Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 19, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273038

RESUMO

The bandwidth-tunable absorption enhancement of monolayer graphene is theoretically studied in the near-infrared wavelengths. The monolayer graphene is placed on the silver substrate surface with a periodic array of one-dimensional slits. Two absorption peaks are found to result from the hybridization of delocalized surface plasmon polaritons and localized magnetic plasmons. The positions of absorption peaks are accurately predicted by a coupling model of double oscillators. The full width at half maximum of absorption peaks is largely tuned from about 1-200 nm by changing the array period of slits. The effect of the slit size on absorption peaks is also investigated in detail. Our work is promising in applications for photoelectric devices.

2.
Materials (Basel) ; 15(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009498

RESUMO

Graphene is emerging as a promising material for the integration in the most common Si platform, capable to convey some of its unique properties to fabricate novel photonic and optoelectronic devices. For many real functions and devices however, graphene absorption is too low and must be enhanced. Among strategies, the use of an optical resonant cavity was recently proposed, and graphene absorption enhancement was demonstrated, both, by theoretical and experimental studies. This paper summarizes our recent progress in graphene absorption enhancement by means of Si/SiO2-based Fabry-Perot filters fabricated by radiofrequency sputtering. Simulations and experimental achievements carried out during more than two years of investigations are reported here, detailing the technical expedients that were necessary to increase the single layer CVD graphene absorption first to 39% and then up to 84%. Graphene absorption increased when an asymmetric Fabry-Perot filter was applied rather than a symmetric one, and a further absorption increase was obtained when graphene was embedded in a reflective rather than a transmissive Fabry-Perot filter. Moreover, the effect of the incident angle of the electromagnetic radiation and of the polarization of the light was investigated in the case of the optimized reflective Fabry-Perot filter. Experimental challenges and precautions to avoid evaporation or sputtering induced damage on the graphene layers are described as well, disclosing some experimental procedures that may help other researchers to embed graphene inside PVD grown materials with minimal alterations.

3.
ACS Nano ; 8(11): 11191-205, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25337632

RESUMO

We demonstrate essentially complete exfoliation of graphene aggregates in water at concentrations up to 5% by weight (166-fold greater than previous high concentration report) using recently developed triblock copolymers and copolymeric nanolatexes based on a reactive ionic liquid acrylate surfactant. We demonstrate that the visible absorption coefficient in aqueous dispersion, 48.9 ± 1.3 cm(2)/mg at 500 nm, is about twice that currently accepted, and we show that this value is a greatest lower bound to extant macroscopic single sheet optical studies of graphene when one considers both fine structure constant and excitonic mechanisms of visible absorption. We also show that dilute and concentrated graphene dispersions are rheo-optical fluids that exhibit an isotropic to nematic transition upon application of a shear field, and we demonstrate stimuli-responsive phase transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA