoa de Meia-Idade , Hospitalização , Idoso , Fatores de Risco , Medição de Risco , Adulto
14.
J Biomech ; 166: 112066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38574563

RESUMO

Precise measurement of joint-level motion from stereo-radiography facilitates understanding of human movement. Conventional procedures for kinematic tracking require significant manual effort and are time intensive. The current work introduces a method for fully automatic tracking of native knee kinematics from stereo-radiography sequences. The framework consists of three computational steps. First, biplanar radiograph frames are annotated with segmentation maps and key points using a convolutional neural network. Next, initial bone pose estimates are acquired by solving a polynomial optimization problem constructed from annotated key points and anatomic landmarks from digitized models. A semidefinite relaxation is formulated to realize the global minimum of the non-convex problem. Pose estimates are then refined by registering computed tomography-based digitally reconstructed radiographs to masked radiographs. A novel rendering method is also introduced which enables generating digitally reconstructed radiographs from computed tomography scans with inconsistent slice widths. The automatic tracking framework was evaluated with stereo-radiography trials manually tracked with model-image registration, and with frames which capture a synthetic leg phantom. The tracking method produced pose estimates which were consistently similar to manually tracked values; and demonstrated pose errors below 1.0 degree or millimeter for all femur and tibia degrees of freedom in phantom trials. Results indicate the described framework may benefit orthopaedics and biomechanics applications through acceleration of kinematic tracking.


Assuntos
Articulação do Joelho , Joelho , Humanos , Fenômenos Biomecânicos , Radiografia , Articulação do Joelho/diagnóstico por imagem , Joelho/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos
15.
Ann Biomed Eng ; 52(6): 1591-1603, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558356

RESUMO

Kinematic tracking of native anatomy from stereo-radiography provides a quantitative basis for evaluating human movement. Conventional tracking procedures require significant manual effort and call for acquisition and annotation of subject-specific volumetric medical images. The current work introduces a framework for fully automatic tracking of native knee anatomy from dynamic stereo-radiography which forgoes reliance on volumetric scans. The method consists of three computational steps. First, captured radiographs are annotated with segmentation maps and anatomic landmarks using a convolutional neural network. Next, a non-convex polynomial optimization problem formulated from annotated landmarks is solved to acquire preliminary anatomy and pose estimates. Finally, a global optimization routine is performed for concurrent refinement of anatomy and pose. An objective function is maximized which quantifies similarities between masked radiographs and digitally reconstructed radiographs produced from statistical shape and intensity models. The proposed framework was evaluated against manually tracked trials comprising dynamic activities, and additional frames capturing a static knee phantom. Experiments revealed anatomic surface errors routinely below 1.0 mm in both evaluation cohorts. Median absolute errors of individual bone pose estimates were below 1.0 ∘ or mm for 15 out of 18 degrees of freedom in both evaluation cohorts. Results indicate that accurate pose estimation of native anatomy from stereo-radiography may be performed with significantly reduced manual effort, and without reliance on volumetric scans.


Assuntos
Joelho , Humanos , Joelho/diagnóstico por imagem , Joelho/anatomia & histologia , Joelho/fisiologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/fisiologia , Imagens de Fantasmas , Radiografia , Modelos Estatísticos
16.
Sci Rep ; 14(1): 8599, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615048

RESUMO

Modern medicine has produced large genetic datasets of high dimensions through advanced gene sequencing technology, and processing these data is of great significance for clinical decision-making. Gene selection (GS) is an important data preprocessing technique that aims to select a subset of feature information to improve performance and reduce data dimensionality. This study proposes an improved wrapper GS method based on forensic-based investigation (FBI). The method introduces the search mechanism of the slime mould algorithm in the FBI to improve the original FBI; the newly proposed algorithm is named SMA_FBI; then GS is performed by converting the continuous optimizer to a binary version of the optimizer through a transfer function. In order to verify the superiority of SMA_FBI, experiments are first executed on the 30-function test set of CEC2017 and compared with 10 original algorithms and 10 state-of-the-art algorithms. The experimental results show that SMA_FBI is better than other algorithms in terms of finding the optimal solution, convergence speed, and robustness. In addition, BSMA_FBI (binary version of SMA_FBI) is compared with 8 binary algorithms on 18 high-dimensional genetic data from the UCI repository. The results indicate that BSMA_FBI is able to obtain high classification accuracy with fewer features selected in GS applications. Therefore, SMA_FBI is considered an optimization tool with great potential for dealing with global optimization problems, and its binary version, BSMA_FBI, can be used for GS tasks.


Assuntos
Algoritmos , Physarum polycephalum , Tomada de Decisão Clínica , Técnicas Genéticas , Tecnologia
17.
Biomimetics (Basel) ; 9(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667215

RESUMO

In today's fast-paced and ever-changing environment, the need for algorithms with enhanced global optimization capability has become increasingly crucial due to the emergence of a wide range of optimization problems. To tackle this issue, we present a new algorithm called Random Particle Swarm Optimization (RPSO) based on cosine similarity. RPSO is evaluated using both the IEEE Congress on Evolutionary Computation (CEC) 2022 test dataset and Convolutional Neural Network (CNN) classification experiments. The RPSO algorithm builds upon the traditional PSO algorithm by incorporating several key enhancements. Firstly, the parameter selection is adapted and a mechanism called Random Contrastive Interaction (RCI) is introduced. This mechanism fosters information exchange among particles, thereby improving the ability of the algorithm to explore the search space more effectively. Secondly, quadratic interpolation (QI) is incorporated to boost the local search efficiency of the algorithm. RPSO utilizes cosine similarity for the selection of both QI and RCI, dynamically updating population information to steer the algorithm towards optimal solutions. In the evaluation using the CEC 2022 test dataset, RPSO is compared with recent variations of Particle Swarm Optimization (PSO) and top algorithms in the CEC community. The results highlight the strong competitiveness and advantages of RPSO, validating its effectiveness in tackling global optimization tasks. Additionally, in the classification experiments with optimizing CNNs for medical images, RPSO demonstrated stability and accuracy comparable to other algorithms and variants. This further confirms the value and utility of RPSO in improving the performance of CNN classification tasks.

18.
Comput Biol Med ; 175: 108437, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669732

RESUMO

Gastric cancer (GC), characterized by its inconspicuous initial symptoms and rapid invasiveness, presents a formidable challenge. Overlooking postoperative intervention opportunities may result in the dissemination of tumors to adjacent areas and distant organs, thereby substantially diminishing prospects for patient survival. Consequently, the prompt recognition and management of GC postoperative recurrence emerge as a matter of paramount urgency to mitigate the deleterious implications of the ailment. This study proposes an enhanced feature selection model, bRSPSO-FKNN, integrating boosted particle swarm optimization (RSPSO) with fuzzy k-nearest neighbor (FKNN), for predicting GC. It incorporates the Runge-Kutta search, for improved model accuracy, and Gaussian sampling, enhancing the search performance and helping to avoid locally optimal solutions. It outperforms the sophisticated variants of particle swarm optimization when evaluated in the CEC 2014 test suite. Furthermore, the bRSPSO-FKNN feature selection model was introduced for GC recurrence prediction analysis, achieving up to 82.082 % and 86.185 % accuracy and specificity, respectively. In summation, this model attains a notable level of precision, poised to ameliorate the early warning system for GC recurrence and, in turn, advance therapeutic options for afflicted patients.


Assuntos
Recidiva Local de Neoplasia , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Humanos , Algoritmos , Distribuição Normal
19.
Math Biosci Eng ; 21(3): 3910-3943, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38549313

RESUMO

The grey wolf optimization algorithm (GWO) is a new metaheuristic algorithm. The GWO has the advantages of simple structure, few parameters to adjust, and high efficiency, and has been applied in various optimization problems. However, the orginal GWO search process is guided entirely by the best three wolves, resulting in low population diversity, susceptibility to local optima, slow convergence rate, and imbalance in development and exploration. In order to address these shortcomings, this paper proposes an adaptive dynamic self-learning grey wolf optimization algorithm (ASGWO). First, the convergence factor was segmented and nonlinearized to balance the global search and local search of the algorithm and improve the convergence rate. Second, the wolves in the original GWO approach the leader in a straight line, which is too simple and ignores a lot of information on the path. Therefore, a dynamic logarithmic spiral that nonlinearly decreases with the number of iterations was introduced to expand the search range of the algorithm in the early stage and enhance local development in the later stage. Then, the fixed step size in the original GWO can lead to algorithm oscillations and an inability to escape local optima. A dynamic self-learning step size was designed to help the algorithm escape from local optima and prevent oscillations by reasonably learning the current evolution success rate and iteration count. Finally, the original GWO has low population diversity, which makes the algorithm highly susceptible to becoming trapped in local optima. A novel position update strategy was proposed, using the global optimum and randomly generated positions as learning samples, and dynamically controlling the influence of learning samples to increase population diversity and avoid premature convergence of the algorithm. Through comparison with traditional algorithms, such as GWO, PSO, WOA, and the new variant algorithms EOGWO and SOGWO on 23 classical test functions, ASGWO can effectively improve the convergence accuracy and convergence speed, and has a strong ability to escape from local optima. In addition, ASGWO also has good performance in engineering problems (gear train problem, ressure vessel problem, car crashworthiness problem) and feature selection.

20.
Biomimetics (Basel) ; 9(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534871

RESUMO

The Artificial Electric Field Algorithm (AEFA) stands out as a physics-inspired metaheuristic, drawing inspiration from Coulomb's law and electrostatic force; however, while AEFA has demonstrated efficacy, it can face challenges such as convergence issues and suboptimal solutions, especially in high-dimensional problems. To overcome these challenges, this paper introduces a modified version of AEFA, named mAEFA, which leverages the capabilities of Lévy flights, simulated annealing, and the Adaptive s-best Mutation and Natural Survivor Method (NSM) mechanisms. While Lévy flights enhance exploration potential and simulated annealing improves search exploitation, the Adaptive s-best Mutation and Natural Survivor Method (NSM) mechanisms are employed to add more diversity. The integration of these mechanisms in AEFA aims to expand its search space, enhance exploration potential, avoid local optima, and achieve improved performance, robustness, and a more equitable equilibrium between local intensification and global diversification. In this study, a comprehensive assessment of mAEFA is carried out, employing a combination of quantitative and qualitative measures, on a diverse range of 29 intricate CEC'17 constraint benchmarks that exhibit different characteristics. The practical compatibility of the proposed mAEFA is evaluated on five engineering benchmark problems derived from the civil, mechanical, and industrial engineering domains. Results from the mAEFA algorithm are compared with those from seven recently introduced metaheuristic algorithms using widely adopted statistical metrics. The mAEFA algorithm outperforms the LCA algorithm in all 29 CEC'17 test functions with 100% superiority and shows better results than SAO, GOA, CHIO, PSO, GSA, and AEFA in 96.6%, 96.6%, 93.1%, 86.2%, 82.8%, and 58.6% of test cases, respectively. In three out of five engineering design problems, mAEFA outperforms all the compared algorithms, securing second place in the remaining two problems. Results across all optimization problems highlight the effectiveness and robustness of mAEFA compared to baseline metaheuristics. The suggested enhancements in AEFA have proven effective, establishing competitiveness in diverse optimization problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA