Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1410810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045053

RESUMO

Background: Angrogenetic alopecia (AGA) is one of the most prevalent hair loss disorders worldwide. The hair follicle stem cell (HFSC) is closely related to the formation of hair follicle (HF) structure and HF self-renewal. The activation of HFSC in AGA is critical for hair growth. Pilose antler has been reported to have hair growth-promoting activity, but the mechanism of action on AGA and HFSC has not been reported. Methods: We previously extracted an active component from the pilose antler known as PAEs. In this study, we conducted experiments using AGA mice and HFSC. The effects of PAEs on hair growth in AGA mice were firstly detected, and then the mechanisms of PAEs for AGA were predicted by integrating network pharmacology and de novo transcriptomics data of pilose antler. Finally, biological experiments were used to validate the molecular mechanism of PAEs in treating AGA both in vivo and in vitro. Results: It was found that PAEs promoted hair regrowth by accelerating the activation of anagen, delaying the anagen-catagen transition. It also alleviated the morphological changes, such as hair shortening, thinning, miniaturization, and HF number reduction, and regulated the hair regeneration process of four subtypes of hair. We further found that PAEs could promote the proliferation of HFSC, outer root sheath (ORS) cells, and hair bulb cells in AGA mice. We then integrated network pharmacology and pilose antler transcriptomics data to predict that the mechanism of PAEs treatment in AGA mice is closely related to the PI3K-AKT/Wnt-ß-Catenin pathways. Subsequently, it was also verified that PAEs could activate both pathways in the skin of AGA mice. In addition, we found that PAEs perhaps increased the number of blood vessels around dermal papilla (DP) in experiments in vivo. Meanwhile, the PAEs stimulated the HFSC proliferation in vitro and activated the AKT and Wnt pathways. However, the proliferative activity of HFSC was inhibited after blocking the Wnt pathway and AKT activity. Conclusion: This study suggests that the hair growth-promoting effect of PAEs in AGA mice may be closely related to the stimulation of the AKT and Wnt pathways, which in turn activates the proliferation of HFSC.

3.
Synth Syst Biotechnol ; 9(4): 733-741, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38911060

RESUMO

Collagen XVII (COL17) is a transmembrane protein that mediates skin homeostasis. Due to expression of full length collagen was hard to achieve in microorganisms, arising the needs for selection of collagen fragments with desired functions for microbial biosynthesis. Here, COL17 fragments (27-33 amino acids) were extracted and replicated 16 times for recombinant expression in Escherichia coli. Five variants were soluble expressed, with the highest yield of 223 mg/L. The fusion tag was removed for biochemical and biophysical characterization. Circular dichroism results suggested one variant (sample-1707) with a triple-helix structure at >37 °C. Sample-1707 can assemble into nanofiber (width, 5.6 nm) and form hydrogel at 3 mg/mL. Sample-1707 was shown to induce blood clotting and promote osteoblast differentiation. Furthermore, sample-1707 exhibited high capacity to induce mouse hair follicle stem cells differentiation and osteoblast migration, demonstrating a high capacity to induce skin cell regeneration and promote wound healing. A strong hydrogel was prepared from a chitosan and sample-1707 complex with a swelling rate of >30 % higher than simply using chitosan. Fed-batch fermentation of sample-1707 with a 5-L bioreactor obtained a yield of 600 mg/L. These results support the large-scale production of sample-1707 as a biomaterial for use in the skin care industry.

4.
Mol Biol Res Commun ; 13(3): 103-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915453

RESUMO

Among leading causes of the ischemic stroke pathogenesis, oxidative stress strongly declines rate of stem cell engraftment at the injury site, and disables stem cell-based therapy as a key treatment for ischemia stroke. To overcome this therapeutic limitation, preconditioning has been represented a possible approach to augment the adaptation and viability of stem cells to oxidative stress. Here, we illustrated protective impacts of valproic acid (VPA) and/or rapamycin (RAPA) preconditioning unto oxygen glucose and serum deprivation (OGSD)-stimulated cell damage in hair follicle-derived stem cells (HFSCs) and surveyed the plausible inducement mechanisms. OGSD, as an in vitro cell injury model, was established and HFSCs viability was observed using MTT assay after VPA, RAPA, and VPA-RAPA preconditioning under OGSD. ROS and MDA production was assessed to reflect oxidative stress. Real-time PCR and western blotting were employed to investigate Nrf2 expression. The activity of Nrf2-related antioxidant enzymes including NQO1, GPx and GSH level were examined. VEGF and BDNF mRNA expression levels were analyzed. Our results showed that VPA and/or RAPA preconditioning ameliorated OGSD-induced decline in HFSCs viability. In addition, they considerably prohibited ROS and MDA generation in the OGSD-treated HFSCs. Furthermore, VPA and/or RAPA preconditioning stimulated Nrf2 nuclear repositioning and NQO1 and GPx activity and GSH amount, as well as expression of paracrine factors VEGF and BDNF in OGSD-treated HFSCs. Thus, the protective effects afforded by VPA and/or RAPA preconditioning, which involved Nrf2-modulated oxidant stress and regulation of VEGF and BDNF expression, display a simple strategy to augment cell-transplantation efficiency for ischemic stroke.

5.
Front Aging ; 5: 1433702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881824
6.
Clin Cosmet Investig Dermatol ; 17: 1165-1181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800357

RESUMO

Autophagy is recognized as a crucial regulatory process, instrumental in the removal of senescent, dysfunctional, and damaged cells. Within the autophagic process, lysosomal digestion plays a critical role in the elimination of impaired organelles, thus preserving fundamental cellular metabolic functions and various biological processes. Mitophagy, a targeted autophagic process that specifically focuses on mitochondria, is essential for sustaining cellular health and energy balance. Therefore, a deep comprehension of the operational mechanisms and implications of autophagy and mitophagy is vital for disease prevention and treatment. In this context, we examine the role of autophagy and mitophagy during hair follicle cycles, closely scrutinizing their potential association with hair loss. We also conduct a thorough review of the regulatory mechanisms behind autophagy and mitophagy, highlighting their interaction with hair follicle stem cells and dermal papilla cells. In conclusion, we investigate the potential of manipulating autophagy and mitophagy pathways to develop innovative therapeutic strategies for hair loss.

7.
Immunity ; 57(5): 1071-1086.e7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38677291

RESUMO

Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.


Assuntos
Antígeno B7-1 , Folículo Piloso , Inflamação , Pele , Células-Tronco , Linfócitos T Reguladores , Cicatrização , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Cicatrização/imunologia , Pele/imunologia , Pele/lesões , Pele/patologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Inflamação/imunologia , Folículo Piloso/imunologia , Antígeno B7-1/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reepitelização/imunologia , Movimento Celular/imunologia , Proliferação de Células
8.
Tissue Eng Regen Med ; 21(3): 421-435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37995084

RESUMO

BACKGROUND: Insufficient angiogenesis and the lack of skin appendages are critical challenges in cutaneous wound healing. Stem cell-fabricated cell sheets have become a promising strategy, but cell sheets constructed by a single cell type are inadequate to provide a comprehensive proregenerative microenvironment for wound tissue. METHODS: Based on the communication between cells, in this study, bone marrow mesenchymal stem cells (BMSCs) and hair follicle stem cells (HFSCs) were cocultured to fabricate a composite cell sheet (H/M-CS) for the treatment of full-thickness skin wounds in mice. RESULTS: Experiments confirmed that there is cell-cell communication between BMSCs and HFSCs, which enhances the cell proliferation and migration abilities of both cell types. Cell-cell talk also upregulates the gene expression of pro-angiogenic-related cytokines in BMSCs and pro-hair follicle-related cytokines in HFSCs, as well as causing changes in the properties of secreted extracellular matrix components. CONCLUSIONS: Therefore, the composite cell sheet is more conducive for cutaneous wound healing and promoting the regeneration of blood vessels and hair follicles.


Assuntos
Folículo Piloso , Células-Tronco Mesenquimais , Camundongos , Animais , Cicatrização , Pele , Citocinas
9.
Stem Cell Rev Rep ; 19(7): 2510-2524, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548806

RESUMO

The intricate nature of the human brain and the limitations of existing model systems to study molecular and cellular causes of neuropsychiatric disorders represent a major challenge for basic research. The promising progress in patient-derived stem cell technology and in our knowledge on the role of the brain oxytocin (OXT) system in health and disease offer new possibilities in that direction. In this study, the rat hair follicle stem cells (HFSCs) were isolated and expanded in vitro. The expression of oxytocin receptors (OXTR) was evaluated in these cells. The cellular viability was assessed 12 h post stimulation with OXT. The activation of OXTR-coupled intracellular signaling cascades, following OXT treatment was determined. Also, the influence of OXT on neurite outgrowth and cytoskeletal rearrangement were defined. The assessment of OXTR protein expression revealed this receptor is expressed abundantly in HFSCs. As evidenced by the cell viability assay, no adverse or cytotoxic effects were detected following 12 h treatment with different concentrations of OXT. Moreover, OXTR stimulation by OXT resulted in ERK1/2, CREB, and eEF2 activation, neurite length alterations, and cytoskeletal rearrangements that reveal the functionality of this receptor in HFSCs. Here, we introduced the rat HFSCs as an easy-to-obtain stem cell model that express functional OXTR. This cell-based model can contribute to our understanding of the progression and treatment of neuropsychiatric disorders with oxytocinergic system deficiency.

10.
Front Aging ; 4: 1192149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465120

RESUMO

Aging is defined as the functional decline of tissues and organisms, leading to many human conditions, such as cancer, neurodegenerative diseases, and hair loss. Although stem cell exhaustion is widely recognized as a hallmark of aging, our understanding of cell state changes-specifically, the dynamics of the transcriptome and open chromatin landscape, and their relationship with aging-remains incomplete. Here we present a longitudinal, single-cell atlas of the transcriptome and open chromatin landscape for epithelia cells of the skin across various hair cycle stages and ages in mice. Our findings reveal fluctuating hair follicle stem cell (HF-SC) states, some of which are associated with the progression of the hair cycle during aging. Conversely, inner bulge niche cells display a more linear progression, seemingly less affected by the hair cycle. Further analysis of the open chromatin landscape, determined by single-cell Assay for Transposase-Accessible Chromatin (ATAC) sequencing, demonstrates that reduced open chromatin regions in HF-SCs are associated with differentiation, whereas gained open chromatin regions in HF-SCs are linked to the transcriptional control of quiescence. These findings enhance our understanding of the transcriptional dynamics in HF-SC aging and lay the molecular groundwork for investigating and potentially reversing the aging process in future experimental studies.

11.
Chin Med ; 18(1): 84, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454125

RESUMO

BACKGROUND: As a supplement for promoting hair health, Shi-Bi-Man (SBM) is a prescription comprising various traditional Chinese medicines. Though SBM has been reported to promote hair regeneration, its molecular mechanism remains unclear. Cynomolgus monkeys (Macaca fascicularis) are non-human primates with a gene expression profile similar to that of humans. The purpose of this research is to evaluate the effect of SBM on promoting hair regeneration in cynomolgus monkeys and to reveal the underlying mechanism. METHODS: The effect of SBM on hair regeneration was observed by skin administration on 6 cynomolgus monkeys with artificial back shaving. The molecular mechanism of SBM was studied using single-cell RNA sequencing (scRNA-seq) in combination with quantitative polymerase chain reaction (qPCR) detection for gene transcription level, and immunofluorescence staining verification for protein level. RESULTS: SBM significantly induced hair regeneration in cynomolgus monkeys, increased hair follicle number and facilitated hair follicle development. ScRNA-seq revealed an increase in the number of hair follicle stem cells (HFSCs) with a higher activation state, as evidenced by the higher expression of activation marker LDHA related to metabolism and the proliferation marker MKI67. Immunofluorescence analysis at the protein level and qPCR at the mRNA level confirmed the sequencing data. Cellchat analysis revealed an enrichment of ligand-receptor pairs involved in intercellular communication in Laminin-related pathways. CONCLUSION: SBM significantly promotes hair regeneration in cynomolgus monkeys. Mechanically, SBM can up-regulate LDHA-mediated lactic acid metabolism and drive HFSC activation, which in turn promotes the proliferation and differentiation of HFSCs.

12.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835374

RESUMO

Hair follicle (HF) growth and development are controlled by various cell types, including hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs). Exosomes are nanostructures that participate in many biological processes. Accumulating evidence indicates that DPC-derived exosomes (DPC-Exos) mediate HFSC proliferation and differentiation during the cyclical growth of hair follicles. In this study, we found that DPC-Exos increase ki67 expression and CCK8 cell viability readouts in HFSCs but reduce annexin staining of apoptotic cells. RNA sequencing of DPC-Exos-treated HFSCs identified 3702 significantly differentially expressed genes (DEGs), including BMP4, LEF1, IGF1R, TGFß3, TGFα, and KRT17. These DEGs were enriched in HF growth- and development-related pathways. We further verified the function of LEF1 and showed that overexpression of LEF1 increased the expression of HF development-related genes and proteins, enhanced HFSC proliferation, and reduced HFSC apoptosis, while knockdown of LEF1 reversed these effects. DPC-Exos could also rescue the siRNA-LEF1 effect in HFSCs. In conclusion, this study demonstrates that DPC-Exos mediated cell-to-cell communication can regulate HFSCs proliferation by stimulating LEF1 and provide novel insights into HF growth and development regulatory mechanisms.


Assuntos
Proliferação de Células , Exossomos , Folículo Piloso , Diferenciação Celular , Células Cultivadas , Exossomos/metabolismo , Folículo Piloso/citologia , Humanos
13.
Brain Res ; 1799: 148170, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410427

RESUMO

The present study investigated the effects of intracerebral human-derived hair follicle stem cells (HFBSCs), whether alone or in combination with hydrogen sulfide (H2S) in a rat model of focal cerebral ischemia. The rats were randomly assigned into 4 groups (n = 10): Control (phosphate buffered saline (PBS)), Group A (at 24 h post-middle cerebral artery occlusion(MCAo), stereotaxic intracerebral, 1,0 × 106, total 10 µL HFBSCs), Group B (3-14 d post-MCAo, intraperitoneal (i.p.), 25 µM/kg/day H2S), Group AB (HFBSCs + H2S). Cranial magnetic resonance images were recorded on postoperative 1st and 28th days. Three dimensional analysis was performed to calculate the infarct volumes. Rotarod and cylinder tests were performed after MCAo and finally all rats were euthanized by cardiac perfusion at 28 days after MCAo for immunohistochemical analysis. The reduction in infarct volumes of rats receiving HFBSC was significant. The cranial infarct volume on the postoperative 28th day was significantly higher in the group in which H2S was administered alone compared to the HFBSC alone group. All animals showed steadily improved spontaneous locomotor activity from day 7 post-MCAo on rotarod test, from day 1 on cylinder test, but showed no significant differences at all times. In all groups, the grading scores of CD34, CD5, CD11b and GFAP immunohistochemical markers did not differ significantly. In conclusion, intracerebral HFBSC treatment after 24 h of ischemic stroke may be an effective way to reduce the cranial infarct volume, whereas H2S treatment alone or in combination with HFBSC may not be sufficient for ischemic brain injury.


Assuntos
Isquemia Encefálica , Sulfeto de Hidrogênio , Humanos , Ratos , Animais , Sulfeto de Hidrogênio/farmacologia , Folículo Piloso/patologia , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/patologia , Células-Tronco/patologia , Modelos Animais de Doenças
14.
Pharmaceutics ; 14(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36559274

RESUMO

Hair follicle stem cells (HFSCs) utilize glycolytic metabolism during their activation and anagen induction. However, the role of pyruvate kinase M2 (PKM2), which catalyzes the final step of glycolysis, in hair regeneration has not been elucidated. In this study, we investigated the expression pattern and activity of PKM2 during the depilation-induced anagen progression in mice. We found that TEPP-46, a selective activator of PKM2, enhanced hair re-growth and proliferation of HFSCs. PKM2 expression was increased via up-regulation of Wnt/ß-catenin signaling, which is involved in hair regeneration. Moreover, a combined treatment with KY19382, a small molecule that activates Wnt/ß-catenin signaling, and TEPP-46 significantly enhanced hair re-growth and wound-induced hair follicle neogenesis (WIHN). These results indicate that simultaneous activation of the PKM2 and Wnt/ß-catenin signaling could be a potential strategy for treating alopecia patients.

15.
Exp Cell Res ; 421(2): 113411, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36351501

RESUMO

Prostaglandin metabolism is involved in the regulation of the periodic process of hair follicles. Preliminary research data reported that prostaglandin E2 (PGE2) exhibits potential in hair growth. However, the relevant evidence is still insufficient. Herein, we prepared a PGE2 matrix by conjugating PGE2 with collagen via crosslinkers to avoid rapid degradation of PGE2 molecules in vivo. First, we measured the physical properties of the PGE2 matrix. A mouse model of hair loss was established, and PGE2 matrix subcutaneous injection was applied to evaluate hair growth. Under different treatments with the PGE2 matrix, the morphology of hair follicles, the dynamic expression of hair follicle stem cell markers and key regulators in the hair growth cycle were explored. Our data revealed that the PGE2 matrix increased the proportion of developing hair follicles at the early growth stage. Improvements in hair follicle stem cells, such as Sox9+ and Lgr5+ cells, have also been confirmed as therapeutic effects of PGE2 to stimulate hair follicle growth. Our study indicated that PGE2 exhibits effective roles in hair development during anagen. Furthermore, the results also highlight the potential of the PGE2 delivery system as a novel therapeutic strategy for the treatment of hair disorders in the future.


Assuntos
Dinoprostona , Folículo Piloso , Camundongos , Animais , Folículo Piloso/metabolismo , Dinoprostona/farmacologia , Dinoprostona/metabolismo , Cabelo , Células-Tronco , Colágeno/farmacologia , Colágeno/metabolismo
16.
BMC Vet Res ; 18(1): 313, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35971123

RESUMO

BACKGROUND: Arbas Cashmere goats are excellent domestic breeds with high yields of wool and cashmere. Their wool and cashmere can bring huge benefits to the livestock industry. Our studies intend to more fully understand the biological characteristics of hair follicle stem cells (HFSCs) in order to further explore the mechanisms of wool and cashmere regular regeneration. And they have been increasingly considered as promising multipotent cells in regenerative medicine because of their capacity to self-renew and differentiate. However, many aspects of the specific growth characteristics and differentiation ability of HFSCs remain unknown. This study aimed to further explore the growth characteristics and pluripotency of primary hair follicle stem cells (PHFSCs) and secondary hair follicle stem cells (SHFCs). RESULTS: We obtained PHFSCs and SHFSCs from Arbas Cashmere goats using combined isolation and purification methods. The proliferation and vitality of the two types of HFSCs, as well as the growth patterns, were examined. HFSC-specific markers and genes related to pluripotency, were subsequently identified. The PHFSCs and SHFSCs of Arbas Cashmere goat have a typical cobblestone morphology. Moreover, the PHFSCs and SHFSCs express HFSC surface markers, including CD34, K14, K15, K19 and LGR5. We also identified pluripotency-associated gene expression, including SOX2, OCT4 and SOX9, in PHFSCs and SHFSCs. Finally, PHFSCs and SHFSCs displayed multipotent abilities. PHFSCs and SHFSCs can be directed to differentiate into adipocyte-like, neural-like, and hepatocyte-like cells. CONCLUSIONS: In conclusion, this study confirmed that the biological characteristics and differentiation potential of PHFSCs and SHFSCs from Arbas Cashmere goats. These findings broaden and refine our knowledge of types and characteristics of adult stem cells.


Assuntos
Cabras , Folículo Piloso , Adipócitos , Animais , Diferenciação Celular , Cabras/metabolismo , Folículo Piloso/metabolismo , Células-Tronco
17.
Immunity ; 55(10): 1891-1908.e12, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044899

RESUMO

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.


Assuntos
Infestações por Ácaros , Ácaros , Animais , Citocinas , Folículo Piloso/patologia , Humanos , Imunidade Inata , Inflamação , Interleucina-13 , Linfócitos/patologia , Camundongos , Infestações por Ácaros/complicações , Infestações por Ácaros/parasitologia , Infestações por Ácaros/patologia , Simbiose
18.
Stem Cell Rev Rep ; 18(6): 2002-2015, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35802225

RESUMO

BACKGROUND: Hair follicle stem cells (HFSCs) are derived from the bulge region and are important autologous stem cell sources. Bibliometric is a statistical method that quantitatively analyses the research papers concerned about one special topic. This study aims to estimate the research status and trends of HFSCs worldwide by bibliometric analyses. METHODS: Data were obtained from the Web of Science by searching keywords related to HFSCs. Publication distributions stratified by countries/regions, institutions, journals, and authors were systematically assessed. The frequency of keywords was assessed, and bibliometric mapping was employed to describe the development of HFSC research. RESULTS: A total of 458 publications that met our screening criteria were included in this study, consisting of 423 (92.4%) articles and 35 (7.6%) reviews. The United States of America (USA) ranked first in the number of publications at 146 (31.9%), followed by China at 130 (28.4%), which is consistent with the rank of the H-index. Author keywords were classified into three clusters, namely, basic study, applied study, and biomarker; average publication time of keywords in applied study cluster is later than basic study cluster. The keywords "bulge", "nestin", and "skin" are the top three most frequent keywords in basic studies; "differentiation", "proliferation", and "alopecia" are the top three most frequent keywords in applied studies. With respect to the latest research hotspots, "apoptosis" and "tissue engineering" are relatively new keywords. CONCLUSIONS: The USA and China were the most productive countries for research on HFSCs. The focus of keywords gradually shifted from basic study to applied study. Research on the differentiation/proliferation of HFSCs and the role of HFSCs in alopecia have been recent research focuses. Apoptosis and tissue engineering are recommended as promising research hotspots. Our study provides profound insights into the research history, current status, and future trend of HFSCs.


Assuntos
Bibliometria , Folículo Piloso , China , Células-Tronco , Estados Unidos
19.
Chin Med ; 17(1): 63, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35637486

RESUMO

BACKGROUND: Alopecia affects millions of individuals globally, with hair loss becoming more common among young people.  Various traditional Chinese medicines (TCM) have been used clinically for treating alopecia, however, the effective compounds and underlying mechanism are less known. We sought to investigate the effect of Alpinetin (AP), a compound extracted from Fabaceae and Zingiberaceae herbs, in hair regeneration. METHODS: Animal model for hair regeneration was mimicked by depilation in C57BL/6J mice. The mice were then topically treated with 3 mg/ml AP, minoxidil as positive control (PC), or solvent ethanol as vehicle control (VC) on the dorsal skin. Skin color changes which reflected the hair growth stages were monitored and pictured, along with H&E staining and hair shaft length measurement. RNA-seq analysis combined with immunofluorescence staining and qPCR analysis were used for mechanism study. Meanwhile, Gli1CreERT2; R26RtdTomato and Lgr5EGFP-CreERT2; R26RtdTomato transgenic mice were used to monitor the activation and proliferation of Gli1+ and Lgr5+ HFSCs after treatment. Furthermore, the toxicity of AP was tested in keratinocytes and fibroblasts from both human and mouse skin to assess the safety. RESULTS: When compared to minoxidil-treated and vehicle-treated control mice, topical application of AP promoted anagen initiation and delayed catagen entry, resulting in a longer anagen phase and hair shaft length. Mechanistically, RNA-seq analysis combined with immunofluorescence staining of Lef1 suggested that Lgr5+ HFSCs in lower bulge were activated by AP via Wnt signaling. Other HFSCs, including K15+, Lef1+, and Gli1+ cells, were also promoted into proliferating upon AP treatment. In addition, AP inhibited cleaved caspase 3-dependent apoptosis at the late anagen stage to postpone regression of hair follicles. More importantly, AP showed no cytotoxicity in keratinocytes and fibroblasts from both human and mouse skin. CONCLUSION: This study clarified the effect of AP in promoting hair regeneration by activating HFSCs via Wnt signaling. Our findings may contribute to the development of a new generation of pilatory that is more efficient and less cytotoxic for treating alopecia.

20.
Stem Cell Res Ther ; 13(1): 211, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619120

RESUMO

BACKGROUND: Hair follicle stem cells (HFSC) play an essential role in the maintenance of hair homeostasis; during the hair cycle, HFSC remain quiescent for most of its duration. The hairpoor mouse (+ /HrHp), an animal model of Marie-Unna hypotrichosis (MUHH), overexpresses hairless in the bulge, inner root sheath, and outer root sheath of HF and shows the same phenotype as in MUHH patients manifesting sparse hair with progression to alopecia with age. The aim of this study was to gain an understanding of the hair cycle and the status of HFSC during the hair cycle of the hairpoor mouse in order to delineate the pathogenesis of MUHH. METHODS: H&E staining was performed in order to define the state of the hair follicle. FACS analysis and immunostaining were performed at the 1st and 2nd telogen stages for observation of the HFSC. A label retaining assay was performed to determine the quiescent state of hair follicles. qRT-PCR was performed to determine expression of factors involved in niche signaling and Wnt signaling. RESULTS: We observed a drastic decrease in the number of hair follicles after the 1st telogen, followed by an intensified disturbance in the hair cycle with shorter anagen as well as 2nd telogen in the hairpoor mouse. A dramatic reduction in the number of CD34 expressing bulges as well as cells was observed at the telogen of the HFs, with prominent high proliferation of bulge cells, suggesting the loss of HFSC quiescence in the hairpoor mouse. The increased cell proliferation in HF was reiterated following the synchronization of the hair cycle, leading to acceleration of HF cycling. Reduced expression of Fgf18 and Bmp6, the factors involved in HFSC quiescence, was observed in the HFSC niche of the hairpoor mouse. In addition, disturbed expression of Wnt signaling molecules including Wnt7b, Wnt10b, and Sfrp1 was observed, which induced the telogen-to-anagen transition of HFs in the hairpoor mouse. CONCLUSIONS: These results indicate that the quiescent state of HFSC is not properly maintained in the hairpoor mouse, consequently leading HFs to the completely disarrayed hair cycle. These findings may provide an understanding of an underlying mechanism for development of alopecia with age in MUHH patients.


Assuntos
Folículo Piloso , Hipotricose , Alopecia/genética , Alopecia/metabolismo , Animais , Humanos , Hipotricose/genética , Hipotricose/metabolismo , Camundongos , Células-Tronco/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA