Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
Plants (Basel) ; 13(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931091

RESUMO

Glutamine synthetase (GS) is a key enzyme involved in nitrogen metabolism. GS can be divided into cytosolic and plastidic subtypes and has been reported to respond to various biotic and abiotic stresses. However, little research has been reported on the function of GS in mulberry. In this study, the full length of MaGS2 was cloned, resulting in 1302 bp encoding 433 amino acid residues. MaGS2 carried the typical GS2 motifs and clustered with plastidic-subtype GSs in the phylogenetic analysis. MaGS2 localized in chloroplasts, demonstrating that MaGS2 is a plastidic GS. The expression profile showed that MaGS2 is highly expressed in sclerotiniose pathogen-infected fruit and sclerotiniose-resistant fruit, demonstrating that MaGS2 is associated with the response to sclerotiniose in mulberry. Furthermore, the overexpression of MaGS2 in tobacco decreased the resistance against Ciboria shiraiana, and the knockdown of MaGS2 in mulberry by VIGS increased the resistance against C. shiraiana, demonstrating the role of MaGS2 as a negative regulator of mulberry resistance to C. shiraiana infection.

2.
PeerJ ; 12: e17590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938604

RESUMO

Background: Glutamine synthetase (GS), glutamate synthase (GOGAT), and nitrate reductase (NR) are key enzymes involved in nitrogen assimilation and metabolism in plants. However, the systematic analysis of these gene families lacked reports in soybean (Glycine max (L.) Merr.), one of the most important crops worldwide. Methods: In this study, we performed genome-wide identification and characterization of GS, GOGAT, and NR genes in soybean under abiotic and nitrogen stress conditions. Results: We identified a total of 10 GS genes, six GOGAT genes, and four NR genes in the soybean genome. Phylogenetic analysis revealed the presence of multiple isoforms for each gene family, indicating their functional diversification. The distribution of these genes on soybean chromosomes was uneven, with segmental duplication events contributing to their expansion. Within the nitrogen assimilation genes (NAGs) group, there was uniformity in the exon-intron structure and the presence of conserved motifs in NAGs. Furthermore, analysis of cis-elements in NAG promoters indicated complex regulation of their expression. RT-qPCR analysis of seven soybean NAGs under various abiotic stresses, including nitrogen deficiency, drought-nitrogen, and salinity, revealed distinct regulatory patterns. Most NAGs exhibited up-regulation under nitrogen stress, while diverse expression patterns were observed under salt and drought-nitrogen stress, indicating their crucial role in nitrogen assimilation and abiotic stress tolerance. These findings offer valuable insights into the genomic organization and expression profiles of GS, GOGAT, and NR genes in soybean under nitrogen and abiotic stress conditions. The results have potential applications in the development of stress-resistant soybean varieties through genetic engineering and breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Nitrogênio , Filogenia , Glycine max/genética , Glycine max/metabolismo , Nitrogênio/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Estresse Fisiológico/genética , Glutamato Sintase/genética , Glutamato Sintase/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromossomos de Plantas/genética , Secas
3.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891784

RESUMO

The central nervous system of Pacific salmon retains signs of embryonic structure throughout life and a large number of neuroepithelial neural stem cells (NSCs) in the proliferative areas of the brain, in particular. However, the adult nervous system and neurogenesis studies on rainbow trout, Oncorhynchus mykiss, are limited. Here, we studied the localization of glutamine synthetase (GS), vimentin (Vim), and nestin (Nes), as well as the neurons formed in the postembryonic period, labeled with doublecortin (DC), under conditions of homeostatic growth in adult cerebellum and brainstem of Oncorhynchus mykiss using immunohistochemical methods and Western Immunoblotting. We observed that the distribution of vimentin (Vim), nestin (Nes), and glutamine synthetase (GS), which are found in the aNSPCs of both embryonic types (neuroepithelial cells) and in the adult type (radial glia) in the cerebellum and the brainstem of trout, has certain features. Populations of the adult neural stem/progenitor cells (aNSPCs) expressing GS, Vim, and Nes have different morphologies, localizations, and patterns of cluster formation in the trout cerebellum and brainstem, which indicates the morphological and, obviously, functional heterogeneity of these cells. Immunolabeling of PCNA revealed areas in the cerebellum and brainstem of rainbow trout containing proliferating cells which coincide with areas expressing Vim, Nes, and GS. Double immunolabeling revealed the PCNA/GS PCNA/Vim coexpression patterns in the neuroepithelial-type cells in the PVZ of the brainstem. PCNA/GS coexpression in the RG was detected in the submarginal zone of the brainstem. The results of immunohistochemical study of the DC distribution in the cerebellum and brainstem of trout have showed a high level of expression of this marker in various cell populations. This may indicate: (i) high production of the adult-born neurons in the cerebellum and brainstem of adult trout, (ii) high plasticity of neurons in the cerebellum and brainstem of trout. We assume that the source of new cells in the trout brain, along with PVZ and SMZ, containing proliferating cells, may be local neurogenic niches containing the PCNA-positive and silent (PCNA-negative), but expressing NSC markers, cells. The identification of cells expressing DC, Vim, and Nes in the IX-X cranial nerve nuclei of trout was carried out.


Assuntos
Tronco Encefálico , Cerebelo , Células-Tronco Neurais , Neurogênese , Plasticidade Neuronal , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/crescimento & desenvolvimento , Cerebelo/metabolismo , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Tronco Encefálico/metabolismo , Tronco Encefálico/citologia , Vimentina/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Glutamato-Amônia Ligase/metabolismo
4.
Clin Toxicol (Phila) ; 62(6): 364-371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913595

RESUMO

INTRODUCTION: Although valproic acid is generally well tolerated, hepatotoxicity is a common side effect in patients receiving long-term treatment. However, the mechanisms underlying valproic acid-associated hepatotoxicity remain elusive. METHODS: To investigate the mechanisms and explore the potential risk factors for valproic acid-associated hepatotoxicity, 165 age-matched pediatric patients were recruited for laboratory tests and glutamate-glutamine cycle analysis. RESULTS: The concentration of glutamate in patients with hepatotoxicity was significantly greater than that in control patients, while the concentration of glutamine in patients with hepatotoxicity was significantly lower than that in control patients (P <0.05). In addition, the frequencies of the heterozygous with one mutant allele and homozygous with two mutant alleles genotypes in glutamate-ammonia ligase rs10911021 were significantly higher in the hepatotoxicity group than those in the control group (47.1 percent versus 32.5 percent, P = 0.010; 17.6 percent versus 5.2 percent, P = 0.001, respectively). Moreover, heterozygous carriers with one mutant allele and homozygous carriers with two mutant alleles genotypes of glutamate-ammonia ligase rs10911021 exhibited significant differences in the concentrations of glutamine and glutamate concentrations (P ˂ 0.001 and P = 0.001, respectively) and liver function indicators (activities of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase, P <0.001, respectively). Furthermore, logistic regression analysis indicated that glutamate-ammonia ligase rs10911021 (P = 0.002, odds ratio: 3.027, 95 percent confidence interval, 1.521 - 6.023) and glutamate (P = 0.001, odds ratio: 2.235, 95 percent confidence interval, 1.369 - 3.146) were associated with a greater risk for hepatotoxicity, while glutamine concentrations were negatively associated with hepatotoxicity (P = 0.001, odds ratio: 0.711, 95 percent confidence interval, 0.629 - 0.804). DISCUSSION: Understanding pharmacogenomic risks for valproic acid induced hepatotoxicity might help direct patient specific care. Limitations of our study include the exclusive use of children from one location and concomitant medication use in many patients. CONCLUSION: Perturbation of the glutamate-glutamine cycle is associated with valproic acid-associated hepatotoxicity. Moreover, glutamate-ammonia ligase rs10911021, glutamate and glutamine concentrations are potential risk factors for valproic acid-associated hepatotoxicity.


Assuntos
Anticonvulsivantes , Doença Hepática Induzida por Substâncias e Drogas , Epilepsia , Glutamato-Amônia Ligase , Ácido Glutâmico , Glutamina , Ácido Valproico , Humanos , Ácido Valproico/efeitos adversos , Feminino , Ácido Glutâmico/metabolismo , Masculino , Criança , Doença Hepática Induzida por Substâncias e Drogas/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Glutamato-Amônia Ligase/genética , Anticonvulsivantes/efeitos adversos , Pré-Escolar , Fatores de Risco , Adolescente , Estudos de Casos e Controles , Genótipo
5.
Exp Eye Res ; 245: 109964, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851478

RESUMO

To prevent ocular pathologies, new generation of dietary supplements have been commercially available. They consist of nutritional supplement mixing components known to provide antioxidative properties, such as unsaturated fatty acid, resveratrol or flavonoids. However, to date, few data evaluating the impact of a mixture mainly composed of those components (Nutrof Total®) on the retina are available. Only one in-vivo preclinical study demonstrated that dietary supplementation (DS) prevents the retina from light-induced retinal degeneration; and only one in-vitro study on Müller cells culture showed that glutamate metabolism cycle was key in oxidative stress response. Therefore, we raised the question about the in-vivo effect of DS on glutamate metabolism in the retina. Herein, we showed that the dietary supplementation promotes in-vivo increase of retinal glutamine amount through a higher glutamine synthesis as observed in-vitro on Muller cells. Therefore, we can suggest that the promotion of glutamine synthesis is part of the protective effect of DS against retinal degeneration, acting as a preconditioning mechanism against retinal degeneration.


Assuntos
Antioxidantes , Suplementos Nutricionais , Ácidos Graxos Ômega-3 , Glutamina , Retina , Degeneração Retiniana , Glutamina/metabolismo , Animais , Antioxidantes/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Retina/metabolismo , Retina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células Cultivadas , Células Ependimogliais/metabolismo , Células Ependimogliais/efeitos dos fármacos , Masculino , Ratos , Modelos Animais de Doenças
6.
JHEP Rep ; 6(5): 101077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699532

RESUMO

The reprogramming of glutamine metabolism is a key event in cancer more generally and in hepatocellular carcinoma (HCC) in particular. Glutamine consumption supplies tumours with ATP and metabolites through anaplerosis of the tricarboxylic acid cycle, while glutamine production can be enhanced by the overexpression of glutamine synthetase. In HCC, increased glutamine production is driven by activating mutations in the CTNNB1 gene encoding ß-catenin. Increased glutamine synthesis or utilisation impacts tumour epigenetics, oxidative stress, autophagy, immunity and associated pathways, such as the mTOR (mammalian target of rapamycin) pathway. In this review, we will discuss studies which emphasise the pro-tumoral or tumour-suppressive effect of glutamine overproduction. It is clear that more comprehensive studies are needed as a foundation from which to develop suitable therapies targeting glutamine metabolic pathways, depending on the predicted pro- or anti-tumour role of dysregulated glutamine metabolism in distinct genetic contexts.

7.
Front Pharmacol ; 15: 1404938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818378

RESUMO

There is a lack of systematic research exploring cross-species variation in liver lobular geometry and zonation patterns of critical drug-metabolizing enzymes, a knowledge gap essential for translational studies. This study investigated the critical interplay between lobular geometry and key cytochrome P450 (CYP) zonation in four species: mouse, rat, pig, and human. We developed an automated pipeline based on whole slide images (WSI) of hematoxylin-eosin-stained liver sections and immunohistochemistry. This pipeline allows accurate quantification of both lobular geometry and zonation patterns of essential CYP proteins. Our analysis of CYP zonal expression shows that all CYP enzymes (besides CYP2D6 with panlobular expression) were observed in the pericentral region in all species, but with distinct differences. Comparison of normalized gradient intensity shows a high similarity between mice and humans, followed by rats. Specifically, CYP1A2 was expressed throughout the pericentral region in mice and humans, whereas it was restricted to a narrow pericentral rim in rats and showed a panlobular pattern in pigs. Similarly, CYP3A4 is present in the pericentral region, but its extent varies considerably in rats and appears panlobular in pigs. CYP2D6 zonal expression consistently shows a panlobular pattern in all species, although the intensity varies. CYP2E1 zonal expression covered the entire pericentral region with extension into the midzone in all four species, suggesting its potential for further cross-species analysis. Analysis of lobular geometry revealed an increase in lobular size with increasing species size, whereas lobular compactness was similar. Based on our results, zonated CYP expression in mice is most similar to humans. Therefore, mice appear to be the most appropriate species for drug metabolism studies unless larger species are required for other purposes, e.g., surgical reasons. CYP selection should be based on species, with CYP2E1 and CYP2D6 being the most preferable to compare four species. CYP1A2 could be considered as an additional CYP for rodent versus human comparisons, and CYP3A4 for mouse/human comparisons. In conclusion, our image analysis pipeline together with suggestions for species and CYP selection can serve to improve future cross-species and translational drug metabolism studies.

8.
Curr Dev Nutr ; 8(6): 102168, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813479

RESUMO

Background: Glutamine in milk is believed to play an important role in neonatal intestinal maturation and immune function. For lactating mothers, glutamine utilization is increased to meet the demands of the enlarged intestine and milk production. However, the source of such glutamine during lactation has not been studied. Objectives: We aimed to assess the effects of lactation on the expression of glutamine synthetase (GS) in the mammary gland and other tissues of lactating mice. Methods: Mouse tissues were sampled at 4 time points: 8-wk-old (virgin, control), post-delivery day 5 (PD5, early lactation), PD15 (peak lactation), and involution (4 days after weaning at PD21). We examined the gene expression and protein concentrations of GS and the first 2 enzymes of branched-chain amino acid catabolism: branched-chain aminotransferase 2 (BCAT2) and branched-chain ketoacid dehydrogenase subunit E1α (BCKDHA). Results: The messenger RNA (mRNA) expression and protein concentrations of GS in mammary glands were significantly lower at PD5 and PD15 compared with the control but were restored at involution. Within the mammary gland, GS protein was only detected in adipocytes with no evidence of presence in mammary epithelial cells. Compared with the control, mRNA and protein concentrations of BCAT2 and BCKDHA in mammary glands significantly decreased during lactation and involution. No changes in GS protein concentrations during lactation were found in the liver, skeletal muscle, and lung. In non-mammary adipose tissue, GS protein abundance was higher during lactation compared with the virgin. Conclusions: This work shows that, within the mouse mammary gland, GS is only expressed in adipocytes and that the relative GS abundance in mammary gland sections is lower during lactation. This suggests that mammary adipocytes may be a site of glutamine synthesis in the lactating mouse. Identifying the sources of glutamine production during lactation is important for optimizing milk glutamine concentration to enhance neonatal and maternal health.

9.
Am J Hum Genet ; 111(4): 729-741, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579670

RESUMO

Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.


Assuntos
Epilepsia Generalizada , Glutamato-Amônia Ligase , Glutamina , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Epilepsia Generalizada/genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutamatos/metabolismo , Glutamina/genética , Glutamina/metabolismo
10.
BMC Plant Biol ; 24(1): 313, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654158

RESUMO

The enzyme glutamine synthetase (GLN) is mainly responsible for the assimilation and reassimilation of nitrogen (N) in higher plants. Although the GLN gene has been identified in various plants, there is little information about the GLN family in cotton (Gossypium spp.). To elucidate the roles of GLN genes in cotton, we systematically investigated and characterized the GLN gene family across four cotton species (G. raimondii, G. arboreum, G. hirsutum, and G. barbadense). Our analysis encompassed analysis of members, gene structure, cis-element, intragenomic duplication, and exploration of collinear relationships. Gene duplication analysis indicated that segmental duplication was the primary driving force for the expansion of the GhGLN gene family. Transcriptomic and quantitative real-time reverse-transcription PCR (qRT-PCR) analyses indicated that the GhGLN1.1a gene is responsive to N induction treatment and several abiotic stresses. The results of virus-induced gene silencing revealed that the accumulation and N use efficiency (NUE) of cotton were affected by the inactivation of GhGLN1.1a. This study comprehensively analyzed the GhGLN genes in Gossypium spp., and provides a new perspective on the functional roles of GhGLN1.1a in regulating NUE in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Glutamato-Amônia Ligase , Gossypium , Nitrogênio , Proteínas de Plantas , Duplicação Gênica , Genes de Plantas , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Gossypium/genética , Gossypium/metabolismo , Família Multigênica , Nitrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Cell Biochem Funct ; 42(4): e4024, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666564

RESUMO

Diabetic retinopathy (DR) is a significant complication of diabetes that often leads to blindness, impacting Müller cells, the primary retinal macroglia involved in DR pathogenesis. Reactive oxygen species (ROS) play a crucial role in the development of DR. The objective of this study was to investigate the involvement of sestrin2 in DR using a high-glucose (HG)-induced Müller cell model and assessing cell proliferation with 5-ethynyl-2-deoxyuridine (EdU) labeling. Following this, sestrin2 was upregulated in Müller cells to investigate its effects on ROS, tube formation, and inflammation both in vitro and in vivo, as well as its interaction with the nuclear factor erythroid2-related factor 2 (Nrf2) signaling pathway. The findings demonstrated a gradual increase in the number of EdU-positive cells over time, with a subsequent decrease after 72 h of exposure to high glucose levels. Additionally, the expression of sestrin2 exhibited a progressive increase over time, followed by a decrease at 72 h. The rh-sestrin2 treatment suppressed the injury of Müller cells, decreased ROS level, and inhibited the tube formation. Rh-sestrin2 treatment enhanced the expression of sestrin2, Nrf2, heme oxygenase-1 (HO-1), and glutamine synthetase (GS); however, the ML385 treatment reversed the protective effect of rh-sestrin2. Finally, we evaluated the effect of sestrin2 in a DR rat model. Sestrin2 overexpression treatment improved the pathological injury of retina and attenuated the oxidative damage and inflammatory reaction. Our results highlighted the inhibitory effect of sestrin2 in the damage of retina, thus presenting a novel therapeutic sight for DR.


Assuntos
Retinopatia Diabética , Espécies Reativas de Oxigênio , Sestrinas , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Ratos , Masculino , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Glucose/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Transdução de Sinais/efeitos dos fármacos , Peroxidases/metabolismo , Células Cultivadas
12.
Plant Physiol Biochem ; 210: 108631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657550

RESUMO

Glutamine synthetase (GS), an initial enzyme in nitrogen (N) plant metabolism, exists as a group of isoenzymes found in both cytosolic (GS1) and plastids (GS2) and has gathered significant attention for enhancing N use efficiency and crop yield. This work focuses on the A. thaliana GLN1;3 and GLN1;5 genes, the two predicted most expressed genes in seeds, among the five isogenes encoding GS1 in this species. The expression patterns were studied using transgenic marker line plants and qPCR during seed development and germination. The observed patterns highlight distinct functions for the two genes and confirm GLN1;5 as the most highly expressed GS1 gene in seeds. The GLN1;5, expression, oriented towards hypocotyl and cotyledons, suggests a role in protein turnover during germination, while the radicle-oriented expression of GLN1;3 supports a function in early external N uptake. While the single mutants exhibited a normal phenotype, except for a decrease in seed parameters, the double gln1;3/gln1;5 mutant displayed a germination delay, substantial impairment in growth, nitrogen metabolism, and number and quality of the seeds, as well as a diminishing in flowering. Although seed and pollen-specific, GLN1;5 expression is upregulated in the meristems of the gln1;3 mutants, filling the lack of GLN1;3 and ensuring the normal functioning of the gln1;3 mutants. These findings validate earlier in silico data on the expression patterns of GLN1;3 and GL1;5 genes in seeds, explore their different functions, and underscore their essential role in plant growth, seed production, germination, and early stages of plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Germinação , Glutamato-Amônia Ligase , Sementes , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/enzimologia , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/enzimologia , Germinação/genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/enzimologia , Citosol/metabolismo , Nitrogênio/metabolismo , Plantas Geneticamente Modificadas , Isoenzimas/genética , Isoenzimas/metabolismo
13.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612470

RESUMO

Studying the properties of neural stem progenitor cells (NSPCs) in a fish model will provide new information about the organization of neurogenic niches containing embryonic and adult neural stem cells, reflecting their development, origin cell lines and proliferative dynamics. Currently, the molecular signatures of these populations in homeostasis and repair in the vertebrate forebrain are being intensively studied. Outside the telencephalon, the regenerative plasticity of NSPCs and their biological significance have not yet been practically studied. The impressive capacity of juvenile salmon to regenerate brain suggests that most NSPCs are likely multipotent, as they are capable of replacing virtually all cell lineages lost during injury, including neuroepithelial cells, radial glia, oligodendrocytes, and neurons. However, the unique regenerative profile of individual cell phenotypes in the diverse niches of brain stem cells remains unclear. Various types of neuronal precursors, as previously shown, are contained in sufficient numbers in different parts of the brain in juvenile Pacific salmon. This review article aims to provide an update on NSPCs in the brain of common models of zebrafish and other fish species, including Pacific salmon, and the involvement of these cells in homeostatic brain growth as well as reparative processes during the postraumatic period. Additionally, new data are presented on the participation of astrocytic glia in the functioning of neural circuits and animal behavior. Thus, from a molecular aspect, zebrafish radial glia cells are seen to be similar to mammalian astrocytes, and can therefore also be referred to as astroglia. However, a question exists as to if zebrafish astroglia cells interact functionally with neurons, in a similar way to their mammalian counterparts. Future studies of this fish will complement those on rodents and provide important information about the cellular and physiological processes underlying astroglial function that modulate neural activity and behavior in animals.


Assuntos
Células-Tronco Neurais , Peixe-Zebra , Animais , Neurogênese , Neurônios , Prosencéfalo , Mamíferos
14.
J Exp Bot ; 75(13): 4052-4073, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38497908

RESUMO

The glutamine synthetase/glutamic acid synthetase (GS/GOGAT) cycle plays important roles in N metabolism, growth, development, and stress resistance in plants. Excess ammonium (NH4+) restricts growth, but GS can help to alleviate its toxicity. In this study, the 84K model clone of hybrid poplar (Populus alba × P. tremula var. glandulosa), which has reduced biomass accumulation and leaf chlorosis under high-NH4+ stress, showed less severe symptoms in transgenic lines overexpressing GLUTAMINE SYNTHETASE 1;2 (GS1;2-OE), and more severe symptoms in RNAi lines (GS1;2-RNAi). Compared with the wild type, the GS1;2-OE lines had increased GS and GOGAT activities and higher contents of free amino acids, soluble proteins, total N, and chlorophyll under high-NH4+ stress, whilst the antioxidant and NH4+ assimilation capacities of the GS1;2-RNAi lines were decreased. The total C content and C/N ratio in roots and leaves of the overexpression lines were higher under stress, and there were increased contents of various amino acids and sugar alcohols, and reduced contents of carbohydrates in the roots. Under high-NH4+ stress, genes related to amino acid biosynthesis, sucrose and starch degradation, galactose metabolism, and the antioxidant system were significantly up-regulated in the roots of the overexpression lines. Thus, overexpression of GS1;2 affected the carbon and amino acid metabolism pathways under high-NH4+ stress to help maintain the balance between C and N metabolism and alleviate the symptoms of toxicity. Modification of the GS/GOGAT cycle by genetic engineering is therefore a potential strategy for improving the NH4+ tolerance of cultivated trees.


Assuntos
Compostos de Amônio , Carbono , Glutamato-Amônia Ligase , Nitrogênio , Plantas Geneticamente Modificadas , Populus , Populus/genética , Populus/metabolismo , Populus/enzimologia , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/genética , Nitrogênio/metabolismo , Carbono/metabolismo , Compostos de Amônio/metabolismo , Compostos de Amônio/toxicidade , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Hepatol Int ; 18(3): 1011-1019, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38536628

RESUMO

AIM: Idiopathic non-cirrhotic portal hypertension (INCPH) is a vascular disorder of uncertain origin. Diagnosis can be challenging on liver biopsy. Despite diverse histomorphologic findings documented in literature, studies on the frequency of these findings are lacking. This study aims to assess both the histomorphologic features and the immunoexpression patterns of CD34 and glutamine synthetase (GS) in liver biopsies and searched for their contribution to the pathologic diagnosis of INCPH. MATERIALS AND METHODS: Hematoxylin-eosin, CD34, and GS-stained liver needle biopsy sections of 16 patients clinically diagnosed with INCPH were retrospectively analyzed. Histologic findings such as portal vein narrowing, obliteration, or loss were grouped as major findings, while portal vein herniation, hypervascularized portal tracts, and periportal abnormal vessels were grouped as minor findings, and their frequency were evaluated. Periportal endothelial CD34 stained areas were measured via ocular micrometer. The distribution of GS immunoexpression was evaluated. Eighteen healthy liver donor biopsies were evaluated as controls. RESULTS: In INCPH cases, 58% of portal tracts showed major findings, compared to 15% in the control group (p < 0.001). Minor findings were observed in 16% of INCPH cases and 7% of controls (p = 0.014). The number of portal tracts with histologic findings is significantly higher in INCPH than in control liver biopsies. Abnormal portal tract distribution, like being close to each other, was seen in 75% of INCPH cases but not in controls (p < 0.001). Nodular regenerative hyperplasia (NRH) was present in 31% of cases. Periportal CD34 expression was higher in INCPH, and affected areas were larger than in controls (p < 0.001). Irregular GS staining, i.e. GS staining with patchy distribution in zone 3, and/or periportal and zone 2 hepatocytes, was found in 62% of INCPH cases, while controls showed the usual pattern (p < 0.001). CONCLUSION: In the biopsy diagnosis of INCPH, in addition to the presence of major histologic findings and the amount of portal tracts displaying these features, the expression of endothelial CD34 in periportal areas, and irregular hepatocellular GS expression can also be considered as supporting feature.


Assuntos
Antígenos CD34 , Glutamato-Amônia Ligase , Hipertensão Portal , Imuno-Histoquímica , Fígado , Humanos , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/análise , Antígenos CD34/metabolismo , Antígenos CD34/análise , Hipertensão Portal/patologia , Hipertensão Portal/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Fígado/patologia , Idoso , Veia Porta/patologia , Biópsia por Agulha
16.
Curr Med Imaging ; 20(1): e15734056287859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544393

RESUMO

BACKGROUND: Glutamine Synthetase (GS) could induce vascular sprouting through the improvement of endothelial cell migration in inflammatory diseases. MR vessel-size imaging has been proposed as a valuable approach for visualizing the underlying angiogenic processes in the brain. OBJECTIVE: This study aims to investigate the role of GS in the neovascularization of gliomas through the utilization of MR vessel-size imaging and histopathological techniques. METHODS: In this exploratory animal study, we randomly divided the C6 glioma rat models into a control group and an L-methionine sulfoximine (MSO) treatment group. Daily intraperitoneal injections were administered for three consecutive days, starting from day 10 following the implantation of C6 glioma cells in rats. Subsequently, MR vessel size imaging was conducted using a BRUKER 7 T/200 mm MRI scanner, and the MRI results were validated through histopathological examination. RESULTS: A significant decrease in microvessel density was observed in both the tumor periphery and center areas in the MSO treatment group compared to that in the control group. The mean vessel diameter (mVD) and vessel size index (VSI) did not exhibit significant changes compared to the control group. Moreover, the staining intensity of platelet endothelial cell adhesion molecule-1 (CD31) and GS in the tumor periphery was significantly decreased in the MSO treatment group. Additionally, the MSO treatment demonstrated a substantial inhibition of tumor growth. CONCLUSION: GS inhibitors significantly reduced angiogenesis in the periphery area of C6 glioma, exerting an inhibitory effect on tumor progression. Thus, GS inhibitors could be potential therapeutic agents for treating glioma. Additionally, in vivo MR vessel size imaging detects changes in vascularrelated parameters after tumor treatment, making it a promising method for detecting neovascularization in glioma.

.


Assuntos
Glioma , Glutamato-Amônia Ligase , Imageamento por Ressonância Magnética , Neovascularização Patológica , Animais , Glioma/diagnóstico por imagem , Glioma/irrigação sanguínea , Glioma/tratamento farmacológico , Neovascularização Patológica/diagnóstico por imagem , Ratos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Masculino , Linhagem Celular Tumoral
18.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542274

RESUMO

In adult fish, neurogenesis occurs in many areas of the brain, including the cerebellum, with the ratio of newly formed cells relative to the total number of brain cells being several orders of magnitude greater than in mammals. Our study aimed to compare the expressions of aromatase B (AroB), glutamine synthetase (GS), and cystathionine-beta-synthase (CBS) in the cerebellum of intact juvenile chum salmon, Oncorhynchus keta. To identify the dynamics that determine the involvement of AroB, GS, and CBS in the cellular mechanisms of regeneration, we performed a comprehensive assessment of the expressions of these molecular markers during a long-term primary traumatic brain injury (TBI) and after a repeated acute TBI to the cerebellum of O. keta juveniles. As a result, in intact juveniles, weak or moderate expressions of AroB, GS, and CBS were detected in four cell types, including cells of the neuroepithelial type, migrating, and differentiated cells (graphic abstract, A). At 90 days post injury, local hypercellular areas were found in the molecular layer containing moderately labeled AroB+, GS+, and CBS+ cells of the neuroepithelial type and larger AroB+, GS+, and CBS+ cells (possibly analogous to the reactive glia of mammals); patterns of cells migration and neovascularization were also observed. A repeated TBI caused the number of AroB+, GS+, and CBS+ cells to further increase; an increased intensity of immunolabeling was recorded from all cell types (graphic abstract, C). Thus, the results of this study provide a better understanding of adult neurogenesis in teleost fishes, which is expected to clarify the issue of the reactivation of adult neurogenesis in mammalian species.


Assuntos
Oncorhynchus keta , Animais , Glutamato-Amônia Ligase , Cistationina , Aromatase , Cistationina beta-Sintase , Cerebelo , Mamíferos
19.
Pharmacol Res ; 202: 107145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492829

RESUMO

In many neurodegenerative disorders, such as Alzheimer's disease (AD), glutamate-mediated neuronal excitotoxicity is considered the basis for cognitive impairment. The mRNA and protein expression of SERPINA4(Kallistatin) are higher in patients with AD. However, whether Kallistatin plays a regulatory role in glutamate-glutamine cycle homeostasis remains unclear. In this study, we identified impaired cognitive function in Kallistatin transgenic (KAL-TG) mice. Baseline glutamate levels were elevated and miniature excitatory postsynaptic current (mEPSC) frequency was increased in the hippocampus, suggesting the impairment of glutamate homeostasis in KAL-TG mice. Mechanistically, we demonstrated that Kallistatin promoted lysine acetylation and ubiquitination of glutamine synthetase (GS) and facilitated its degradation via the proteasome pathway, thereby downregulating GS. Fenofibrate improved cognitive memory in KAL-TG mice by downregulating serum Kallistatin. Collectively, our study findings provide insights the mechanism by which Kallistatin regulates cognitive impairment, and suggest the potential of fenofibrate to prevente and treat of AD patients with high levels of Kallistatin.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Fenofibrato , Serpinas , Humanos , Camundongos , Animais , Glutamato-Amônia Ligase/metabolismo , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Ácido Glutâmico/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Cognição
20.
J Bacteriol ; 206(3): e0037623, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38358279

RESUMO

Growth of uropathogenic Escherichia coli in the bladder induces transcription of glnA which codes for the ammonia-assimilating glutamine synthetase (GS) despite the normally suppressive high ammonia concentration. We previously showed that the major urinary component, urea, induces transcription from the Crp-dependent glnAp1 promoter, but the urea-induced transcript is not translated. Our purpose here was to determine whether the most abundant urinary amino acids, which are known to inhibit GS activity in vitro, also affect glnA transcription in vivo. We found that the abundant amino acids impaired growth, which glutamine and glutamate reversed; this implies inhibition of GS activity. In strains with deletions of crp and glnG that force transcription from the glnAp2 and glnAp1 promoters, respectively, we examined growth and glnA transcription with a glnA-gfp transcriptional fusion and quantitative reverse transcription PCR with primers that can distinguish transcription from the two promoters. The abundant urinary amino acids stimulated transcription from the glnAp2 promoter in the absence of urea but from the glnAp1 promoter in the presence of urea. However, transcription from glnAp1 did not produce a translatable mRNA or GS as assessed by a glnA-gfp translational fusion, enzymatic assay of GS, and Western blot to detect GS antigen in urea-containing media. We discuss these results within the context of the extremely rapid growth of uropathogenic E. coli in urine, the different factors that control the two glnA promoters and possible mechanisms that either overcome or bypass the urea-imposed block of glutamine synthesis during bacterial growth in urine.IMPORTANCEKnowledge of the regulatory mechanisms for genes expressed at the site of infection provides insight into the virulence of pathogenic bacteria. During urinary tract infections-most often caused by Escherichia coli-growth in urine induces the glnA gene which codes for glutamine synthetase. The most abundant urinary amino acids amplified the effect of urea which resulted in hypertranscription from the glnAp1 promoter and, unexpectedly, an untranslated transcript. E. coli must overcome this block in glutamine synthesis during growth in urine, and the mechanism of glutamine acquisition or synthesis may suggest a possible therapy.


Assuntos
Escherichia coli , Transcrição Gênica , Escherichia coli/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Amônia , Glutamina/genética , Ureia , Genes Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA