Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Strahlenther Onkol ; 200(9): 815-826, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38977432

RESUMO

PURPOSE: Automated treatment planning for multiple brain metastases differs from traditional planning approaches. It is therefore helpful to understand which parameters for optimization are available and how they affect the plan quality. This study aims to provide a reference for designing multi-metastases treatment plans and to define quality endpoints for benchmarking the technique from a scientific perspective. METHODS: In all, 20 patients with a total of 183 lesions were retrospectively planned according to four optimization scenarios. Plan quality was evaluated using common plan quality parameters such as conformity index, gradient index and dose to normal tissue. Therefore, different scenarios with combinations of optimization parameters were evaluated, while taking into account dependence on the number of treated lesions as well as influence of different beams. RESULTS: Different scenarios resulted in minor differences in plan quality. With increasing number of lesions, the number of monitor units increased, so did the dose to healthy tissue and the number of interlesional dose bridging in adjacent metastases. Highly modulated cases resulted in 4-10% higher V10% compared to less complex cases, while monitor units did not increase. Changing the energy to a flattening filter free (FFF) beam resulted in lower local V12Gy (whole brain-PTV) and even though the number of monitor units increased by 13-15%, on average 46% shorter treatment times were achieved. CONCLUSION: Although no clinically relevant differences in parameters where found, we identified some variation in the dose distributions of the different scenarios. Less complex scenarios generated visually more dose overlap; therefore, a more complex scenario may be preferred although differences in the quality metrics appear minor.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos
2.
Ophthalmic Physiol Opt ; 44(2): 334-346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299736

RESUMO

The intracapsular accommodation mechanism (IAM) may be understood as an increase in the lens equivalent refractive index as the eye accommodates. Our goal was to evaluate the existence of an IAM by analysing observed changes in the inner curvature gradient of the lens. To this end, we fitted a gradient index and curvature lens model to published experimental data on external and nucleus geometry changes during accommodation. For each case analysed, we computed the refractive power and equivalent index for each accommodative state using a ray transfer matrix. All data sets showed an increase in the effective refractive index, indicating a positive IAM, which was stronger for older lenses. These results suggest a strong dependence of the lens equivalent refractive index on the inner curvature gradient.


Assuntos
Cristalino , Lentes , Humanos , Refração Ocular , Acomodação Ocular , Refratometria/métodos
3.
Ultrasonics ; 138: 107220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118238

RESUMO

The advance of artificial intelligence and graphene-based composites brings new vitality into the conventional design of acoustic lenses which suffers from high computation cost and difficulties in achieving precise desired refractive indices. This paper presents an efficient and accurate design methodology for graphene-based gradient-index phononic crystal (GGPC) lenses by combing theoretical formulations and machine learning methods. The GGPC lenses consist of two-dimensional phononic crystals possessing square unit cells with graphene-based composite inclusions. The plane wave expansion method is exploited to obtain the dispersion relations of elastic waves in the structures and then establish the data sets of the effective refractive indices in structures with different volume fractions of graphene fillers in composite materials and filling fractions of inclusions. Based on the database established by the theoretical formulation, genetic programming, a superior machine learning algorithm, is introduced to generate explicit mathematical expressions to predict the effective refractive indices under different structural information. The design of GGPC lenses is conducted with the assistance of the machine learning prediction model, and it will be illustrated by several typical design examples. The proposed design method offers high efficiency, accuracy as well as the ability to achieve inverse design of GGPC lenses, thus significantly facilitating the development of novel phononic crystal lenses and acoustic energy focusing.

4.
J R Soc Interface ; 20(206): 20230316, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37727073

RESUMO

Vertebrate eye lenses are uniquely adapted to form a refractive index gradient (GRIN) for improved acuity, and to grow slowly in size despite constant cell proliferation. The mechanisms behind these adaptations remain poorly understood. We hypothesize that cell compaction contributes to both. To test this notion, we examined the relationship between lens size and shape, refractive characteristics and the cross-sectional areas of constituent fibre cells in mice of different ages. We developed a block-face imaging method to visualize cellular cross sections and found that the cross-sectional areas of fibre cells rose and then decreased over time, with the most significant reduction occurring in denucleating cells in the adult lens cortex, followed by cells in the embryonic nucleus. These findings help reconcile differences between the predictions of lens growth models and empirical data. Biomechanical simulations suggested that compressive forces generated from continuous deposition of fibre cells could contribute to cellular compaction. However, optical measurements revealed that the GRIN did not mirror the pattern of cellular compaction, implying that compaction alone cannot account for GRIN formation and that additional mechanisms are likely to be involved.


Assuntos
Proliferação de Células , Animais , Camundongos , Análise por Conglomerados
5.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987370

RESUMO

Intraocular lenses (IOLs) are commonly implanted after surgical removal of a cataractous lens. A variety of IOL materials are currently available, including collamer, hydrophobic acrylic, hydrophilic acrylic, PHEMA copolymer, polymethylmethacrylate (PMMA), and silicone. High-quality polymers with distinct physical and optical properties for IOL manufacturing and in line with the highest quality standards on the market have evolved to encompass medical needs. Each of them and their packaging show unique advantages and disadvantages. Here, we highlight the evolution of polymeric materials and mainly the current state of the art of the unique properties of some polymeric systems used for IOL design, identifying current limitations for future improvements. We investigate the characteristics of the next generation of IOL materials, which must satisfy biocompatibility requirements and have tuneable refractive index to create patient-specific eye power, preventing formation of posterior capsular opacification.

6.
Med Phys ; 50(5): 3127-3136, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36960718

RESUMO

BACKGROUND: Stereotactic radiotherapy (SRT) has been widely used for the treatment of brain metastases and early stage non-small-cell lung cancer (NSCLC). Excellent SRT plans are characterized by steep dose fall-off, making it critical to accurately and comprehensively predict and evaluate dose fall-off. PURPOSE: A novel dose fall-off index was proposed to ensure high-quality SRT planning. METHODS: The novel gradient index (NGI) had two different modes: NGIx V for three-dimensions and NGIx r for one-dimension. NGIx V and NGIx r were defined as the ratios of the decreased percentage dose (x%) to the corresponding isodose volume and equivalent sphere radii, respectively. A total of 243 SRT plans at our institution between April 2020 and March 2022 were enrolled, including 126 brain and 117 lung SRT plans. Measurement-based verifications were performed using SRS MapCHECK. Ten plan complexity indexes were calculated. Dosimetric parameters related to radiation injuries were also extracted, including the normal brain volume exposed to 12 Gy (V12 ) and 18 Gy (V18 ) during single-fraction SRT (SF-SRT) and multi-fraction SRT (MF-SRT), respectively, and the normal lung volume exposed to 12 Gy (V12 ). The performance of NGI and other common dose fall-off indexes, gradient index (GI), R50% and D2cm were evaluated using Spearman correlation analysis to explore their correlations with the PTV size, gamma passing rate (GPR), plan complexity indexes, and dosimetric parameters. RESULTS: There were statistically significant correlations between NGI and PTV size (r = -0.98, P < 0.01 for NGI50 V and r = -0.93, P < 0.01 for NGI50 r), which were the strongest correlations compared with GI (r = 0.11, P = 0.13), R50% (r = -0.08, P = 0.19) and D2cm (r = 0.84, P < 0.01). The fitted formulas of NGI50 V = 23.86V-1.00 and NGI50 r = 113.5r-1.05 were established. The GPRs of enrolled SRT plans were 98.6 ± 1.7%, 94.2 ± 4.7% and 97.1 ± 3.1% using the criteria of 3%/2 mm, 3%/1 mm, and 2%/2 mm, respectively. NGI50 V achieved the strongest correlations with various plan complexity indexes (|r| ranged from 0.67 to 0.91, P < 0.01). NGI50 V also showed the highest r values with V12 (r = -0.93, P < 0.01) and V18 (r = -0.96, P < 0.01) of the normal brain during SF-SRT and MF-SRT, respectively, and V12 (r = -0.86, P < 0.01) of the normal lung during lung SRT. CONCLUSIONS: Compared with GI, R50% and D2cm , the proposed dose fall-off index, NGI, had the strongest correlations with the PTV size, plan complexity and V12 /V18 of the normal tissues. These correlations established on NGI are more helpful and reliable for SRT planning, quality control, and reducing the risk of radiation injuries.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Lesões por Radiação , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos , Pulmão , Encéfalo , Radioterapia de Intensidade Modulada/métodos
7.
J Appl Clin Med Phys ; 24(6): e13932, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36794436

RESUMO

ICRU 91, published in 2017, is an international standard for prescribing, recording, and reporting stereotactic treatments. Since its release, there has been limited research published on the implementation and impact of ICRU 91 on clinical practice. This work provides an assessment of the recommended ICRU 91 dose reporting metrics for their use in clinical treatment planning. A set of 180 intracranial stereotactic treatment plans for patients treated by the CyberKnife (CK) system were analyzed retrospectively using the ICRU 91 reporting metrics. The 180 plans comprised 60 trigeminal neuralgia (TGN), 60 meningioma (MEN), and 60 acoustic neuroma (AN) cases. The reporting metrics included the planning target volume (PTV) near-minimum dose ( D near - min ${D}_{{\rm{near}} - {\rm{min}}}$ ), near-maximum dose ( D near - max ${D}_{{\rm{near}} - {\rm{max}}}$ ), and median dose ( D 50 % ${D}_{50{\rm{\% }}}$ ), as well as the gradient index (GI) and conformity index (CI). The metrics were assessed for statistical correlation with several treatment plan parameters. In the TGN plan group, owing to the small targets, D near - min ${D}_{{\rm{near}} - {\rm{min}}}$ was greater than D near - max ${D}_{{\rm{near}} - {\rm{max}}}$ in 42 plans, whereas both metrics were not applicable in 17 plans. The D 50 % ${D}_{50{\rm{\% }}}$ metric was predominantly influenced by the prescription isodose line (PIDL). The GI was significantly dependent on target volume in all analyses performed, where the variables were inversely related. The CI was only dependent on target volume in treatment plans for small targets. The ICRU 91 D near - min ${D}_{{\rm{near}} - {\rm{min}}}$ and D near - max ${D}_{{\rm{near}} - {\rm{max}}}$ metrics breakdown in plans for small target volumes below 1 cm3 ; the Min and Max pixel should be reported in such cases. The D 50 % ${D}_{50{\rm{\% }}}$ metric is of limited use for treatment planning. Given their volume dependence, the GI and CI metrics could potentially serve as plan evaluation tools in the planning of the sites analyzed in this study, which would ultimately improve treatment plan quality.


Assuntos
Neuroma Acústico , Radiocirurgia , Humanos , Estudos Retrospectivos , Neuroma Acústico/radioterapia , Neuroma Acústico/cirurgia , Benchmarking , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica
8.
J Med Radiat Sci ; 70(1): 64-71, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36181359

RESUMO

INTRODUCTION: We conducted a study to evaluate the dosimetric feasibility of mask-based cobalt-60 fractionated stereotactic radiotherapy (mcfSRT) with the Leksell Gamma Knife® Icon™ device. METHODS: Eleven patients with intracranial tumours were selected for this dosimetry study. These patients, previously treated with volumetric arc therapy (VMAT), were re-planned using mcfSRT. Target volume coverage, conformity/gradient indices, doses to organs at risk and treatment times were compared between the mcfSRT and VMAT plans. Two-sided paired Wilcoxon signed-rank test was used to compare differences between the two plans. RESULTS: The V95 for PTV was similar between fractionated mcfSRT and VMAT (P = 0.47). The conformity index and gradient indices were 0.9 and 3.3, respectively, for mcfSRT compared to 0.7 and 4.2, respectively, for VMAT (P < 0.001 and 0.004, respectively). The radiation exposure to normal brain was lower for mcfSRT across V10, V25 and V50 compared with VMAT (P = 0.007, <0.001 and <0.001, respectively). The median D0.1cc for optic nerve and chiasm as well as the median D50 to the hippocampi were lower for mcfSRT compared to VMAT. Median beam-on time for mcfSRT was 9.7 min per fraction, compared to 0.9 min for VMAT (P = 0.002). CONCLUSION: mcfSRT plans achieve equivalent target volume coverage, improved conformity and gradient indices, and reduced radiation doses to organs at risk as compared with VMAT plans. These results suggest superior dosimetric parameters for mcfSRT plans and can form the basis for future prospective studies.


Assuntos
Neoplasias Encefálicas , Radioterapia de Intensidade Modulada , Criança , Humanos , Adulto , Radioterapia de Intensidade Modulada/métodos , Estudos Prospectivos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Aceleradores de Partículas , Órgãos em Risco
9.
J Med Phys ; 47(2): 206-211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212199

RESUMO

Vestibular schwannoma (VS) is a benign, encapsulated, and slow-growing tumor of the myelin-forming cells of the 8th cranial nerve. Gamma Knife radiosurgery (GKRS) has become a widely accepted primary treatment modality for small- to medium-sized VSs. In the case of VS, highly conformal, precisely focused radiation is delivered to the acoustic tumor in a single session under the direct supervision of a radiosurgery team. Aim: This study aims to determine the significance of Conformity Index and Gradient Index (GI) in patients undergoing GKRS for VS, retrospectively, and re-assess the plans. Materials and Methods: A dosimetric study of 112 patients of VS (both operated and nonoperated) treated on Gamma Knife Perfexion unit at our hospital, over a 3-year period, was carried out retrospectively. The patients' mean age at the time of GKRS was 48 years and the mean dose to the tumor margin was 13 Gy. The conformality of the treatment plan was determined by Conformity Index. GI determines fall off dose outside the target. Results: The dosimetric parameters such as Conformity Index and GI were calculated using the dose-volume histograms and the volume analysis tools available in the Leksell Gamma Plan using TMR 10 algorithm. The mean Paddick Conformity Index was found to be around 0.80 ± 0.085 and the mean GI was 2.67 ± 0.22. Conclusions: The dosimetric parameters can be used to evaluate the dose coverage and conformity and dose fall off outside the target.

10.
Nanomaterials (Basel) ; 12(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335833

RESUMO

The applicability of piezoelectric energy harvesting is increasingly investigated in the field of renewable energy. In improving harvester efficiency, manipulating elastic waves through a geometric configuration as well as upgrading harvester elements is important. Periodic structures, such as phononic crystals and metamaterials, are extensively employed to control elastic waves and enhance harvesting performance, particularly in terms of wave localization and focusing. In this study, we propose a double-focusing flexural energy harvesting platform consisting of a gradient-index lens and elastic Bragg mirror. Based on the design process, the frequency and time response of the harvesting platform are analyzed. The results indicate that the output voltage and power calculated at 1800 Ω are 7.9 and 62 times higher than those observed in the bare plate, respectively. Even when compared to the existing gradient-index system, they are 1.5 and 2.3 times higher, respectively. These findings can facilitate the usage of periodic structures as geometric stimuli to significantly enhance harvesting performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA