Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotech Histochem ; 99(1): 49-58, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38164087

RESUMO

The application of most chemical fixatives, such as formalin, in the anatomic pathology laboratory requires safety training and hazardous chemical monitoring due to the toxicity and health risks associated with their use. Consequently, the use of formalin has been banned in most applications in Europe; the primary exception is its use in the histology laboratory in lieu of a suitable and safer alternative. Glyoxal based solutions, several of which are available commercially, are the most promising alternative fixatives, because they are based on a mechanism of fixation similar to that of formalin. Unlike formalin, however, glyoxal based solutions do not dissociate from water and therefore do not require ventilation measures such as a fume hood. A primary barrier to the adoption of commercially available glyoxal based solutions is their low pH, which can produce undesirable morphological and antigenic tissue alterations; however, a recently available neutral pH glyoxal product (glyoxal acid free) (GAF) has been developed to mitigate the challenges of low pH. We compared the morphology and histochemistry among tissues fixed in 10% neutral buffered formalin, a commercially available acidic glyoxal product (Prefer), and GAF. Tissues fixed in formalin and Prefer exhibited similar morphology and staining properties; tissues fixed with 2% GAF exhibited deleterious effects.


Assuntos
Formaldeído , Glioxal , Fixadores/química , Fixação de Tecidos , Glioxal/química , Formaldeído/química , Histocitoquímica
2.
Virchows Arch ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996705

RESUMO

Formalin, an aqueous solution of formaldehyde, has been the gold standard for fixation of histological samples for over a century. Despite its considerable advantages, growing evidence points to objective toxicity, particularly highlighting its carcinogenicity and mutagenic effects. In 2016, the European Union proposed a ban, but a temporary permission was granted in consideration of its fundamental role in the medical-diagnostic field. In the present study, we tested an innovative fixative, glyoxal acid-free (GAF) (a glyoxal solution deprived of acids), which allows optimal tissue fixation at structural and molecular level combined with the absence of toxicity and carcinogenic activity. An open-label, non-inferiority, multicentric trial was performed comparing fixation of histological specimens with GAF fixative vs standard phosphate-buffered formalin (PBF), evaluating the morphological preservation and the diagnostic value with four binary score questions answered by both the central pathology reviewer and local center reviewers. The mean of total score in the GAF vs PBF fixative groups was 3.7 ± 0.5 vs 3.9 ± 0.3 for the central reviewer and 3.8 ± 0.5 vs 4.0 ± 0.1 for the local pathologist reviewers, respectively. In terms of median value, similar results were observed between the two fixative groups, with a median value of 4.0. Data collected indicate the non-inferiority of GAF as compared to PBF for all organs tested. The present clinical performance study, performed following the international standard for performance evaluation of in vitro diagnostic medical devices, highlights the capability of GAF to ensure both structural preservation and diagnostic value of the preparations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA