Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trop Life Sci Res ; 35(2): 1-29, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39234477

RESUMO

We investigated the host range of Cassytha filiformis L. in the heath forests using six 50-metre transects. Sixteen shrubs and tree species were infected by C. filiformis vines, including two exotic Acacia species. This paper also examined the density and vigour of C. filiformis when infecting the two most preferred and common hosts, the heath native Dillenia suffruticosa (Griff. ex Hook. f. and Thomson) Martelli, and the invasive Acacia mangium Willd. The results suggested that C. filiformis has higher vigour when infecting native hosts than in exotic A. mangium albeit being not statistically significant. The long thread-like stems of parasite were present at relatively high density when infecting A. mangium, regardless of the host conditions. We also assessed the functionality of the haustoria on both D. suffruticosa and A. mangium using histological methods. It was found that C. filiformis can establish a true haustorial endophytic connection with studied hosts. Under controlled conditions, C. filiformis pose as a possible candidate for a biological control agent of A. mangium to curtail the fast spreading of this introduced species in tropical Borneo.

2.
J Fungi (Basel) ; 10(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39194883

RESUMO

Mushroom Jin Er has attracted widespread attention in Asia over the past two decades due to its medicinal properties and nutritional values. In the present study, Jin Er basidiocarps were often found to be surrounded by Stereum hirsutum fruiting bodies in their natural habitat and occasionally in artificial cultivation. The observation of two different kinds of mycelia within the hymenium and analyses of ITS sequences confirmed that Jin Er basidiocarps were composed of two fungal species, Naematelia aurantialba and S. hirsutum. This heterogeneity of Jin Er fruiting bodies is indeed distinct from the homogeneous hypha of Tremella fuciformis found in Yin Er mushroom, although its development also requires the presence of another fungus Annulohypoxylon stygium. Basidiospores can germinate on the surface of basidiocarps and produce mycelia. However, basidiospores in PDA medium can only bud into yeast-like conidia. The yeast-like conidia of N. aurantialba can transform into pseudohyphae with a change in temperature from 20 °C to 28 °C or switch into filamentous cells on an induction medium (IDM) at 20 °C, 25 °C and 28 °C. This dimorphic was reported for the first time in N. aurantialba. Haustorium-like structures were abundantly observed both within the hymenium and in the aerial mycelia cultured on the IDM. The developmental process was documented firstly in this study, involving the formation of protuberances with basal clamp connections, elongation at the protuberances, branch production, and eventual maturation. However, further observation is required to determine whether the haustorium-like structures can penetrate S. hirsutum hyphae. These findings are expected to provide valuable insights into the relationship and interaction between these two fungi, thereby advancing the cultivation of fruiting bodies.

3.
Pathogens ; 13(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921782

RESUMO

Parasitic plants represent a peculiar group of semi- or fully heterotrophic plants, possessing the ability to extract water, minerals, and organic compounds from other plants. All parasitic plants, either root or stem, hemi- or holoparasitic, establish a vascular connection with their host plants through a highly specialized organ called haustoria. Apart from being the organ responsible for nutrient extraction, the haustorial connection is also a highway for various macromolecules, including DNA, proteins, and, apparently, phytopathogens. At least some parasitic plants are considered significant agricultural pests, contributing to enormous yield losses worldwide. Their negative effect is mainly direct, by the exhaustion of host plant fitness and decreasing growth and seed/fruit formation. However, they may pose an additional threat to agriculture by promoting the trans-species dispersion of various pathogens. The current review aims to summarize the available information and to raise awareness of this less-explored problem. We further explore the suitability of certain phytopathogens to serve as specific and efficient methods of control of parasitic plants, as well as methods for control of the phytopathogens.

