Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
J Bacteriol ; : e0020424, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320104

RESUMO

Cell growth in mycobacteria involves cell wall expansion that is restricted to the cell poles. The DivIVA homolog Wag31 is required for this process, but the molecular mechanism and protein partners of Wag31 have not been described. In this study of Mycobacterium smegmatis, we identify a connection between wag31 and trehalose monomycolate (TMM) transporter mmpl3 in a suppressor screen and show that Wag31 and polar regulator PlrA are required for MmpL3's polar localization. In addition, the localization of PlrA and MmpL3 is responsive to nutrient and energy deprivation and inhibition of peptidoglycan metabolism. We show that inhibition of MmpL3 causes delocalized cell wall metabolism but does not delocalize MmpL3 itself. We found that cells with an MmpL3 C-terminal truncation, which is defective for localization, have only minor defects in polar growth but are impaired in their ability to downregulate cell wall metabolism under stress. Our work suggests that, in addition to its established function in TMM transport, MmpL3 has a second function in regulating global cell wall metabolism in response to stress. Our data are consistent with a model in which the presence of TMMs in the periplasm stimulates polar elongation and in which the connection between Wag31, PlrA, and the C-terminus of MmpL3 is involved in detecting and responding to stress in order to coordinate the synthesis of the different layers of the mycobacterial cell wall in changing conditions. IMPORTANCE: This study is performed in Mycobacterium smegmatis, which is used as a model to understand the basic physiology of pathogenic mycobacteria such as Mycobacterium tuberculosis. In this work, we examine the function and regulation of three proteins involved in regulating cell wall elongation in mycobacterial cells, which occurs at the cell tips or poles. We find that Wag31, a regulator of polar elongation, works partly through the regulation of MmpL3, a transporter of cell wall constituents and an important drug target. Our work suggests that, beyond its transport function, MmpL3 has another function in controlling cell wall synthesis broadly in response to stress.

2.
Environ Sci Pollut Res Int ; 31(38): 50513-50528, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39096459

RESUMO

Cadmium (Cd) is a harmful metal in soil, and reducing Cd accumulation in plants has become a vital prerequisite for maintaining food safety. Phosphate-solubilizing bacteria (PSB) can not only improve plant growth but also inhibit the transportation of metals to roots. However, data on gene expression in PSB Burkholderia sp. strain 'N3' and grafted watermelon plants dealing with Cd remain to be elucidated. In this study, core genes and metabolic pathways of strain 'N3' and grafted plants were analyzed by Illumina sequencing. Results showed that 356 and 2527 genes were upregulated in 'N3' and grafted watermelon plants, respectively, whereas 514 and 1540 genes were downregulated in 'N3' and grafted watermelon plants, respectively. Gene ontology enrichment analysis showed that signal transduction, inorganic ion transport, cell motility, amino acid transport, and metabolism pathways were marked in 'N3'. However, pathways such as secondary metabolite biosynthesis, oxidation-reduction process, electron transfer activity, and channel regulator activity were marked in the grafted plants. Six genes related to pentose phosphate, glycolysis, and gluconeogenesis metabolism were upregulated in the grafted plants. This study paves the way for developing potential strategies to improve plant growth under Cd toxicity.


Assuntos
Cádmio , Citrullus , Fosfatos , Cádmio/toxicidade , Citrullus/genética , Transcriptoma/efeitos dos fármacos , Poluentes do Solo/toxicidade , Perfilação da Expressão Gênica , Burkholderia/genética , Burkholderia/metabolismo
3.
Eng Life Sci ; 24(8): e2300235, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113811

RESUMO

Saccharomyces cerevisiae is a commonly used microorganism in the biotechnological industry. For the industrial heterologous production of compounds, it is of great advantage to work with growth-controllable yeast strains. In our work, we utilized the natural pheromone system of S. cerevisiae and generated a set of different strains possessing an α-pheromone controllable growth behavior. Naturally, the α-factor pheromone is involved in communication between haploid S. cerevisiae cells. Perception of the pheromone initiates several cellular changes, enabling the cells to prepare for an upcoming mating event. We exploited this natural pheromone response system and developed two different plasmid-based modules, in which the target genes, MET15 and FAR1, are under control of the α-factor sensitive FIG1 promoter for a controlled expression in S. cerevisiae. Whereas expression of MET15 led to a growth induction, FAR1 expression inhibited growth. The utilization of low copy number or high copy number plasmids for target gene expression and different concentrations of α-factor allow a finely adjustable control of yeast growth rate.

4.
Nat Prod Res ; : 1-5, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116426

RESUMO

Facile synthesis and characterisation of three natural compounds and their two synthetic analogues based on onion skin content were performed. Both OSE and 2,4,6-trihydroxyphenylglyoxylic acid was induced effect on cell proliferation during barley germination with a difference of approximately %4 compared to the control group.

5.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063209

RESUMO

'Duli' (Pyrus betulifolia Bunge) is one of the main rootstocks of pear trees in China. Gibberellin (GA) is a key plant hormone and the roles of GA in nitrate (NO3-) uptake and metabolism in plants remain unclear. In this study, we investigated the effects of exogenous GA3 on the N metabolism of 'Duli' seedlings under NO3- deficiency. The results showed that exogenous GA3 significantly improves 'Duli' growth under NO3- deficiency. On the one hand, GA3 altered the root architecture, increased the content of endogenous hormones (GA3, IAA, and ZR), and enhanced photosynthesis; on the other hand, it enhanced the activities of N-metabolizing enzymes and the accumulation of N, and increased the expression levels of N absorption (PbNRT2) and the metabolism genes (PbNR, PbGILE, PbGS, and PbGOGAT). However, GA3 did not delay the degradation of chlorophyll. Paclobutrazol had the opposite effect on growth. Overall, GA3 can increase NO3- uptake and metabolism and relieve the growth inhibition of 'Duli' seedlings under NO3- deficiency.


Assuntos
Giberelinas , Nitratos , Nitrogênio , Pyrus , Plântula , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Nitratos/metabolismo , Giberelinas/metabolismo , Nitrogênio/metabolismo , Pyrus/metabolismo , Pyrus/genética , Pyrus/crescimento & desenvolvimento , Pyrus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Clorofila/metabolismo
6.
Oncol Lett ; 28(2): 359, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881711

RESUMO

High expression of carbonyl reductase 1 (CBR1) protein in ovarian cancer cells inhibits tumor growth and metastasis. However, the underlying mechanism is unknown. To investigate the mechanism by which CBR1 suppresses tumor growth, the present study generated ovarian cancer cells that constitutively overexpress human CBR1 (hCBR1) protein. Ovarian cancer cell lines (OVCAR-3 and SK-OV-3) were transfected with a plasmid encoding hCBR1, followed by selection with G418 to isolate hCBR1-overexpressing lines. The proliferation rates of hCBR1-overexpressing cells were then compared with those of negative control and wild-type cells. Overexpression of hCBR1 led to significant inhibition of proliferation (P<0.05). Subsequently, to investigate changes in intracellular signaling pathways, cellular proteins were extracted and subjected to proteome analysis using liquid chromatography followed by mass spectrometry. There was an inverse correlation between CBR1 protein expression and cell proliferation. In addition, Ingenuity Pathway Analysis of hCBR1-overexpressing cell lines was performed, which revealed changes in the expression of proteins involved in signaling pathways related to growth regulation. Of these, the eukaryotic translation initiation factor 2 (eIF2) signaling pathway was upregulated most prominently. Thus, alterations in multiple tumor-related signaling pathways, including eIF2 signaling, may lead to growth suppression. Taken together, the present data may lead to the development of new drugs that target CBR1 and related signaling pathways, thereby improving outcomes for patients with ovarian cancer.

7.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746181

RESUMO

Cell growth in mycobacteria involves cell wall expansion that is restricted to the cell poles. The DivIVA homolog Wag31 is required for this process, but the molecular mechanism and protein partners of Wag31 have not been described. In this study of Mycobacterium smegmatis, we identify a connection between wag31 and trehalose monomycolate (TMM) transporter mmpl3 in a suppressor screen, and show that Wag31 and polar regulator PlrA are required for MmpL3's polar localization. In addition, the localization of PlrA and MmpL3 are responsive to nutrient and energy deprivation and inhibition of peptidoglycan metabolism. We show that inhibition of MmpL3 causes delocalized cell wall metabolism, but does not delocalize MmpL3 itself. We found that cells with an MmpL3 C-terminal truncation, which is defective for localization, have only minor defects in polar growth, but are impaired in their ability to downregulate cell wall metabolism under stress. Our work suggests that, in addition to its established function in TMM transport, MmpL3 has a second function in regulating global cell wall metabolism in response to stress. Our data are consistent with a model in which the presence of TMMs in the periplasm stimulates polar elongation, and in which the connection between Wag31, PlrA and the C-terminus of MmpL3 is involved in detecting and responding to stress in order to coordinate synthesis of the different layers of the mycobacterial cell wall in changing conditions.

8.
ACS Appl Mater Interfaces ; 16(22): 28905-28916, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38773780

RESUMO

The two-step sequential deposition strategy has been widely recognized in promoting the research and application of perovskite solar cells, but the rapid reaction of organic salts with lead iodide inevitably affects the growth of perovskite crystals, accompanied by the generation of more defects. In this study, the regulation of crystal growth was achieved in a two-step deposition method by mixing 1-naphthylmethylammonium bromide (NMABr) with organic salts. The results show that the addition of NMABr effectively delays the aggregation and crystallization behavior of organic salts; thereby, the growth of the optimal crystal (001) orientation of perovskite is promoted. Based on this phenomenon of delaying the crystallization process of perovskite, the "slow-release effect assisted crystallization" is defined. Moreover, the incorporation of the Br element expands the band gap of perovskite and mitigates material defects as nonradiative recombination centers. Consequently, the power conversion efficiency (PCE) of the enhanced perovskite solar cells (PSCs) reaches 20.20%. It is noteworthy that the hydrophobic nature of the naphthalene moiety in NMABr can enhance the humidity resistance of PSCs, and the perovskite phase does not decompose for more than 3000 h (30-40% RH), enabling it to retain 90% of its initial efficiency even after exposure to a nitrogen environment for 1200 h.

9.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732036

RESUMO

Bivalves hold an important role in marine aquaculture and the identification of growth-related genes in bivalves could contribute to a better understanding of the mechanism governing their growth, which may benefit high-yielding bivalve breeding. Somatostatin receptor (SSTR) is a conserved negative regulator of growth in vertebrates. Although SSTR genes have been identified in invertebrates, their involvement in growth regulation remains unclear. Here, we identified seven SSTRs (PySSTRs) in the Yesso scallop, Patinopecten yessoensis, which is an economically important bivalve cultured in East Asia. Among the three PySSTRs (PySSTR-1, -2, and -3) expressed in adult tissues, PySSTR-1 showed significantly lower expression in fast-growing scallops than in slow-growing scallops. Then, the function of this gene in growth regulation was evaluated in dwarf surf clams (Mulinia lateralis), a potential model bivalve cultured in the lab, via RNA interference (RNAi) through feeding the clams Escherichia coli containing plasmids expressing double-stranded RNAs (dsRNAs) targeting MlSSTR-1. Suppressing the expression of MlSSTR-1, the homolog of PySSTR-1 in M. lateralis, resulted in a significant increase in shell length, shell width, shell height, soft tissue weight, and muscle weight by 20%, 22%, 20%, 79%, and 92%, respectively. A transcriptome analysis indicated that the up-regulated genes after MlSSTR-1 expression inhibition were significantly enriched in the fat digestion and absorption pathway and the insulin pathway. In summary, we systemically identified the SSTR genes in P. yessoensis and revealed the growth-inhibitory role of SSTR-1 in bivalves. This study indicates the conserved function of somatostatin signaling in growth regulation, and ingesting dsRNA-expressing bacteria is a useful way to verify gene function in bivalves. SSTR-1 is a candidate target for gene editing in bivalves to promote growth and could be used in the breeding of fast-growing bivalves.


Assuntos
Bivalves , Pectinidae , Receptores de Somatostatina , Animais , Pectinidae/genética , Pectinidae/crescimento & desenvolvimento , Pectinidae/metabolismo , Bivalves/genética , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Filogenia , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento
10.
Front Plant Sci ; 15: 1343222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650701

RESUMO

Bulbil is an important asexual reproductive structure of bulbil plants. It mainly grows in leaf axils, leaf forks, tubers and the upper and near ground ends of flower stems of plants. They play a significant role in the reproduction of numerous herbaceous plant species by serving as agents of plant propagation, energy reserves, and survival mechanisms in adverse environmental conditions. Despite extensive research on bulbil-plants regarding their resources, development mechanisms, and utilisation, a comprehensive review of bulbil is lacking, hindering progress in exploiting bulbil resources. This paper provides a systematic overview of bulbil research, including bulbil-plant resources, identification of development stages and maturity of bulbils, cellular and molecular mechanisms of bulbil development, factors influencing bulbil development, gene research related to bulbil development, multi-bulbil phenomenon and its significance, medicinal value of bulbils, breeding value of bulbils, and the application of plant tissue culture technology in bulbil production. The application value of the Temporary Immersion Bioreactor System (TIBS) and Terahertz (THz) in bulbil breeding is also discussed, offering a comprehensive blueprint for further bulbil resource development. Additionally, additive, seven areas that require attention are proposed: (1) Utilization of modern network technologies, such as plant recognition apps or websites, to collect and identify bulbous plant resources efficiently and extensively; (2) Further research on cell and tissue structures that influence bulb cell development; (3) Investigation of the network regulatory relationship between genes, proteins, metabolites, and epigenetics in bulbil development; (4) Exploration of the potential utilization value of multiple sprouts, including medicinal, ecological, and horticultural applications; (5) Innovation and optimization of the plant tissue culture system for bulbils; (6) Comprehensive application research of TIBS for large-scale expansion of bulbil production; (7) To find out the common share genetics between bulbils and flowers.

11.
Environ Sci Pollut Res Int ; 31(17): 25258-25272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468007

RESUMO

Chromium (Cr) toxicity can negatively affect plant growth and development, impacting agricultural productivity and posing risks to human health. Metallic nanoparticles (MNPs) such as titanium dioxide (TiO2) and natural growth regulators such as melatonin (MT) become a promising technology to manage heavy metal-contaminated soils and promote safe food production. The present work was conducted to find the effect of foliar application of TiO2 NPs (15 mg L-1) and MT (100 µM) on growth, biochemical attributes, and Cr accumulation in plant tissues of Melissa officinalis L. under Cr toxicity (50 and 100 mg Cr kg-1 soil). The results showed that Cr toxicity led to decreased plant performance, where 100 mg Cr kg-1 soil led to notable decreases in shoot weight (28%), root weight (27%), essential oil (EO) yield (34%), chlorophyll (Chl) a + b (33%), while increased malondialdehyde (MDA, 30%), superoxide dismutase (SOD) activity (51%), and catalase (CAT) activity (122%). The use of TiO2 NPs and MT, particularly their co-application, remarkably reduced Cr toxicity by enhancing plant weight, Chl content, and lowered MDA and antioxidant activity. Total phenolic content (TPC), total flavonoid content (TFC), EO percentage, and rosmarinic acid in plants treated with Cr at 50 mg Cr kg-1 soil and co-application of TiO2 NPs and MT were relatively higher than in other treatments. Under 100 mg Cr kg-1 soil, the synergic effect of TiO2 NPs and MT-enhanced rosmarinic acid content (22%) but lowered Cr accumulation in roots (51%) and shoots (72%). Heat map analysis showed that CAT, SOD, MDA, and EO yield had the maximum variability under Cr, TiO2 NPs, and MT. Exogenous TiO2 NPs and MT can be recommended to modulate Cr toxicity in lemon balm under soil Cr toxicity.


Assuntos
Melatonina , Melissa , Nanopartículas Metálicas , Nanopartículas , Poluentes do Solo , Humanos , Cromo/análise , Titânio/análise , Antioxidantes/análise , Ácido Rosmarínico , Superóxido Dismutase , Solo , Poluentes do Solo/análise
12.
J Agric Food Chem ; 72(5): 2598-2611, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38227461

RESUMO

Thirteen new sativene sesquiterpenoids (1 and 3-14), one new natural product (2), and 16 known compounds (15-30) were isolated from the endophytic fungus Bipolaris victoriae S27. Their structures were elucidated by extensive spectroscopic analysis, NMR and ECD calculations, and X-ray crystal diffractions. Compound 1 represented the first example of sativene sesquiterpenoids with a 6/5/3/5-caged tetracyclic ring system. All obtained compounds were evaluated for their plant-growth regulatory activity. The results showed that 1, 3, 4, 6, 8, 11, 12, 17, 19, 26, and 27 could suppress the growth of Arabidopsis thaliana, while 2, 5, 13, 15, 18, and 25 showed promoting effects. Among them, compound 3 showed the most potent plant-growth inhibitory activity, which is obviously superior to that of the marked herbicide glyphosate.


Assuntos
Bipolaris , Reguladores de Crescimento de Plantas , Sesquiterpenos , Estrutura Molecular , Sesquiterpenos/química , Fungos
14.
Front Physiol ; 14: 1272267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869714

RESUMO

The study combined the use of biometric, behavioral, physiological and external tissue damage scoring systems to better understand how high stocking densities drive schooling behavior and other adaptive features during the finishing growing phase of farmed gilthead sea bream in the Western Mediterranean. Fish were grown at three different final stocking densities (LD, 8.5 kg/m3; MD, 17 kg/m3; HD, 25 kg/m3). Water oxygen concentration varied between 5 and 6 ppm in LD fish to 3-4 ppm in HD fish with the summer rise of water temperature from 19°C to 26°C (May-July). HD fish showed a reduction of feed intake and growth rates, but they also showed a reinforced social cohesion with a well-defined endogenous swimming activity rhythm with feeding time as a main synchronization factor. The monitored decrease of the breathing/swimming activity ratio by means of the AEFishBIT data-logger also indicated a decreased energy partitioning for growth in the HD environment with a limited oxygen availability. Plasma glucose and cortisol levels increased with the rise of stocking density, and the close association of glycaemia with the expression level of antioxidant enzymes (mn-sod, gpx4, prdx5) in liver and molecular chaperones (grp170, grp75) in skeletal muscle highlighted the involvement of glucose in redox processes via rerouting in the pentose-phosphate-pathway. Other adaptive features included the depletion of oxidative metabolism that favored lipid storage rather than fatty acid oxidation to decrease the oxygen demand as last electron acceptor in the mitochondrial respiratory chain. This was coincident with the metabolic readjustment of the Gh/Igf endocrine-growth cascade that promoted the regulation of muscle growth at the local level rather than a systemic action via the liver Gh/Igf axis. Moreover, correlation analyses within HD fish displayed negative correlations of hepatic transcripts of igf1 and igf2 with the data-logger measurements of activity and respiration, whereas the opposite was found for muscle igf2, ghr1 and ghr2. This was indicative of a growth-regulatory transition that supported a proactive instead of a reactive behavior in HD fish, which was considered adaptive to preserve an active and synchronized feeding behavior with a minimized risk of oxidative stress and epidermal skin damage.

15.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685908

RESUMO

PEAR proteins are a type of plant-specific DNA binding with one finger (Dof) transcription factors that play a key role in the regulation of plant growth, especially during phloem cell growth and seed germination in Arabidopsis. However, the identification, characteristics and function of PEAR proteins, particularly in woody plants, need to be further studied. In the present study, 43 candidate PEAR proteins harboring the conserved Zf-Dof domain were obtained in Populus yunnanensis. Based on phylogenetic and structural analysis, 10 representative PEAR candidates were selected, belonging to different phylogenetic groups. The functions of PEAR proteins in the stress response, signal transduction, and growth regulation of stem cambium and roots undergoing vigorous cell division in Arabidopsis were revealed based on their expression patterns as characterized by qRT-PCR analysis, in accordance with the results of cis-element analysis. In vitro experiments showed that the interaction of transcription factor (E2F) and cyclin indirectly reflects the growth regulation function of PEAR through light signaling and cell-cycle regulation. Therefore, our results provide new insight into the identity of PEAR proteins and their function in stress resistance and vigorous cell division regulation of tissues in P. yunnanensis, which may serve as a basis for further investigation of the functions and characteristics of PEAR proteins in other plants.


Assuntos
Arabidopsis , Populus , Populus/genética , Filogenia , Câmbio , Ciclo Celular , DNA de Plantas , Fatores de Transcrição E2F
16.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762609

RESUMO

This study investigated the potential to use double-stranded RNA insulin-like androgenic gland hormone (dsIAG) to induce sex reversal in Macrobrachium nipponense and identified the molecular mechanisms underlying crustacean reproduction and sex differentiation. The study aimed to determine whether dsIAG could induce sex reversal in PL30-male M. nipponense during a critical period. The sex-related genes were selected by performing the gonadal transcriptome analysis of normal male (dsM), normal female (dsFM), neo-female sex-reversed individuals (dsRM), and unreversed males (dsNRM). After six injections, the experiment finally resulted in a 20% production of dsRM. Histologically, dsRM ovaries developed slower than dsFM, but dsNRM spermathecae developed normally. A total of 1718, 1069, and 255 differentially expressed genes were identified through transcriptome sequencing of the gonads in three comparison groups, revealing crucial genes related to reproduction and sex differentiation, such as GnRHR, VGR, SG, and LWS. Principal Component Analysis (PCA) also distinguished dsM and dsRM very well. In addition, this study predicted that the eyestalks and the "phototransduction-fly" photoperiodic pathways of M. nipponense could play an important role in sex reversal. The enrichment of related pathways and growth traits in dsNRM were combined to establish that IAG played a significant role in reproduction, growth regulation, and metabolism. Finally, complete sex reversal may depend on specific stimuli at critical periods. Overall, this study provides valuable findings for the IAG regulation of sex differentiation, reproduction, and growth of M. nipponense in establishing a monoculture.


Assuntos
Insulina , Palaemonidae , Humanos , Feminino , Masculino , Animais , Androgênios/farmacologia , Palaemonidae/genética , Diferenciação Sexual/genética , Insulina Regular Humana , Reprodução/genética
17.
Int J Biol Macromol ; 253(Pt 4): 127015, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37758111

RESUMO

Peripheral nerve injuries (PNI) currently have limited therapeutic efficacy, and functional scaffolds have been shown to be effective for treating PNI. Ovalbumin (OVA) is widely used as a natural biomaterial for repairing damaged tissues due to its excellent biocompatibility and the presence of various bioactive components. However, there are few reports on the repair of PNI by ovalbumin. In this study, a novel bionic functionalized topological scaffold based on ovalbumin and grafted with tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide was constructed by micro-molding method and surface-biomodification technology. The scaffolds were subjected to a series of evaluations in terms of morphology, mechanics, hydrophilicity, and biocompatibility, and the related molecular mechanisms were further penetrated. The results showed that the scaffolds prepared in this study had aligned ridge/groove structure, good mechanical properties and biocompatibility, and could be used as carriers to slowly release YIGSR, which effectively promoted the proliferation, migration and elongation of Schwann Cells (SCs), and significantly up-regulated the gene expression related to proliferation, apoptosis, migration and axon regeneration. Therefore, the bionic functional topological scaffold has significant application potential for promoting peripheral nerve regeneration and provides a new therapeutic option for repairing PNI.


Assuntos
Axônios , Traumatismos dos Nervos Periféricos , Humanos , Ovalbumina/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann , Peptídeos/química , Traumatismos dos Nervos Periféricos/terapia , Alicerces Teciduais/química
18.
BMC Genomics ; 24(1): 453, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563567

RESUMO

BACKGROUND: The Pacific oyster, Crassostrea gigas, is an economically important shellfish around the world. Great efforts have been made to improve its growth rate through genetic breeding. However, the candidate marker genes, pathways, and potential lncRNAs involved in oyster growth regulation remain largely unknown. To identify genes, lncRNAs, and pathways involved in growth regulation, C. gigas spat was cultured at a low temperature (15 ℃) to yield a growth-inhibited model, which was used to conduct comparative transcriptome analysis with spat cultured at normal temperature (25 ℃). RESULTS: In total, 8627 differentially expressed genes (DEGs) and 1072 differentially expressed lncRNAs (DELs) were identified between the normal-growth oysters (cultured at 25 ℃, hereinafter referred to as NG) and slow-growth oysters (cultured at 15 ℃, hereinafter referred to as SG). Functional enrichment analysis showed that these DEGs were mostly enriched in the AMPK signaling pathway, MAPK signaling pathway, insulin signaling pathway, autophagy, apoptosis, calcium signaling pathway, and endocytosis process. LncRNAs analysis identified 265 cis-acting pairs and 618 trans-acting pairs that might participate in oyster growth regulation. The expression levels of LNC_001270, LNC_003322, LNC_011563, LNC_006260, and LNC_012905 were inducible to the culture temperature and food abundance. These lncRNAs were located at the antisense, upstream, or downstream of the SREBP1/p62, CDC42, CaM, FAS, and PIK3CA genes, respectively. Furthermore, the expression of the trans-acting lncRNAs, including XR_9000022.2, LNC_008019, LNC_015817, LNC_000838, LNC_00839, LNC_011859, LNC_007294, LNC_006429, XR_002198885.1, and XR_902224.2 was also significantly associated with the expression of genes enriched in AMPK signaling pathway, insulin signaling pathway, autophagy, apoptosis, calcium signaling pathway, and endocytosis process. CONCLUSIONS: In this study, we identified the critical growth-related genes and lncRNAs that could be utilized as candidate markers to illustrate the molecular mechanisms underlying the growth regulation of Pacific oysters.


Assuntos
Crassostrea , Insulinas , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Crassostrea/metabolismo , RNA Mensageiro/genética , Proteínas Quinases Ativadas por AMP/genética , Perfilação da Expressão Gênica , Insulinas/genética , Insulinas/metabolismo
19.
Int J Biol Macromol ; 247: 125703, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37414315

RESUMO

Dopamine performs its critical role upon binding to receptors. Since dopamine receptors are numerous and versatile, understanding their protein structures and evolution status, and identifying the key receptors involved in the modulation of insulin signaling will provide essential clues to investigate the molecular mechanism of neuroendocrine regulating the growth in invertebrates. In this study, seven dopamine receptors were identified in the Pacific oysters (Crassostrea gigas) and were classified into four subtypes according to their protein secondary and tertiary structures, and ligand-binding activities. Of which, DR2 (dopamine receptor 2) and D(2)RA-like (D(2) dopamine receptor A-like) were considered the invertebrate-specific type 1 and type 2 dopamine receptors, respectively. Expression analysis indicated that the DR2 and D(2)RA-like were highly expressed in the fast-growing oyster "Haida No.1". After in vitro incubation of ganglia and adductor muscle with exogenous dopamine and dopamine receptor antagonists, the expression of these two dopamine receptors and ILPs (insulin-like peptides) was also significantly affected. Dual-fluorescence in situ hybridization results showed that D(2)RA-like and DR2 were co-localized with MIRP3 (molluscan insulin-related peptide 3) and MIRP3-like (molluscan insulin-related peptide 3-like) in the visceral ganglia, and were co-localized with ILP (insulin-like peptide) in the adductor muscle. Furthermore, the downstream components of dopamine signaling, including PKA, ERK, CREB, CaMKK1, AKT, and GSK3ß were also significantly affected by the exogenous dopamine and dopamine receptor antagonists. These findings confirmed that dopamine might affect the secretion of ILPs through the invertebrate-specific dopamine receptors D(2)RA-like and DR2, and thus played crucial roles in the growth regulation of the Pacific oysters. Our study establishes the potential regulatory relationship between the dopaminergic system and insulin-like signaling pathway in marine invertebrates.


Assuntos
Crassostrea , Insulina , Animais , Insulina/metabolismo , Dopamina/metabolismo , Hibridização in Situ Fluorescente , Transdução de Sinais , Peptídeos/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Crassostrea/genética , Antagonistas de Dopamina/metabolismo
20.
Front Endocrinol (Lausanne) ; 14: 1200407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409228

RESUMO

In vertebrates, thyrostimulin is a highly conserved glycoprotein hormone that, besides thyroid stimulating hormone (TSH), is a potent ligand of the TSH receptor. Thyrostimulin is considered the most ancestral glycoprotein hormone and orthologs of its subunits, GPA2 and GPB5, are widely conserved across vertebrate and invertebrate animals. Unlike TSH, however, the functions of the thyrostimulin neuroendocrine system remain largely unexplored. Here, we identify a functional thyrostimulin-like signaling system in Caenorhabditis elegans. We show that orthologs of GPA2 and GPB5, together with thyrotropin-releasing hormone (TRH) related neuropeptides, constitute a neuroendocrine pathway that promotes growth in C. elegans. GPA2/GPB5 signaling is required for normal body size and acts through activation of the glycoprotein hormone receptor ortholog FSHR-1. C. elegans GPA2 and GPB5 increase cAMP signaling by FSHR-1 in vitro. Both subunits are expressed in enteric neurons and promote growth by signaling to their receptor in glial cells and the intestine. Impaired GPA2/GPB5 signaling causes bloating of the intestinal lumen. In addition, mutants lacking thyrostimulin-like signaling show an increased defecation cycle period. Our study suggests that the thyrostimulin GPA2/GPB5 pathway is an ancient enteric neuroendocrine system that regulates intestinal function in ecdysozoans, and may ancestrally have been involved in the control of organismal growth.


Assuntos
Caenorhabditis elegans , Glicoproteínas , Animais , Caenorhabditis elegans/genética , Sequência de Aminoácidos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Vertebrados/metabolismo , Tireotropina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA