RESUMO
Ferroptosis is a form of regulated nonapoptotic cell death associated with iron-dependent lipid peroxidation, closely associated with Vitiligo. Although the impact of Curcumin (Cur), a polyphenolic compound derived from the plant Curcuma longa Linn, on vitiligo has been established, the specific role and potential mechanistic pathways through which Cur modulates ferroptosis in vitiligo remain elusive. In this study, the critical targets and potential mechanisms of Cur in treating vitiligo were predicted by network pharmacology and molecule docking. Then, the effects of Cur on Erastin-induced ferroptosis were investigated in melanocytes induced by Erastin in vitro. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of Cur acting on Vitiligo found that these intersection genes are associated with the vitiligo oxidative stress pathway, including nuclear factor erythroid 2-related factor 2(Nrf2)/Heme Oxygenase 1(HO-1) signaling pathway. Further molecular docking shows that Cur has a good binding effect with Nrf2(the binding energy of Cur and Nrf2 protein is -6 kcal/mol). Through the CCK8 assay, showed that 10 µM Cur treatment 24 h after Erastin significantly improved cell viability In vitro. Then we found that Erastin induced cell death, ROS production, the mitochondrial membrane potential(MMP) decreased, Superoxide dismutase (SOD) and Glutathione (GSH) levels reduced, Malonaldehyde (MDA) and iron ion accumulation in melanocytes. In addition, the expression of glutathione peroxidase 4(GPX4) mRNA and protein was inhibited, while the expression of acyl-CoA synthetase long-chain family member 4(ACSL4), Transferrin Receptor Protein 1(TFR1) mRNA and protein was increased. However, the damage induced by Erastin was signiï¬cantly relieved by Cur and Fer-1 treatment. Mechanistically, Cur treatment significantly promoted nuclear translocation of transcriptional factor Nrf2 and HO-1 expression. Interestingly, pretreatment with ML385, a selective Nrf2 inhibitor, counteracted anti-ferroptosis effects induced by Cur treatment. Taken together, these results demonstrate that Cur inhibits ferroptosis by regulating the Nrf2/HO-1 pathway to protect melanocytes.
RESUMO
This study aims to investigate whether butylphthalide can inhibit ferroptosis and ameliorate cerebral ischaemia-reperfusion (I/R) injury in rats by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) / heme oxygenase-1 (HO-1) signalling pathway, known for its antioxidative and cytoprotective properties. Middle cerebral artery occlusion reperfusion (MCAO/R) rat models were established. Male rats were randomly divided into five groups: a sham-operated group (sham), MCAO/R group, MCAO/R â+ âML385 (Nrf2-specific inhibitor) group, MCAO/R â+ âNBP (butylphthalide) group and MCAO/R â+ âML385 â+ âNBP group. The effect of butylphthalide on cerebral I/R injury was evaluated using neurological deficit scores. The expression levels of Nrf2, HO-1, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4) and transferrin receptor 1 (TfR1) protein were detected using Western blot. Moreover, the expression levels of GPX4, HO-1 and TfR1 mRNA were determined through real-time fluorescence quantitative reverse transcription polymerase chain reaction. The distribution of Nrf2, HO-1, GPX4 and TfR1 was detected using immunohistochemical staining. The levels of iron and related lipid peroxidation indexes, such as reduced glutathione, reactive oxygen species, malondialdehyde and nitric oxide, were measured using a kit. The changes in mitochondria were observed through transmission electron microscopy. Butylphthalide treatment significantly improved neurological dysfunction, reduced cerebral infarction volume and mitigated histopathological damage in MCAO/R rats. It induced the nuclear translocation of Nrf2 and upregulated HO-1 expression, which was attenuated by ML385. Butylphthalide also attenuated lipid peroxidation, iron accumulation and mitochondrial damage induced by MCAO/R. The expression of GPX4, ACSL4 and TfR1 proteins, as well as their mRNA levels, was modulated through butylphthalide treatment, with improvements observed in mitochondrial morphology. Butylphthalide exerts neuroprotective effects by attenuating neurological dysfunction and ferroptosis in MCAO/R rats through the activation of the Nrf2/HO-1 pathway and inhibition of lipid peroxidation and iron accumulation.
Assuntos
Benzofuranos , Ferroptose , Fator 2 Relacionado a NF-E2 , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Masculino , Ratos , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Ferroptose/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Importance: Acupoint autohemotherapy (AA), a therapeutic technique involving the subcutaneous injection of autologous blood into acupoints, has been empirically validated as safe and effective for treating asthma by alleviating symptoms and decreasing acute attacks, though its mechanism is not well understood. Objective: The role of heme oxygenase-1 (HO-1) in AA-induced suppression of asthmatic airway inflammation is examined. Methods: Twenty rats were assigned randomly to four groups, namely the Control, OVA, OVA + AA, and (OVA + Snpp) + AA. Rats in the OVA + AA and (OVA + Snpp) + AA received autologous blood injections into acupoints (BL13 and BL23) following OVA challenge. Rats in the (OVA + Snpp) + AA were concurrently subjected to intraperitoneal injections of Snpp, a inhibitor of HO-1. Airway inflammation was evaluated through HE staining, while the concentrations of cytokines in BALF were quantified using ELISA. The mRNA and protein levels of RORγt (Th17-specific transcription factor), Foxp3 (Treg-specific transcription factor), and HO-1 in lung tissue were assessed through qRT-PCR and WB. Results: HE staining indicated that airway inflammation was alleviated in the OVA + AA. The OVA + AA displayed significantly lower counts of total cells and eosinophils in the BALF compared to both the OVA and (OVA + Snpp) + AA. The ELISA demonstrated a significant decrease in levels of pro-inflamatory cytokines (IL-4, IL-17A), and an increase in levels of anti-inflamatory cytokines (IFN-γ, IL-10), in the OVA + AA when compared to both OVA and (OVA + Snpp) + AA. The qRT-PCR and WB analyses revealed an upregulation of HO-1 and Foxp3 expression, and a downregulation of RORγt expression, in the OVA + AA when compared to OVA and (OVA + Snpp) + AA. Conclusions and Relevance: The involvement of HO-1 in the underlying mechanism responsible for the anti-inflammatory effects of AA is evident.
Assuntos
Pontos de Acupuntura , Asma , Regulação para Cima , Animais , Asma/terapia , Asma/genética , Asma/tratamento farmacológico , Asma/imunologia , Asma/metabolismo , Ratos , Masculino , Ratos Sprague-Dawley , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/genética , Inflamação/terapia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/genética , Citocinas/metabolismo , Citocinas/imunologia , Transfusão de Sangue Autóloga , Pulmão/metabolismo , Pulmão/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismoRESUMO
Asian sand dust (ASD), generated from the deserts of China and Mongolia, affects Korea and Japan during spring and autumn, causing harmful effects on various bio-organs, including the respiratory system, due to its irritants such as fine dust, chemicals, and toxic materials. Here, we investigated the therapeutic effects of silibinin against ASD-induced airway inflammation using mouse macrophage-like cell line RAW264.7 and a murine model. ASD was intranasally administered to mice three times a week and silibinin was administered for 6 days by oral gavage. In ASD-stimulated RAW264.7 cells, silibinin treatment decreased tumor necrosis factor-α production and reduced the expression of p-p65NF-κB, p-p38, and cyclooxygenase (COX)-2, while increasing heme oxygenase (HO)-1 expression. In ASD-exposed mice, silibinin administration reduced inflammatory cell count and cytokines in bronchoalveolar lavage fluid and decreased inflammatory cell infiltration in lung tissue. Additionally, silibinin lowered oxidative stress, as evidenced by decreased 8-hydroxy-2'-deoxyguanosin (8-OHdG) expression and increased HO-1 expression. The expression of inflammatory-related proteins, including p-p65NF-κB, COX-2, and p-p38, was markedly reduced by silibinin administration. Overall, silibinin treatment reduced the expression of p-p65NF-κB, COX-2, and p-p38 in response to ASD exposure, while increasing HO-1 expression both in vitro and in vivo. These findings suggest that silibinin mitigates pulmonary inflammation caused by ASD exposure by reducing inflammatory signaling and oxidative stress, indicating its potential as a therapeutic agent for ASD-induced pulmonary inflammation.
RESUMO
Skin exposed to ultraviolet light produces hydrogen peroxide (H2O2) and reactive oxygen species (ROS) that cause protein denaturation and other disorders. We investigated whether electrolytic-reduction ion water (ERI), which has reducing properties and has been reported to protect skin, exhibits antioxidant activity in skin keratinocytes. The antioxidant activity of ERI was first examined using DPPH assay and Electron Spin Resonance to test for radicals, and using the Amplex Red method to test for H2O2. Concentration-dependent scavenging of hydroxyl radical but no H2O2 depletion were detected. An investigation of the expression of heme oxygenase-1, which is upregulated by oxidative response in cells, showed an increase through H2O2 oxidation, which was inhibited by ERI in a concentration-dependent manner. This suggests that ERI directly removes ROS. Quantitative real-time polymerase chain reaction analysis was performed to determine whether ERI regulates the expression of aquaporin 3 (AQP3), a known H2O2 transporter. This analysis revealed that ERI enhances AQP3 expression in a concentration-dependent manner and is involved in the transport of intracellular H2O2 to the extracellular space. In addition, ERI inhibited H2O2-induced cytotoxicity in a concentration-dependent manner. These results suggest that ERI protects keratinocytes from ROS by directly scavenging them and indirectly by eliminating them through the promotion of the efflux of intracellular H2O2.
RESUMO
Mevastatin (MVS) is known for its anti-inflammatory effects, potentially achieved by upregulating heme oxygenase-1 (HO-1), an enzyme involved in cytoprotection against oxidative injury. Nonetheless, the specific processes by which MVS stimulates HO-1 expression in human cardiac fibroblasts (HCFs) are not yet fully understood. In this study, we found that MVS treatment increased HO-1 mRNA and protein levels in HCFs. This induction was inhibited by pretreatment with specific inhibitors of p38 MAPK, JNK1/2, and FoxO1, and by siRNAs targeting NOX2, p47phox, p38, JNK1, FoxO1, Keap1, and Nrf2. MVS also triggered ROS generation and activated JNK1/2 and p38 MAPK, both attenuated by NADPH oxidase or ROS inhibitors. Additionally, MVS promoted the phosphorylation of FoxO1 and Nrf2, which was suppressed by p38 MAPK or JNK1/2 inhibitor. Furthermore, MVS inhibited TNF-α-induced NF-κB activation and vascular cell adhesion molecule-1 (VCAM-1) expression via the HO-1/CO pathway in HCFs. In summary, the induction of HO-1 expression in HCFs by MVS is mediated through two primary signaling pathways: NADPH oxidase/ROS/p38 MAPK, and JNK1/2/FoxO1 and Nrf2. This research illuminates the underlying processes through which MVS exerts its anti-inflammatory effects by modulating HO-1 in cardiac fibroblasts.
RESUMO
Purpose: Both hepatic iron accumulation and hemolysis have been identified as independent prognostic factor in alcohol-related liver disease (ALD); however, the mechanisms still remain poorly understood. We here demonstrate that hepatocytes are able to directly ingest aged and ethanol-primed red blood cells (RBCs), a process termed efferocytosis. Methods: Efferocytosis of RBCs was directly studied in vitro and observed by live microscopy for real-time visualization. RBCs pretreated with either CuSO4 or ethanol following co-incubation with Huh7 cells and murine primary hepatocytes. Heme oxygenase-1 (HO-1) and other targets were measured by q-PCR. Results: As shown by live microscopy, oxidized RBCs, but not intact RBCs, are rapidly ingested by both Huh7 cells and murine primary hepatocytes within 10 minutes. In some cases, more than 10 RBCs were seen within hepatocytes, surrounding the nucleus. RBC efferocytosis also rapidly induces HO1, its upstream regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and ferritin, indicating efficient heme degradation. Preliminary data further suggest that hepatocyte efferocytosis of oxidized RBCs is, at least in part, mediated by scavenging receptors such as ASGPR1. Of note, pretreatment of RBCs with ethanol but also heme and bilirubin also initiated efferocytosis. In a cohort of heavy human drinkers, a significant correlation of hepatic ASGPR1 with the heme degradation pathway was observed. Conclusion: We here demonstrate that hepatocytes can directly ingest and degrade oxidized RBCs through efferocytosis, a process that can be also triggered by ethanol, heme and bilirubin. Our findings are highly suggestive for a novel mechanism of hepatic iron overload in ALD patients.
RESUMO
Glioblastoma multiforme (GBM) is the most aggressive brain tumor. There is a pressing need to develop novel treatment strategies due to the poor targeting effect of current therapeutics. Here, a gold cluster coated with optimized GBM-targeting peptide is engineered, namely NA. NA can efficiently target GBM both in vitro and in vivo. Interestingly, the uptake of NA significantly sensitizes GBM cells to ferroptosis, a form of programmed cell death that can bypass the tumor resistance to apoptosis. This effect is exerted through regulating the HO-1-dependent iron ion metabolism, which is the non-canonical pathway of ferroptosis. The combined treatment of a ferroptosis inducer and NA profoundly inhibited tumor growth in both the GBM spheroid model and a syngeneic mouse model with enhanced ferroptosis levels and excellent biosafety. Importantly, the infiltration of tumoricidal lymphocytes is also significantly increased within tumor. Therefore, NA presents a potential novel nanomaterial-based strategy for GBM treatment.
RESUMO
AIM: To determine whether etomidate (ET) has a protective effect on retinal ganglion cells (RGCs) injured with hydrogen peroxide (H2O2) and to explore the potential mechanism underlying the antioxidative stress effect of ET. METHODS: Cultured RGCs were identified by double immunofluorescent labeling of microtubule-associated protein 2 and Thy1.1. An injury model of H2O2-induced RGCs oxidative stress was established in vitro. Cells were pretreated with different concentrations of ET (1, 5, and 10 µmol/L) for 4h, followed by further exposure to H2O2 at 1000 µmol/L. Cell counting kit 8 and Annexin V/propidium iodide assays were applied to detect the viabilities and apoptosis rates of the RGCs at 12, 24, and 48h after H2O2 stimulation. The levels of nitric oxide, malondialdehyde, and glutathione in culture media were measured at these time points. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were performed to observe the effects of ET on the messenger RNA and protein expression of inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), glutathione peroxidase 1 and the level of conjugated acrolein in RGCs at 12, 24, and 48h after H2O2 stimulation and in the retina at 12h after optic nerve transection (ONT). RESULTS: The applications of 5 and 10 µmol/L of ET significantly increased the viability of RGCs. Results from qRT-PCR indicated a decrease in the expression of iNOS and an increase in the expressions of Nrf2 and HO-1 in ET-pretreated RGCs at 12, 24 and 48h after H2O2 stimulation, as well as in ET-treated retinas at 12h after ONT. Western blot analysis revealed a decrease in the expression of iNOS and levels of conjugated acrolein, along with an increase in the expressions of Nrf2 and HO-1 in ET-pretreated RGCs in vitro and ET-treated retinas in vivo. CONCLUSION: ET is a neuroprotective agent in primary cultured RGCs injured by H2O2. The effect of ET is dose-dependent with the greatest effect being at 10 µmol/L. ET plays an antioxidant role by inhibiting iNOS, up-regulating Nrf2/HO-1, decreasing the production of acrolein, and increasing the scavenge of acrolein.
RESUMO
Hyperuricemia and its development to gout have reached epidemic proportions. Systemic hyperuricemia is facilitated by elevated activity of xanthine oxidase (XO), the sole source of uric acid in mammals. Here, we aim to investigate the role of bilirubin in maintaining circulating uric acid homeostasis. We observed serum bilirubin concentrations were inversely correlated with uric acid levels in humans with new-onset hyperuricemia and advanced gout in a clinical cohort consisting of 891 participants. We confirmed that bilirubin biosynthesis impairment recapitulated traits of hyperuricemia symptoms, exemplified by raised circulating uric acid levels and accumulated hepatic XO, and exacerbated mouse hyperuricemia development. Bilirubin administration significantly decreased circulating uric acid levels in hyperuricemia-inducing (HUA) mice receiving potassium oxonate (a uricase inhibitor) or fed with a high fructose diet. Finally, we proved that bilirubin ameliorated mouse hyperuricemia by increasing hepatic autophagy, restoring antioxidant defense and normalizing mitochondrial function in a manner dependent on AMPK pathway. Hepatocyte-specific AMPKα knockdown via adeno-associated virus (AAV) 8-TBG-mediated gene delivery compromised the efficacy of bilirubin in HUA mice. Our study demonstrates the deficiency of bilirubin in hyperuricemia progression, and the protective effects exerted by bilirubin against mouse hyperuricemia development, which may potentiate clinical management of hyperuricemia.
RESUMO
Angiotensin II (AngII), a component of the Renin-Angiotensin-Aldosterone System (RAAS), has been implicated in the dysregulation of adipose tissue function. Inhibition of AngII has been shown to improve adipose tissue function in mice with metabolic syndrome. It is well established that the Heme Oxygenase-1 (HO-1), an antioxidant improves oxidative stress and phenotypic change in adipocytes. Molecular effects of high oxidative stress include suppression of Sirtuin-1 (SIRT1), which is amenable to redox manipulations. However, the underlying mechanisms by which the Renin-Angiotensin-Aldosterone System (RAAS) exerts its metabolic effects are not fully understood. In this study, we propose that AngII-induced oxidative stress may suppress adipocyte SIRT1 through down-regulation of HO-1. Consequently, this suppression of SIRT1 may result in the up-regulation of the Mineralocorticoid Receptor (MR). We further hypothesize that the induction of HO-1 would rescue SIRT1, thereby improving oxidative stress and adipocyte phenotype. To establish this hypothesis, we conducted experiments using mouse preadipocytes treated with AngII, in the presence or absence of Cobalt Protoporphyrin (CoPP), an inducer of HO-1, and Tin Mesoporphyrin (SnMP), an inhibitor of HO-1. Our data demonstrate that treatment of mouse preadipocytes with AngII leads to increased lipid accumulation, elevated levels of superoxide and inflammatory cytokines (Interleukin-6 and Tumor necrosis factor alpha), and reduced levels of adiponectin. However, these effects were attenuated by the induction of HO-1, and this attenuation was reversed by SnMP, indicating that the beneficial effects on adipocyte phenotype are modulated by HO-1. Furthermore, our findings reveal that AngII-treated preadipocytes exhibit upregulated MR levels and suppressed SIRT1 expression, which are rescued by HO-1 induction. Following treatment with CoPP and SIRT1 siRNA in mouse preadipocytes resulted in increased lipid accumulation and elevated levels of fatty acid synthase, indicating that the beneficial effects of HO-1 are modulated through SIRT1. Our study provides evidence that HO-1 restores cellular redox balance, rescues SIRT1, and attenuates the detrimental effects of AngII on adipocytes and systemic metabolic profile.
RESUMO
Oxidative stress in adipose tissue may alter the secretion pattern of adipocytokines and potentially promote atherosclerosis. However, the therapeutic role of hydrogen in adipose tissue under oxidative stress remains unclear. In this study, subcutaneous adipose tissue (SCAT) was collected from the mid-thoracic wounds of 12 patients who underwent open-heart surgery with a mid-thoracic incision. The adipose tissue was then immersed in a culture medium dissolved with hydrogen, which was generated using a hydrogen-generating device. The weight of the adipose tissue was measured before and after hydrogenation, and the tissue was immunostained for nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD), which are markers of oxidative stress. The immunostaining results showed that HO-1 and Nrf2 expression levels were significantly decreased in the hydrogenated group, whereas SOD expression levels increased, but did not attain statistical significance. Image analysis of adipose tissue revealed that a reduction in adipocyte size. Furthermore, hydrogenated adipose tissue showed a trend toward increased gene expression levels of adiponectin and decreased gene expression levels of chemerin, an adipocytokine involved in adipogenesis. These results demonstrated the therapeutic potential of hydrogen gas for oxidative stress in adipose tissue and for reducing adipocyte size.
Assuntos
Tecido Adiposo , Hidrogênio , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Hidrogênio/farmacologia , Hidrogênio/metabolismo , Masculino , Feminino , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Pessoa de Meia-Idade , Superóxido Dismutase/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Idoso , Adiponectina/metabolismo , Adiponectina/genética , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Gordura Subcutânea/metabolismo , Gordura Subcutânea/efeitos dos fármacos , Fator 2 Relacionado a NF-E2RESUMO
Children with extracranial high-risk neuroblastoma (NB) have a poor prognosis due to resistance against apoptosis. Recently, ferroptosis, another form of programmed cell death, has been tested in clinical trials for high-risk NB; however, drug resistance and side effects have also been observed. Here, we find that the gold element in gold nanoclusters can significantly affect iron metabolism and sensitize high-risk NB cells to ferroptosis. Accordingly, we developed a gold nanocluster conjugated with a modified NB-targeting peptide. This gold nanocluster, namely, NANT, shows excellent NB targeting efficiency and dramatically promotes ferroptosis. Surprisingly, this effect is exerted by elevating the noncanonical ferroptosis pathway, which is dependent on heme oxygenase-1-regulated Fe(II) accumulation. Furthermore, NANT dramatically inhibits the growth of high-risk NB in both tumor spheroid and xenograft models by promoting noncanonical ferroptosis evidenced by enhanced intratumoral Fe(II) and heme oxygenase-1. Importantly, this strategy shows excellent cardiosafety, offering a promising strategy to overcome ferroptosis resistance for the efficient and safe treatment of children with high-risk neuroblastoma.
Assuntos
Ferroptose , Ouro , Nanopartículas Metálicas , Neuroblastoma , Ferroptose/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Ouro/química , Ouro/farmacologia , Humanos , Animais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Heme Oxigenase-1/metabolismo , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/química , Ferro/química , Ferro/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Reactive oxygen species are involved in the pathogenesis of cancers and metabolic diseases, including diabetes, obesity, and fatty liver disease. Thus, inhibiting the generation of free radicals is a promising strategy to control the onset of metabolic diseases and cancer progression. Various synthetic drugs and natural product-derived compounds that exhibit antioxidant activity have been reported to have a protective effect against a range of metabolic diseases and cancer. This review highlights the development and aggravation of cancer and metabolic diseases due to the imbalance between pro-oxidants and endogenous antioxidant molecules. In addition, we discuss the function of proteins that regulate the production of reactive oxygen species as a strategy to treat metabolic diseases. In particular, we summarize the role of proteins such as nuclear factor-like 2, Sestrin, and heme oxygenase-1, which regulate the expression of various antioxidant genes in metabolic diseases and cancer. We have included recent literature to discuss the latest research on identifying novel signals of antioxidant genes that can control metabolic diseases and cancer.
Assuntos
Antioxidantes , Heme Oxigenase-1 , Doenças Metabólicas , Fator 2 Relacionado a NF-E2 , Neoplasias , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/genética , Neoplasias/metabolismo , Neoplasias/genética , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Estresse OxidativoRESUMO
With the escalating prevalence of global heat waves, heat stroke has become a prominent health concern, leading to substantial liver damage. Unlike other forms of liver injury, heat stroke-induced damage is characterized by heat cytotoxicity and heightened inflammation, directly contributing to elevated mortality rates. While clinical assessments have identified elevated bilirubin levels as indicative of Kupffer cell dysfunction, their specific correlation with heat stroke liver injury remains unclear. Our hypothesis proposes the involvement of Kupffer cell ferroptosis during heat stroke, initiating IL-1ß-mediated inflammation. Using single-cell RNA sequencing of murine macrophages, a distinct and highly susceptible Kupffer cell subtype, Clec4F+/CD206+, emerged, with heme oxygenase 1 (HMOX-1) playing a pivotal role. Mechanistically, heat-induced HMOX-1, regulated by early growth response factor 1, mediated ferroptosis in Kupffer cells, specifically in the Clec4F+/CD206+ subtype (KC2), activating phosphatidylinositol 4-kinase beta and promoting PI4P production. This cascade triggered NLRP3 inflammasome activation and maturation of IL-1ß. These findings underscore the critical role of targeted therapy against HMOX-1 in ferroptosis within Kupffer cells, particularly in Clec4F+/CD206+ KCs. Such an approach has the potential to mitigate inflammation and alleviate acute liver injury in the context of heat stroke, offering a promising avenue for future therapeutic interventions.
RESUMO
Non-alcoholic fatty liver disease (NAFLD) is becoming a significant global public health threat. Seabuckthorn (Hippophae rhamnoides L.) has been used in traditional Chinese medicine (TCM). The hypolipidemic effects of Seabuckthorn polysaccharides (SP) against high-fat diets (HFD)-induced NAFLD were systematically explored and compared with that of Bifidobacterium lactis V9 (B. Lactis V9). Results showed that HFD-induced alanine transaminase (ALT) and aspartate aminotransferase (AST) levels decreased by 2.8-fold and 4.5-fold, respectively, after SP supplementation. Moreover, the alleviating effect on hepatic lipid accumulation is better than that of B. Lactis V9. The ACC and FASN mRNA levels were significantly reduced by 1.8 fold (P < 0.05) and 2.3 folds (P < 0.05), respectively, while the CPT1α and PPARα mRNA levels was significantly increased by 2.3 fold (P < 0.05) and 1.6 fold (P < 0.05), respectively, after SP administration. SP activated phosphorylated-AMPK and inhibited PPARγ protein expression, improved serum oxidative stress and inflammation (P < 0.05). SP supplementation leads to increased hepatic expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1) and Superoxide dismutase-2 (SOD-2). Furthermore, SP treatment improved HFD-induced intestinal dysbiosis. Lentisphaerae, Firmicutes, Tenericutes and Peptococcus sp., RC9_gut_group sp., and Parabacteroides sp. of the gut microbiota were significantly associated with hepatic steatosis and indicators related to oxidative stress and inflammation. Therefore, SP can mitigate hepatic lipid accumulation by regulating Nrf-2/HO-1 signaling pathways and gut microbiota. This study offers new evidence supporting the use of SP as a prebiotic treatment for NAFLD.
RESUMO
The combination of chemotherapy and ferroptosis therapy can greatly improve the efficiency of tumor treatment. However, ferroptosis-based therapy is limited by the unsatisfactory Fenton activity and insufficient H2O2 supply in tumor cells. In this work, a nano-drug delivery system Cur@DOX@MOF-199 NPs was constructed to combine ferroptosis and apoptosis by loading curcumin (Cur) and doxorubicin (DOX) based on the copper-based organic framework MOF-199. Cur@DOX@MOF-199 NPs decompose quickly by glutathione (GSH), releasing Cu2+, DOX and Cur. Cu2+ can deplete GSH while also being reduced to Cu+; DOX can induce apoptosis and simultaneously boost H2O2 production. Moreover, Cur enhanced the expression of intracellular heme oxygenase-1 (HO-1), for decomposing heme and releasing Fe2+, which further combined with Cu+ to catalyze H2O2 for hydroxyl radical (OH) generation, leading to the accumulation of lipid peroxide and ferroptosis. As a result, Cur@DOX@MOF-199 NPs exhibited significantly enhanced antitumor efficacy in MCF-7 tumor-bearing mouse model, suggesting this nano formulation is an excellent synergetic pathway for apoptosis and ferroptosis.
RESUMO
Electroacupuncture has been demonstrated to mitigate endotoxin-induced acute lung injury by enhancing mitochondrial function. This study investigates whether electroacupuncture confers lung protection through the regulation of mitochondrial quality control mediated by heme oxygenase-1 (HO-1) and the mitochondrial inner membrane protein MIC60. HO-1, an inducible stress protein, is crucial for maintaining mitochondrial homeostasis and protecting against lung injury. MIC60, a key component of the mitochondrial contact site and cristae organizing system, supports mitochondrial integrity. We employed genetic knockout/silencing and cell transfection techniques to model lipopolysaccharide (LPS)-induced lung injury, assessing changes in mitochondrial structure, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and the expression of proteins essential for mitochondrial quality control. Our findings reveal that electroacupuncture alleviates endotoxin-induced acute lung injury and associated mitochondrial dysfunction, as evidenced by reductions in lung injury scores, decreased ROS production, and suppressed expression of proteins involved in mitochondrial fission and mitophagy. Additionally, electroacupuncture enhanced MMP and upregulated proteins that facilitate mitochondrial fusion and biogenesis. Importantly, the protective effects of electroacupuncture were reduced in models with Hmox1 knockout or Mic60 silencing, and in macrophages transfected with Hmox1-siRNA or Mic60-siRNA. Moreover, HO-1 was found to influence MIC60 expression during electroacupuncture preconditioning and LPS challenge, demonstrating that these proteins not only co-localize but also interact directly. In conclusion, electroacupuncture effectively modulates mitochondrial quality control through the HO-1/MIC60 signaling pathway, offering an adjunctive therapeutic strategy to ameliorate endotoxin-induced acute lung injury in both in vivo and in vitro settings.
Assuntos
Lesão Pulmonar Aguda , Eletroacupuntura , Heme Oxigenase-1 , Mitocôndrias , Transdução de Sinais , Eletroacupuntura/métodos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/terapia , Animais , Mitocôndrias/metabolismo , Camundongos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Masculino , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Lipopolissacarídeos/toxicidade , Potencial da Membrana Mitocondrial , Endotoxinas , Humanos , Dinâmica Mitocondrial , Proteínas de MembranaRESUMO
Both copper and zinc are known to be important for maintaining health, but most research has focused on deficiencies of these elements. Recent studies have shown that high levels of Cu can be toxic, especially to the cardiovascular (CV) system. However, little research has been done on the effects of higher levels of Zn on the CV system. In this study, male Wistar rats aged 12 months were given a diet with twice the recommended daily allowance of zinc (31.8 mg/kg of diet) and compared to a control group (15.9 mg/kg of diet) after 8 weeks. Blood plasma and internal organs of both groups were examined for levels of copper, zinc, selenium and iron, as well as several key enzymes. Aortic rings from both groups were also examined to determine vascular functioning. There were very few changes in the vascular system functioning after chronic exposure to zinc, and only one enzyme, heme oxygenase-1 (HO-1) was elevated, whereas vascular contraction to noradrenaline decreased with no changes in vasodilation to acetylcholine. Of the micronutrients, zinc and selenium were elevated in the blood plasma, while copper decreased. Meanwhile, the total antioxidant status increased. These were not observed in the liver. Therefore, it is proposed that there is a mechanism in place within the vascular system to protect against the overproduction of heme, caused by chronic zinc exposure.
Assuntos
Estresse Oxidativo , Ratos Wistar , Vasoconstrição , Zinco , Animais , Masculino , Zinco/sangue , Estresse Oxidativo/efeitos dos fármacos , Ratos , Vasoconstrição/efeitos dos fármacos , Selênio/deficiência , Selênio/sangue , Selênio/administração & dosagem , Cobre/toxicidade , Heme Oxigenase-1/metabolismo , Dieta , Antioxidantes/metabolismo , Ferro/sangue , Ferro/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismoRESUMO
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive form of nonalcoholic fatty liver disease characterised by fat accumulation, inflammation, oxidative stress, fibrosis, and impaired liver regeneration. In this study, we found that heme oxygenase-1 (HO-1) is induced in both MASH patients and in a MASH mouse model. Further, hepatic carbon monoxide (CO) levels in MASH model mice were >2-fold higher than in healthy mice, suggesting that liver HO-1 is activated as MASH progresses. Based on these findings, we used CO-loaded red blood cells (CO-RBCs) as a CO donor in the liver, and evaluated their therapeutic effect in methionine-choline deficient diet (MCDD)-induced and high-fat-diet (HFD)-induced MASH model mice. Intravenously administered CO-RBCs effectively delivered CO to the MASH liver, where they prevented fat accumulation by promoting fatty acid oxidation via AMP-activated protein kinase (AMPK) activation and peroxisome proliferator-activated receptor induction. They also markedly suppressed Kupffer cell activation and their corresponding anti-inflammatory and antioxidative stress activities in MASH mice. CO-RBCs also helped to restore liver regeneration in mice with HFD-induced MASH by activating AMPK. We confirmed the underlying mechanisms by performing in vitro experiments in RAW264.7 cells and palmitate-stimulated HepG2 cells. Taken together, CO-RBCs show potential as a promising cellular treatment for MASH.