4.
Plants (Basel) ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38592814

RESUMO

BACKGROUND: Thesium chinense known as the "plant antibiotic" is a facultative root hemi-parasitic herb while Prunella vulgaris can serve as its host. However, the molecular mechanisms underlying the communication between T. chinense and its host remained largely unexplored. The aim of this study was to provide a comprehensive view of transferred metabolites and mobile mRNAs exchanged between T. chinense and P. vulgaris. RESULTS: The wide-target metabolomic and transcriptomic analysis identified 5 transferred metabolites (ethylsalicylate, eriodictyol-7-O-glucoside, aromadendrin-7-O-glucoside, pruvuloside B, 2-ethylpyrazine) and 50 mobile genes between T. chinense and P. vulgaris, as well as haustoria formation related 56 metabolites and 44 genes. There were 4 metabolites (ethylsalicylate, eriodictyol-7-O-glucoside, aromadendrin-7-O-glucoside and pruvuloside B) that are transferred from P. vulgaris to T. chinense, whereas 2-ethylpyrazine was transferred in the opposite direction. Furthermore, we inferred a regulatory network potentially involved in haustoria formation, where three metabolites (N,N'-Dimethylarginine/SDMA, NG,NG-Dimethyl-L-arginine, 2-Acetoxymethyl-anthraquinone) showed significant positive correlations with the majority of haustoria formation-related genes. CONCLUSIONS: These results suggested that there was an extensive exchange of information with P. vulgaris including transferred metabolites and mobile mRNAs, which might facilitate the haustoria formation and parasition of T. chinense.

5.
Plant Signal Behav ; 18(1): 2252219, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37642396

RESUMO

Phtheirospermum japonicum shows induced expression of PjPME and PjPMEI genes during haustoria development in rice and Arabidopsis with increased PME activity, which leads to the modulated cell wall during parasitism. Moreover, how PME and PMEI proteins interact and balance during haustoria development remains elusive.


Assuntos
Arabidopsis , Orobanchaceae , Oryza , Pectinas , Arabidopsis/genética , Parede Celular
6.
Trends Plant Sci ; 28(11): 1214-1217, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586981

RESUMO

Recent findings demonstrate that cytoplasmic effectors from fungal and oomycete pathogens enter plant cells via clathrin-mediated endocytosis (CME). This raises several questions: Does effector secretion pathway facilitate host uptake? How is CME triggered in host cells? How are the effectors released from endosomal compartments to reach diverse subcellular destinations?

7.
J Exp Bot ; 74(22): 7034-7044, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486862

RESUMO

Parasitic plants invade their host through their invasive organ, the haustorium. This organ connects to the vasculature of the host roots and hijacks water and nutrients. Although parasitism has evolved independently in plants, haustoria formation follows a similar mechanism throughout different plant species, highlighting the developmental plasticity of plant tissues. Here, we compare three types of haustoria formed by the root and shoot in the plant parasites Striga and Cuscuta. We discuss mechanisms underlying the interactions with their hosts and how different approaches have contributed to major understanding of haustoria formation and host invasion. We also illustrate the role of auxin and cytokinin in controlling this process.


Assuntos
Cuscuta , Striga , Plantas , Citocininas , Interações Hospedeiro-Parasita , Raízes de Plantas
8.
Sheng Wu Gong Cheng Xue Bao ; 38(10): 3825-3843, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36305412

RESUMO

To provide a theoretical basis for controlling the spread of rust disease, cultivating disease-resistant varieties and reducing yield losses, we investigated the transcriptome differences between Gymnosporangium yamadae and Gymnosporangium asiaticum at the haustorial stage and revealed a specialized selection mechanism for Gymnosporangium species to infect host plants. We sequenced the transcriptomes of the haustoria in rust-infected leaves when basidiospores of G. yamadae and G. asiaticum infected their hosts, and obtained 21 213 and 13 015 unigenes, respectively. Real-time fluorescence quantitative PCR validation of five genes selected from G. yamadae and G. asiaticum, respectively, showed that their expression profiles were generally consistent with the results of transcriptome analysis, demonstrating the reliability of the transcriptome data. We used seven databases such as Nr, GO, KEGG, and KOG to perform gene function annotation and enrichment analysis, and found that the genes from both rusts were mainly enriched in cellular processes, translation, and metabolism-related pathways. Moreover, we used SignalP, TMHMM online website and other software such as dbCAN, BLSAT, HMMER to show that there were 343 (2.51%) and 175 (2.79%) candidate effector proteins containing 14 and 5 proteases and 10 and 3 lipases in the haustoria of G. yamadae and G. asiaticum, respectively. Furthermore, we used OrthoFinder, BLAST and KaKs Calculator software to analyze the evolutionary relationship of the two fungi. Among one-to-one homologous genes, gene pairs with > 82% alignment were considered to be under conservative selection, and 12.37% under positive selection. Five effectors of G. asiaticum were under positive selection, and one of which was a lipase. No significant differences were found in the enrichment of expressed genes between G. yamadae and G. asiaticum, indicating the biological processes involved in haustoria were relatively conserved, despite the typical host selectivity between species. The low protein similarity between the two species suggested that they were under greater host selective pressure and there was significant evolutionary divergence, which might be related to the host-specific selection mechanism. In the haustorial, the main purpose of the effectors might be to regulate physiological processes in the plants rather than attacking the host directly, and G. yamadae and G. asiaticum might use plant lipids as energy sources.


Assuntos
Doenças das Plantas , Transcriptoma , Reprodutibilidade dos Testes , Doenças das Plantas/microbiologia , Perfilação da Expressão Gênica/métodos
9.
Curr Opin Plant Biol ; 65: 102121, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34801784

RESUMO

Although the ultimate purpose of a seed is the successful establishment of the next generation, seed development involves more than embryo growth. In angiosperms, seed development requires the intimate coordination of three distinct entities - maternal tissue and two offspring, embryo and embryo-nourishing endosperm. Although seeds are cornerstones of many terrestrial ecosystems and human diets, we are only beginning to understand the interactions among seed tissues and the molecular processes and genes that determine them. Recent studies of gene expression and function in distantly related angiosperms, combined with over 100 years of embryological research, have repeatedly highlighted the endosperm associated with maternal-filial boundaries as a central point in seed developmental dynamics. In this review, we highlight evidence that links this zone with nutritional dynamics, developmental signaling, and imprinted gene expression. We suggest that the underappreciated diversity of this specialized endosperm across angiosperms deserves further study from developmental, molecular, and genetic perspectives.


Assuntos
Endosperma , Magnoliopsida , Ecossistema , Endosperma/genética , Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Sementes
10.
Plants (Basel) ; 10(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34579405

RESUMO

Mistletoe infestation leads to a decrease in the growth of woody plants, their longevity, and partial or complete drying of the top, as well as premature death. Various environmental stress factors, both abiotic and biotic, stimulate the formation of reactive oxygen species and the development of oxidative stress in plant tissues. This study aimed to investigate the effect of mistletoe (Viscum album L.) infestation on the response of the antioxidative defense system in leaves of small-leaved linden (Tilia cordata Mill.). Leaves from infested trees were taken from branches (i) without mistletoe, (ii) with 1-2 mistletoe bushes (low degree of infestation), and (iii) with 5-7 mistletoe bushes (high degree of infestation). The relative water content and the chlorophyll a and b contents in leaves from linden branches affected by mistletoe were significantly lower than those in leaves from non-infested trees and from host-tree branches with no mistletoe. At the same time, leaves from branches with low and high degrees of infestation had significantly higher electrolyte leakage, malondialdehyde and hydrogen peroxide content, oxidized forms of ascorbic acid (dehydroascorbic and 2,3-diketogulonic acids), and oxidized glutathione. The results of principal component analysis show that the development of oxidative stress was accompanied by an increase in proline content and in superoxide dismutase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase activity. Several biochemical parameters (proline, ascorbic acid, dehydroascorbic acid, glutathione, glutathione peroxidase, ascorbate peroxidase, and dehydroascorbate reductase) were found to be altered in leaves from host-tree branches with no mistletoe. This result indicates that the mistletoe infestation of trees not only causes local changes in the locations of hemiparasite attachment, but also affects the redox metabolism in leaves from other parts of the infested tree.

11.
J Fungi (Basel) ; 7(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513785

RESUMO

Obligate biotrophic fungal pathogens, such as Blumeria graminis and Puccinia graminis, are amongst the most devastating plant pathogens, causing dramatic yield losses in many economically important crops worldwide. However, a lack of reliable tools for the efficient genetic transformation has hampered studies into the molecular basis of their virulence or pathogenicity. In this study, we present the Ustilago hordei-barley pathosystem as a model to characterize effectors from different plant pathogenic fungi. We generate U. hordei solopathogenic strains, which form infectious filaments without the presence of a compatible mating partner. Solopathogenic strains are suitable for heterologous expression system for fungal virulence factors. A highly efficient Crispr/Cas9 gene editing system is made available for U. hordei. In addition, U. hordei infection structures during barley colonization are analyzed using transmission electron microscopy, showing that U. hordei forms intracellular infection structures sharing high similarity to haustoria formed by obligate rust and powdery mildew fungi. Thus, U. hordei has high potential as a fungal expression platform for functional studies of heterologous effector proteins in barley.

12.
Front Plant Sci ; 12: 764843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222447

RESUMO

Parasitic weeds cause billions of dollars in agricultural losses each year worldwide. Cuscuta campestris (C. campestris), one of the most widespread and destructive parasitic plants in the United States, severely reduces yield in tomato plants. Reducing the spread of parasitic weeds requires understanding the interaction between parasites and hosts. Several studies have identified factors needed for parasitic plant germination and haustorium induction, and genes involved in host defense responses. However, knowledge of the mechanisms underlying the interactions between host and parasitic plants, specifically at the interface between the two organisms, is relatively limited. A detailed investigation of the crosstalk between the host and parasite at the tissue-specific level would enable development of effective parasite control strategies. To focus on the haustorial interface, we used laser-capture microdissection (LCM) with RNA-seq on early, intermediate and mature haustorial stages. In addition, the tomato host tissue that immediately surround the haustoria was collected to obtain tissue- resolution RNA-Seq profiles for C. campestris and tomato at the parasitism interface. After conducting RNA-Seq analysis and constructing gene coexpression networks (GCNs), we identified CcHB7, CcPMEI, and CcERF1 as putative key regulators involved in C. campestris haustorium organogenesis, and three potential regulators, SlPR1, SlCuRe1-like, and SlNLR, in tomatoes that are involved in perceiving signals from the parasite. We used host-induced gene silencing (HIGS) transgenic tomatoes to knock-down the candidate genes in C. campestris and produced CRISPR transgenic tomatoes to knock out candidate genes in tomatoes. The interactions of C. campestris with these transgenic lines were tested and compared with that in wild-type tomatoes. The results of this study reveal the tissue-resolution gene regulatory mechanisms at the parasitic plant-host interface and provide the potential of developing a parasite-resistant system in tomatoes.

13.
Microb Ecol ; 82(1): 35-48, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32086543

RESUMO

Epichloë endophytes have been shown to be mutualistic symbionts of cool-season grasses under most environmental conditions. Although pairwise interactions between hemiparasites and their hosts are heavily affected by host-associated symbiotic microorganisms, little attention has been paid to the effects of microbe-plant interactions, particularly endophytic symbiosis, in studies examining the effects of parasitic plants on host performance. In this study, we performed a greenhouse experiment to examine the effects of hereditary Epichloë endophyte symbiosis on the growth of two host grasses (Stipa purpurea and Elymus tangutorum) in the presence or absence of a facultative root hemiparasite (Pedicularis kansuensis Maxim). We observed parasitism of both hosts by P. kansuensis: when grown with a host plant, the hemiparasite decreased the performance of the host while improving its own biomass and survival rate of the hemiparasite. Parasitized endophyte-infected S. purpurea plants had higher biomass, tillers, root:shoot ratio, and photosynthetic parameters and a lower number of functional haustoria than the endophyte-free S. purpurea conspecifics. By contrast, parasitized endophyte-infected E. tangutorum had a lower biomass, root:shoot ratio, and photosynthetic parameters and a higher number of haustoria and functional haustoria than their endophyte-free counterparts. Our results reveal that the interactions between the endophytes and the host grasses are context dependent and that plant-plant interactions can strongly affect their mutualistic interactions. Endophytes originating from S. purpurea alleviate the host biomass reduction by P. kansuensis and growth depression in the hemiparasite. These findings shed new light on using grass-endophyte symbionts as biocontrol methods for the effective and sustainable management of this weedy hemiparasite.


Assuntos
Elymus , Epichloe , Endófitos , Plantas Daninhas , Poaceae , Simbiose
14.
New Phytol ; 228(2): 445-458, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32394464

RESUMO

An understanding of the cell biology underlying the burgeoning molecular genetic and genomic knowledge of oomycete pathogenicity is essential to gain the full context of how these pathogens cause disease on plants. An intense research focus on secreted Phytophthora effector proteins, especially those containing a conserved N-terminal RXLR motif, has meant that most cell biological studies into Phytophthora diseases have focussed on the effectors and their host target proteins. While these effector studies have provided novel insights into effector secretion and host defence mechanisms, there remain many unanswered questions about fundamental processes involved in spore biology, host penetration and haustorium formation and function.


Assuntos
Phytophthora , Interações Hospedeiro-Patógeno , Doenças das Plantas , Plantas , Proteínas , Virulência
15.
J Exp Bot ; 71(3): 749-750, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31971243
16.
Mol Plant Pathol ; 21(1): 83-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774224

RESUMO

As an obligate parasite, Puccinia striiformis f. sp. tritici (Pst) forms haustoria to obtain nutrients from plant cells for development, and these structures are essential for pathogen survival. To better understand the contribution of haustoria to the interactions with the host plants, we isolated haustoria from susceptible wheat leaves infected with Pst race CYR31 and sequenced their transcriptome as well as those of urediospores and germ tubes, and compared the three transcriptomes. A total of 3524 up-regulated genes were obtained from haustoria, of which 73 genes were related to thiamine biosynthesis, glycolysis and lipid metabolic processes. Silencing seven of the genes reduced the growth and development of Pst in wheat. More interestingly, 1197 haustorial secreted proteins (HASPs) were detected in haustoria, accounting for 34% of the total proteins, indicating that these HASPs play important roles in haustorium-mediated pathogenic progression. Furthermore, 69 HASPs were able to suppress Bax-triggered programmed cell death in tobacco. Additionally, 46 HASPs significantly reduced callose deposition in wheat using the type III secretion system. This study identified a large number of effectors through transcriptome sequencing, and the results revealed components of metabolic pathways that impact the growth and colonization of the pathogen and indicate essential functions of haustoria in the growth and pathogenicity of Pst.


Assuntos
Doenças das Plantas/microbiologia , Puccinia/fisiologia , Triticum/microbiologia , Apoptose , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Folhas de Planta/anatomia & histologia , Folhas de Planta/microbiologia , Puccinia/citologia , Puccinia/genética , RNA-Seq , Transcriptoma
17.
Bio Protoc ; 10(12): e3661, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659331

RESUMO

The interaction between the host plant Arabidopsis thaliana (Arabidopsis) and the oomycete Hyaloperonospora arabidopsidis (Hpa) is an established model system for the study of an obligate biotrophic downy mildew interaction. The evaluation of the developmental success of Hpa is often based on the quantification of reproductive structures that are formed on the surface of leaves, such as the sporangiophores or the conidiospores they carry. However, the structural basis of this interaction lies within the plant tissue and, in particular, the haustoria that form inside plant cells. Therefore, valuable additional information about the performance and compatibility of the downy mildew interaction can be gained by light microscopical inspection of the hyphal and haustorial shape inside the plant tissue and within plant cells respectively. Here we describe a protocol for the visualization and quantification of morphological phenotypes inside the plant. While we focus specifically on the quantification of haustorial shape variants, the protocol can easily be adapted for the quantification of other morphological features such as hyphal deformations, or oogonia frequency. By including and refining already existing protocols from a variety of sources, we assembled the entire experimental pipeline for the Arabidopsis Hpa bioassay to provide a practical guide for the initial setup of this system in the laboratory. This pipeline includes the following steps: A) growing Arabidopsis, B) Hpa propagation and strain maintainance C) Hpa inoculation and incubation D) staining of plant tissues for visualization of the pathogen and E) an introduction of the Keyence VHX microscope and Fiji plugin of ImageJ for the quantification of structures of interest. While described here for Arabidopsis and Hpa, the protocol steps B-E should be easily adjustable for the study of other plant-oomycete pathosystems.

18.
Front Plant Sci ; 10: 1400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787994

RESUMO

A previous complementary cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis examined responses to the powdery mildew pathogen Oidium neolycopersici (On) of the resistant cultivar Solanum habrochiates G1.1560, carrying the Ol-1 resistance gene, and susceptible cultivar S. lycopersicum Moneymaker (MM). Among other findings, a differentially expressed transcript-derived fragment (DE-TDF) (M14E72-213) was upregulated in near isogenic line (NIL)-Ol-1, but absent in MM. This DE-TDF showed high homology to a gene of unknown function, which we named ShORR-1 (Solanum habrochaites Oidium Resistance Required-1). However, MM homolog of ShORR-1 (named ShORR-1-M) was still found with 95.26% nucleic acid sequence similarity to ShORR-1 from G1.1560 (named ShORR-1-G); this was because the cut sites of restriction enzymes in the previous complementary cDNA-AFLP analysis was absent in ShORR-1-M and differs at 13 amino acids from ShORR-1-G. Transient expression in onion epidermal cells showed that ShORR-1 is a membrane-localized protein. Virus-induced gene silencing (VIGS) of ShORR-1-G in G1.1560 plants increased susceptibility to On. Furthermore, overexpressing of ShORR-1-G conferred MM with resistance to On, involving extensive hydrogen peroxide accumulation and formation of abnormal haustoria. Knockdown of ShORR-1-M in MM did not affect its susceptibility to On, while overexpressing of ShORR-1-M enhanced MM's susceptibility to On. We also found that changes in transcript levels of six well-known hormone signaling and defense-related genes are involved in ShORR-1-G-mediated resistance to On. The results indicate that ShORR-1-M and ShORR-1-G have antagonistic effects in tomato responses to On, and that ShORR-1 is essential for Ol-1-mediated resistance in tomato.

19.
New Phytol ; 223(3): 1547-1559, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980530

RESUMO

The leaf outer epidermal cell wall acts as a barrier against pathogen attack and desiccation, and as such is covered by a cuticle, composed of waxes and the polymer cutin. Cutin monomers are formed by the transfer of fatty acids to glycerol by glycerol-3-phosphate acyltransferases, which facilitate their transport to the surface. The extent to which cutin monomers affect leaf cell wall architecture and barrier properties is not known. We report a dual functionality of pathogen-inducible GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 6 (GPAT6) in controlling pathogen entry and cell wall properties affecting dehydration in leaves. Silencing of Nicotiana benthamiana NbGPAT6a increased leaf susceptibility to infection by the oomycetes Phytophthora infestans and Phytophthora palmivora, whereas overexpression of NbGPAT6a-GFP rendered leaves more resistant. A loss-of-function mutation in tomato SlGPAT6 similarly resulted in increased susceptibility of leaves to Phytophthora infection, concomitant with changes in haustoria morphology. Modulation of GPAT6 expression altered the outer wall diameter of leaf epidermal cells. Moreover, we observed that tomato gpat6-a mutants had an impaired cell wall-cuticle continuum and fewer stomata, but showed increased water loss. This study highlights a hitherto unknown role for GPAT6-generated cutin monomers in influencing epidermal cell properties that are integral to leaf-microbe interactions and in limiting dehydration.


Assuntos
Aciltransferases/metabolismo , Parede Celular/metabolismo , Nicotiana/metabolismo , Epiderme Vegetal/microbiologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Botrytis/fisiologia , Parede Celular/ultraestrutura , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Epiderme Vegetal/metabolismo , Epiderme Vegetal/ultraestrutura , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Estômatos de Plantas/metabolismo , Estômatos de Plantas/microbiologia , Estômatos de Plantas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Transcriptoma/genética
20.
Plant Divers ; 41(5): 347-351, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31934680

RESUMO

Malania oleifera (Olacaceae) is a valued tree species, mostly because its seeds have high precious fatty acid content (particularly nervonic acid). However, seedling mortality rates are often high and regeneration of this tree has been problematic, which greatly hinders its utilization at a large scale. Cultivation difficulties of some tree species in the family Olacaceae have been attributed to their root hemiparasitic habit. Prompted by field observations and the taxonomic proximity of M. oleifera to root hemiparasites in Olacaceae, we hypothesized that tuberous structures observed on the roots of M. oleifera are parasitic organs known as haustoria. To test this hypothesis, we collected root samples from M. oleifera plants of various ages and growth conditions, investigated the morphological and anatomical features of tuberous structures and their connections to neighboring roots. Our analyses confirmed that M. oleifera are root hemiparasites. To the best of our knowledge, this is the first empirical report on root hemiparasitism in M. oleifera. Because life strategies of root hemiparasitic plants differ greatly from autotrophic plants, the root hemiparasitic habit needs to be taken into account for successful seedling regeneration of M. oleifera. This study establishes the foundation for investigations into a long-neglected but essential aspect in research of these highly valued tree species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA