Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
MedComm (2020) ; 5(9): e687, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39156763

RESUMO

The newly identified XBB.1.16-containing sublineages, including XBB.1.5, have become the prevailing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant in circulation. Unlike previous Omicron XBB variants (e.g., XBB.1.5 and XBB.1.9) harboring the F486P substitution, XBB.1.16 also carries a T478R substitution in the receptor-binding domain (RBD). Numerous researchers have delved into the high transmissibility and immune evasion of XBB.1.16 subvariant. Therefore, developing a new vaccine targeting XBB.1.16, including variants of concern (VOCs), is paramount. In our study, we engineered a recombinant protein by directly linking the S-RBD sequence of the XBB.1.16 strain of SARS-CoV-2 to the sequences of two heptad repeat sequences (HR1 and HR2) from the SARS-CoV-2 S2 subunit. Named the recombinant RBDXBB.1.16-HR/trimeric protein, this fusion protein autonomously assembles into a trimer. Combined with an MF59-like adjuvant, the RBDXBB.1.16-HR vaccine induces a robust humoral immune response characterized by high titers of neutralizing antibodies against variant pseudovirus and authentic VOCs and cellular immune responses. Additionally, a fourth heterologous RBDXBB.1.16-HR vaccine enhances both humoral and cellular immune response elicited by three-dose mRNA vaccines. These findings demonstrate that the recombinant RBDXBB.1.16-HR protein, featuring the new T478R mutation, effectively induces solid neutralizing antibodies to combat newly emerged XBB variants.

2.
Vaccine ; 42(19): 3999-4010, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38744598

RESUMO

BACKGROUND: Inactivated whole-virus vaccination elicits immune responses to both SARS-CoV-2 nucleocapsid (N) and spike (S) proteins, like natural infections. A heterologous Ad26.COV2.S booster given at two different intervals after primary BBIBP-CorV vaccination was safe and immunogenic at days 28 and 84, with higher immune responses observed after the longer pre-boost interval. We describe booster-specific and hybrid immune responses over 1 year. METHODS: This open-label phase 1/2 study was conducted in healthy Thai adults aged ≥ 18 years who had completed primary BBIBP-CorV primary vaccination between 90-240 (Arm A1; n = 361) or 45-75 days (Arm A2; n = 104) before enrolment. All received an Ad26.COV2.S booster. We measured anti-S and anti-N IgG antibodies by Elecsys®, neutralizing antibodies by SARS-CoV-2 pseudovirus neutralization assay, and T-cell responses by quantitative interferon (IFN)-γ release assay. Immune responses were evaluated in the baseline-seronegative population (pre-booster anti-N < 1.4 U/mL; n = 241) that included the booster-effect subgroup (anti-N < 1.4 U/mL at each visit) and the hybrid-immunity subgroup (anti-N ≥ 1.4 U/mL and/or SARS-CoV-2 infection, irrespective of receiving non-study COVID-19 boosters). RESULTS: In Arm A1 of the booster-effect subgroup, anti-S GMCs were 131-fold higher than baseline at day 336; neutralizing responses against ancestral SARS-CoV-2 were 5-fold higher than baseline at day 168; 4-fold against Omicron BA.2 at day 84. IFN-γ remained approximately 4-fold higher than baseline at days 168 and 336 in 18-59-year-olds. Booster-specific responses trended lower in Arm A2. In the hybrid-immunity subgroup at day 336, anti-S GMCs in A1 were 517-fold higher than baseline; neutralizing responses against ancestral SARS-CoV-2 and Omicron BA.2 were 28- and 31-fold higher, respectively, and IFN-γ was approximately 14-fold higher in 18-59-year-olds at day 336. Durable immune responses trended lower in ≥ 60-year-olds. CONCLUSION: A heterologous Ad26.COV2.S booster after primary BBIBP-CorV vaccination induced booster-specific immune responses detectable up to 1 year that were higher in participants with hybrid immunity. CLINICAL TRIALS REGISTRATION: NCT05109559.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Ad26COVS1/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Seguimentos , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interferon gama/imunologia , Fosfoproteínas/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Tailândia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem
3.
Vaccines (Basel) ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38793733

RESUMO

COVID-19 vaccination strategies, including heterologous prime-boost regimens and additional booster doses, aim to optimize immune responses. However, seroepidemiological studies on immune responses to different COVID-19 vaccine types and schedules remain limited. This study investigated antibody levels following homologous and heterologous prime-and-boost COVID-19 vaccination in Bangladesh. In a cohort of 606 participants who received first/second/booster doses of vaccines (AstraZeneca, Moderna, Pfizer-BioNTech, and Sinopharm), anti-spike IgG and anti-nucleocapsid IgG levels were measured. Antibody titer variations with respect to age, gender, intervals between doses, and prior infection status were analyzed. mRNA vaccines elicited the highest antibody levels after homologous and heterologous boosting. The AstraZeneca booster resulted in a sharp titer decline rate of ~0.04 units per day. Second or booster vaccine doses significantly increased antibody levels, especially in males (p < 0.05). Older age correlated with higher titers, likely reflecting previous infection, which was further confirmed by the elevation of anti-nucleocapsid IgG levels. About 95.5% of non-Sinopharm recipients were anti-nucleocapsid IgG positive, suggesting prior exposure exceeding self-reported infections (12.5%). mRNA and heterologous COVID-19 boosting enhances humoral immunity over homologous prime-boost vector/inactivated vaccination. However, waning immunity merits further investigation across vaccine platforms.

4.
Int Immunopharmacol ; 134: 112192, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761778

RESUMO

The recurrent COVID-19 infection, despite global vaccination, highlights the need for booster doses. A heterologous booster has been suggested to enhance immunity and protection against emerging variants of concern of the SARS-CoV-2 virus. In this report, we aimed to assess the safety, and immunogenicity of COReNAPCIN, as a fourth booster dose after three doses of inactivated vaccines. METHODS: The study was conducted as a double-blind, randomized, placebo-controlled phase 1 clinical trial of the mRNA-based vaccine candidate, COReNAPCIN. The vaccine was injected as a heterologous booster in healthy Iranian adults aged 18-50 who had previously received three doses of inactivated SARS-CoV-2 vaccines. In the study, 30 participants were randomly assigned to receive either COReNAPCIN in two different doses (25 µg and 50 µg) or placebo. The vaccine candidate contained mRNA encoding the complete sequence of the pre-fusion stabilized Spike protein of SARS-CoV-2, formulated within lipid nanoparticles. The primary endpoint was safety and the secondary objective was humoral immunogenicity until 6 months post-vaccination. The cellular immunogenicity was pursued as an exploratory outcome. RESULTS: COReNAPCIN was well tolerated in vaccinated individuals in both doses with no life-threatening or other serious adverse events. The most noticeable solicited adverse events were pain at the site of injection, fatigue and myalgia. Regarding the immunogenicity, despite the seroprevalence of SARS-CoV-2 antibodies due to the vaccination history for all and previous SARS-CoV-2 infection for some participants, the recipients of 25 and 50 µg COReNAPCIN, two weeks post-vaccination, showed 6·6 and 8·1 fold increase in the level of anti-RBD, and 11·5 and 21·7 fold increase in the level of anti-spike antibody, respectively. The geometric mean virus neutralizing titers reached 10.2 fold in the 25 µg group and 8.4 fold in 50 µg group of pre-boost levels. After 6 months, the measured anti-spike antibody concentration still maintains a geometric mean fold rise of 2.8 and 6.3, comparing the baseline levels in 25 and 50 µg groups, respectively. Additionally, the significant increase in the spike-specific IFN-ϒ T-cell response upon vaccination underscores the activation of cellular immunity. CONCLUSION: COReNAPCIN booster showed favorable safety, tolerability, and immunogenicity profile, supporting its further clinical development (Trial registration: IRCT20230131057293N1).


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Adulto , Masculino , Método Duplo-Cego , Feminino , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/administração & dosagem , Irã (Geográfico) , SARS-CoV-2/imunologia , Adulto Jovem , COVID-19/prevenção & controle , COVID-19/imunologia , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Imunogenicidade da Vacina , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/sangue , Vacinas de mRNA , Adolescente , Seguimentos
5.
Expert Rev Vaccines ; 23(1): 419-431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529685

RESUMO

BACKGROUND: Recombinant protein vaccines are vital for broad protection against SARS-CoV-2 variants. This study assessed ReCOV as a booster in two Phase 2 trials. RESEARCH DESIGN AND METHODS: Study-1 involved subjects were randomized (1:1:1) to receive 20 µg ReCOV, 40 µg ReCOV, or an inactivated vaccine (COVILO®) in the United Arab Emirates. Study-2 participating individuals were randomized (1:1:1) to receive 20 µg ReCOV (pilot batch, ReCOV HA), 20 µg ReCOV (commercial batch, ReCOV TC), or 30 µg BNT162b2 (COMIRNATY®) in the Philippines. The primary immunogenicity objectives was to compare the geometric mean titer (GMT) and seroconversion rate (SCR) of neutralizing antibodies induced by one ReCOV booster dose with those of inactivated vaccine and BNT162b2, respectively, at 14 days post-booster. RESULTS: Heterologous ReCOV booster doses were safe and induced comparable immune responses to inactivated vaccines and BNT162b2 against Omicron variants and the prototype. They showed significant advantages in cross-neutralization against multiple SARS-CoV-2 variants, surpassing inactivated vaccines and BNT162b2, with good immune persistence. CONCLUSIONS: Heterologous ReCOV boosting was safe and effective, showing promise in combating COVID-19. The study highlights ReCOV's potential for enhanced protection, supported by strong cross-neutralization and immune persistence. CLINICAL TRIAL REGISTRATION: Study-1, www.clinicaltrials.gov, identifier is NCT05323435; Study-2, www.clinicaltrials.gov, identifier is NCT05084989.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Imunogenicidade da Vacina , SARS-CoV-2 , Vacinas de Produtos Inativados/efeitos adversos , População do Oriente Médio , Emirados Árabes Unidos , Ensaios Clínicos Controlados Aleatórios como Assunto , Ensaios Clínicos Fase II como Assunto
6.
Heliyon ; 10(1): e23892, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226248

RESUMO

Background: Several countries have authorized a booster vaccine campaign to combat the spread of COVID-19. Data on persistence of booster vaccine-induced immunity against new Omicron subvariants are still limited. Therefore, our study aimed to determine the serological immune response of COVID-19 booster after CoronaVac-priming. Methods: A total of 187 CoronaVac-primed participants were enrolled and received an inactivated (BBIBP), viral vector (AZD1222) or mRNA vaccine (full-/half-dose BNT162B2, full-/half-dose mRNA-1273) as a booster dose. The persistence of humoral immunity both binding and neutralizing antibodies against wild-type and Omicron was determined on day 90-120 after booster. Results: A waning of total RBD immunoglobulin (Ig) levels, anti-RBD IgG, and neutralizing antibodies against Omicron BA.1, BA.2, and BA.4/5 variants was observed 90-120 days after booster vaccination. Participants who received mRNA-1273 had the highest persistence of the immunogenicity response, followed by BNT162b2, AZD1222, and BBIBP-CorV. The responses between full and half doses of mRNA-1273 were comparable. The percentage reduction of binding antibody ranged from 50 % to 75 % among all booster vaccine. Conclusions: The antibody response substantially waned after 90-120 days post-booster dose. The heterologous mRNA and the viral vector booster demonstrated higher detectable rate of humoral immune responses against the Omicron variant compared to the inactivated BBIBP booster. Nevertheless, an additional fourth dose is recommended to maintain immune response against infection.

7.
Hum Vaccin Immunother ; 20(1): 2301632, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38206168

RESUMO

We assessed the non-inferiority of homologous boosting compared with heterologous boosting with the recombinant protein vaccine, SCB-2019, in adults previously immunized with different COVID-19 vaccines. Three equal cohorts (N ~ 420) of Philippino adults (18-80 years) previously immunized with Comirnaty, CoronaVac or Vaxzevria COVID-19 vaccines were randomized 1:1 to receive homologous or heterologous (SCB-2019) boosters. Neutralizing antibodies against prototype SARS-CoV-2 (Wuhan-Hu-1) were measured in all participants and against Delta variant and Omicron sub-lineages in subsets (30‒50 per arm) 15 days after boosting. Participants recorded solicited adverse events for 7 days and unsolicited and serious adverse events until Day 60. Prototype SARS-CoV-2 neutralizing responses on Day 15 after SCB-2019 were statistically non-inferior to homologous Vaxzevria boosters, superior to CoronaVac, but lower than homologous Comirnaty. Neutralizing responses against Delta and Omicron BA.1, BA.2, BA.4 and BA.5 variants after heterologous SCB-2019 were higher than homologous CoronaVac or Vaxzevria, but lower than homologous Comirnaty. Responses against Omicron BF.7, BQ.1.1.3, and XBB1.5 following heterologous SCB-2019 were lower than after homologous Comirnaty booster but significantly higher than after Vaxzevria booster. SCB-2019 reactogenicity was similar to CoronaVac or Vaxzevria, but lower than Comirnaty; most frequent events were mild/moderate injection site pain, headache and fatigue. No vaccine-related serious adverse events were reported. Heterologous SCB-2019 boosting was well tolerated and elicited neutralizing responses against all tested SARS-COV-2 viruses including Omicron BA.1, BA.2, BA.4, BA.5, BF.7, BQ.1.1.3, and XBB1.5 sub-lineages that were non-inferior to homologous boosting with CoronaVac or Vaxzevria, but not homologous Comirnaty booster.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas de Subunidades Antigênicas , Adulto , Humanos , Vacina BNT162 , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Imunização
8.
Vaccine ; 42(3): 662-670, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38129286

RESUMO

BACKGROUND: The phase 3, single-arm, open-label TAK-019-3001 study assessed two heterologous booster doses of NVX-CoV2373 administered 5 months apart in healthy Japanese adults who had completed a primary series of a COVID-19 mRNA vaccine 6-12 months previously. In the main part of this study, a first booster induced rapid and robust anti-SARS-CoV-2 immune responses, addressing waning immunity in participants. METHODS: This interim analysis evaluated the immunogenicity and safety of a second booster in the extension part of this study including comparisons with the first booster. Immunogenicity was assessed on extension day (ED) 1 (before vaccination) and ED15. Solicited and unsolicited adverse events occurring in the 7 and 28 days, respectively, after vaccination were assessed. RESULTS: Of the 150 participants who received a first NVX-CoV2373 booster, 129 were administered a second booster on ED1. Participant characteristics were consistent between the main and extension parts of the study. Titres of anti-SARS-CoV-2 rS serum immunoglobulin G and serum neutralizing antibodies against the SARS-CoV-2 ancestral strain at ED15 were 4.0- and 3.0-fold higher, respectively, than those observed 5 months after the first booster on ED1, and 3.0- and 1.4-fold higher, respectively, than those observed 14 days after the first booster on day 15. The proportions of participants who experienced solicited local and systemic adverse events (AEs) in the 7 days after the second booster were 73.6 % and 51.2 %, respectively: most were of grade 2 severity or lower. Seven percent of participants experienced unsolicited AEs in the 28 days after the second booster: all were unrelated to the treatment. There were no deaths or AEs leading to study discontinuation. DISCUSSION: A second heterologous NVX-CoV2373 booster in healthy Japanese adults induced more robust anti-SARS-CoV-2 immune responses than the first booster. The second booster was well tolerated. No new safety concerns were identified.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Imunogenicidade da Vacina , Japão , Vacinas de mRNA , SARS-CoV-2
9.
Vaccine ; 42(3): 671-676, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38123398

RESUMO

BACKGROUND: The evidence of SARS-CoV-2 vaccine effectiveness in people living with HIV (PLWH) is limited. This study evaluated the humoral immune response to CoronaVac™ (virus inactivated) and BNT162b2 (mRNA- based) vaccines in PLWH and HIV-negative controls, with and without a booster sequence. METHODS: We conducted a cross-sectional study on PLWH and HIV-negative controls who received CoronaVac or BNT162b2, with a subgroup receiving a CoronaVac/BNT162b2 booster. Blood samples were collected 4-6 months after primary vaccination and tested for anti-SARS-CoV-2 protein S (aSAb) and neutralizing antibodies (NtAb) using validated assays. Immune response was evaluated by age, sex, previous COVID-19 history, and CD4 + cell count. FINDINGS: One hundred and eighty nine participants were enrolled with 161 (85%) being PLWH. Among participants without previous known COVID-19, median aSAb levels were significantly lower in PLWH who received CoronaVac compared to BNT162b2 (32 U/mL vs. 587 U/mL, p < 0.001), with similar results in HIV-negative controls. NtAb presence was also significantly lower after CoronaVac compared to BNT162b2 (30% vs. 93%, p < 0.001). The booster sequence group showed a significant increase in aSAb titers in both PLWH and HIV-negative controls (from 33 U/ml to 2500 U/ml, p < 0.001), and NtAb positivity increased from 20% to 95 % in PLWH, and 27% to 100% in HIV-negative controls. Prior COVID-19 led to significantly higher post-vaccine antibody titers particularly in the BNT162b2 group. PLWH with CD4 + count < 200 cells/mL showed a weaker immune response to both vaccines. INTERPRETATION: CoronaVac resulted in a weaker immune response in both PLWH and HIV-negative controls compared to BNT162b2, particularly in immunosuppressed PLWH without prior COVID-19. Hybrid immunity and heterologous booster vaccination increased antibody levels. FUNDING: Local funding.


Assuntos
COVID-19 , Infecções por HIV , Vacinas de Produtos Inativados , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , Estudos Transversais , Imunidade Humoral , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
Front Immunol ; 14: 1271209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022542

RESUMO

In this study, we evaluated the efficacy of a heterologous three-dose vaccination schedule against the Omicron BA.1 SARS-CoV-2 variant infection using a mouse intranasal challenge model. The vaccination schedules tested in this study consisted of a primary series of 2 doses covered by two commercial vaccines: an mRNA-based vaccine (mRNA1273) or a non-replicative vector-based vaccine (AZD1222/ChAdOx1, hereafter referred to as AZD1222). These were followed by a heterologous booster dose using one of the two vaccine candidates previously designed by us: one containing the glycosylated and trimeric spike protein (S) from the ancestral virus (SW-Vac 2µg), and the other from the Delta variant of SARS-CoV-2 (SD-Vac 2µg), both formulated with Alhydrogel as an adjuvant. For comparison purposes, homologous three-dose schedules of the commercial vaccines were used. The mRNA-based vaccine, whether used in heterologous or homologous schedules, demonstrated the best performance, significantly increasing both humoral and cellular immune responses. In contrast, for the schedules that included the AZD1222 vaccine as the primary series, the heterologous schemes showed superior immunological outcomes compared to the homologous 3-dose AZD1222 regimen. For these schemes no differences were observed in the immune response obtained when SW-Vac 2µg or SD-Vac 2µg were used as a booster dose. Neutralizing antibody levels against Omicron BA.1 were low, especially for the schedules using AZD1222. However, a robust Th1 profile, known to be crucial for protection, was observed, particularly for the heterologous schemes that included AZD1222. All the tested schedules were capable of inducing populations of CD4 T effector, memory, and follicular helper T lymphocytes. It is important to highlight that all the evaluated schedules demonstrated a satisfactory safety profile and induced multiple immunological markers of protection. Although the levels of these markers were different among the tested schedules, they appear to complement each other in conferring protection against intranasal challenge with Omicron BA.1 in K18-hACE2 mice. In summary, the results highlight the potential of using the S protein (either ancestral Wuhan or Delta variant)-based vaccine formulation as heterologous boosters in the management of COVID-19, particularly for certain commercial vaccines currently in use.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , ChAdOx1 nCoV-19 , Humanos , Animais , Adjuvantes Imunológicos , Modelos Animais de Doenças , RNA Mensageiro
11.
Expert Rev Vaccines ; 22(1): 1079-1090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877219

RESUMO

BACKGROUND: Because SARS-CoV-2 mutations and immunity wane over time, a third dose of heterologous COVID-19 vaccine is proposed for individuals primed with inactivated COVID-19 vaccine. RESEARCH DESIGN AND METHODS: We conducted a single-center, open-label trial to assess the safety, immunogenicity, and immune-persistence of a heterologous BBIBP-CorV/ZF2001 prime-boost vaccination in Chinese adults. 480 participants who had been primed with two doses of BBIBP-CorV, received a third dose of ZF2001 after an interval of 3-4, 5-6, or 7-9 months. RESULTS: The overall incidence of adverse reactions within 30 days after vaccination was 5.83%. No serious adverse reactions were reported. The respective geometric mean titers (GMTs) of neutralizing antibodies for 3-4, 5-6, and 7-9 months groups at baseline were 2.06, 2.02, and 2.10; which increased to 55.42, 63.45, and 62.06 on day 14; then decreased to 17.53, 23.79, and 26.73 on day 30; before finally waning to 8.29, 9.24, and 9.51 on day 180. After the booster, the three groups showed no significant differences in GMTs. GMTs were lower in older participants than younger participants. CONCLUSIONS: A heterologous BBIBP-CorV/ZF2001 prime-boost vaccination was safe and immunogenic. Prime-boost intervals did not affect the immune response. The immune response was weaker in older adults than younger adults. CLINICAL TRIAL IDENTIFIER: NCT05205083.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Idoso , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Imunização , Imunogenicidade da Vacina , SARS-CoV-2 , Vacinação
12.
Front Microbiol ; 14: 1232453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645223

RESUMO

Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant pneumonia in December 2019, the cumulative number of infected people worldwide has exceeded 670 million, with over 6.8 million deaths. Despite the marketing of multiple series of vaccines and the implementation of strict prevention and control measures in many countries, the spread and prevalence of SARS-CoV-2 have not been completely and effectively controlled. The latest research shows that in addition to angiotensin converting enzyme II (ACE2), dozens of protein molecules, including AXL, can act as host receptors for SARS-CoV-2 infecting human cells, and virus mutation and immune evasion never seem to stop. To sum up, this review summarizes and organizes the latest relevant literature, comprehensively reviews the genome characteristics of SARS-CoV-2 as well as receptor-based pathogenesis (including ACE2 and other new receptors), mutation and immune evasion, vaccine development and other aspects, and proposes a series of prevention and treatment opinions. It is expected to provide a theoretical basis for an in-depth understanding of the pathogenic mechanism of SARS-CoV-2 along with a research basis and new ideas for the diagnosis and classification, of COVID-19-related disease and for drug and vaccine research and development.

13.
Open Forum Infect Dis ; 10(7): ofad363, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37520424

RESUMO

Background: Immune responses to each vaccine must be investigated to establish effective vaccination strategies for the ongoing coronavirus disease (COVID-19) pandemic. We investigated the long-term kinetics of immune responses after heterologous booster vaccination in relation to Omicron breakthrough infection (BI). Methods: Our study included 373 healthcare workers who received primary ChAdOx1 vaccine doses and a third BNT162b2 vaccine dose. BIs that occurred after the third vaccine were investigated. Blood specimens were collected before and 3 months after the booster dose from participants without BI and 1, 4, and 6 months after BI from participants who experienced BI. Spike-specific binding and neutralizing antibody levels against the wild-type virus, Omicron BA.1, and Omicron BA.5, as well as cellular responses, were analyzed. Results: A total of 346 participants (82 in the no BI group; 192 in the BI group during the BA.1/BA.2 period; 72 in the BI group during the BA.5 period) were included in the analysis. Participants without BI exhibited the highest binding and neutralizing antibody concentrations and greatest cellular response 1 month after the third vaccination, which reached a nadir by the ninth month. Antibody and cellular responses in participants who experienced BI substantially increased postinfection. Neutralizing antibody titers in individuals who experienced BI during the BA.1/BA.2 period showed more robust increase against wild-type virus than against BA.1 and BA.5. Conclusions: Our findings provide evidence of antigenic imprinting in participants who received a heterologous booster vaccination, thereby serving as a foundation for further studies on the impact of BIs on immune responses.

14.
Hum Vaccin Immunother ; 19(2): 2233400, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37438960

RESUMO

In this phase 4 study we assessed boosting with fractional doses of heterologous COVID-19 vaccines in Brazilian adults primed with two doses of CoronaVac (Sinovac/Butantan, São Paulo, Brazil) at least 4 months previously. Participants received either full-dose of ChAdOx1-S (Group 1, n = 232), a half dose of ChAdOx1-S (Group 2, n = 236), or a half dose of BNT162b2 (Group 3, n = 234). The primary objective was to show 80% seroresponse rates (SRR) 28 d after vaccination measured as IgG antibodies against a prototype SARS-CoV-2 spike-protein. Safety was assessed as solicited and unsolicited adverse events. At baseline all participants were seropositive, with high IgG titers overall. SRR at Day 28 were 34.3%, 27.1% and 71.2%, respectively, not meeting the primary objective of 80%, despite robust immune responses in all three groups with geometric mean-fold rise (GMFR) in IgG titers of 3.39, 2.99 and 7.42, respectively. IgG immune responses with similar GMFR were also observed against SARS-CoV-2 variants, Alpha, Beta, Delta, Gamma and D614G. In subsets (n = 35) of participants GMFR of neutralizing immune responses against live prototype SARS-CoV-2 virus and Omicron BA.2 were similar to the IgG responses as were pseudo-neutralizing responses against SARS-CoV-2 prototype and Omicron BA.4/5 variants. All vaccinations were well tolerated with no vaccine-related serious adverse events and mainly transient mild-to-moderate local and systemic reactogenicity. Heterologous boosting with full or half doses of ChAdOx1-S or a half dose of BNT162b2 was safe and immunogenic in CoronaVac-primed adults, but seroresponse rates were limited by high baseline immunity.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , Método Simples-Cego , Brasil , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , ChAdOx1 nCoV-19 , Imunoglobulina G
15.
Expert Rev Vaccines ; 22(1): 620-628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37386785

RESUMO

INTRODUCTION: Approximately half of the 13.4 billion COVID-19 vaccine doses administered globally were inactivated or viral vector platforms. The harmonization and optimization of vaccine regimens has become a key focus of policymakers and health-care providers and presents an opportunity to reassess the continued use of pandemic-era vaccines. AREAS COVERED: Immunological evidence from studies of various homologous and heterologous regimens has been rapidly published; however, interpretation of these data is complicated by the many vaccine types and highly variable participant viral exposure and vaccination histories. Recent studies demonstrate that after primary series doses of inactivated (i.e. BBV152, and BBIBP-CorV), and viral vector (ChAdOx1 nCov-2019) vaccines, a heterologous boost with protein-based NVX-CoV2373 elicits more potent ancestral strain and omicron-specific antibody responses compared to homologous and heterologous inactivated and viral vector boosts. EXPERT OPINION: While mRNA vaccines likely yield similar performance to protein-based heterologous booster doses, the latter offers notable advantages to countries with high uptake of inactivated and viral vector vaccines in terms of transportation and storage logistics and can potentially appeal to vaccine hesitant individuals. Moving forward, vaccine-mediated protection in inactivated and viral vector recipients may be optimized with the use of a heterologous protein-based booster such as NVX-CoV2373. PIVOTING TO PROTEIN: The Immunogenicity and Safety of Protein-based NVX-CoV2373 as a Heterologous Booster for Inactivated and Viral Vector COVID-19 Vaccines. Inactivated or viral vector primary series following a booster dose with homologous or heterologous inactivated vaccines (i.e., BBV152, BBIBP-CorV), and homologous or heterologous viral vector vaccines (i.e., ChAd-Ox1 nCov-19) induces suboptimal immunogenicity compared to the enhanced immunogenicity of heterologous protein-based vaccine NVX-CoV2373.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas Virais , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Imunogenicidade da Vacina , SARS-CoV-2 , Vacinas de Produtos Inativados/efeitos adversos , Vacinas Virais/efeitos adversos
16.
Vaccine ; 41(32): 4648-4657, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37344265

RESUMO

BACKGROUND: The inactivated COVID-19 whole-virus vaccine BBIBP-CorV has been extensively used worldwide. Heterologous boosting after primary vaccination can induce higher immune responses against SARS-CoV-2 than homologous boosting. The safety and immunogenicity after 28 days of a single Ad26.COV2.S booster dose given at different intervals after 2 doses of BBIBP-CorV are presented. METHODS: This open-label phase 1/2 trial was conducted in healthy adults in Thailand who had completed 2-dose primary vaccination with BBIBP-CorV. Participants received a single booster dose of Ad26.COV2.S (5 × 1010 virus particles) 90-240 days (Group A1; n = 360) or 45-75 days (Group A2; n = 66) after the second BBIBP-CorV dose. Safety and immunogenicity were assessed over 28 days. Binding IgG antibodies to the full-length pre-fusion Spike and anti-nucleocapsid proteins of SARS-CoV-2 were measured by enzyme-linked immunosorbent assay. The SARS-CoV-2 pseudovirus neutralization assay and live virus microneutralization assay were used to quantify the neutralizing activity of antibodies against ancestral SARS-CoV-2 (Wuhan-Hu-1) and the delta (B.1.617.2) and omicron (B.1.1.529/BA.1 and BA.2) variants. The cell-mediated immune response was measured using a quantitative interferon (IFN)-γ release assay in whole blood. RESULTS: Solicited local and systemic adverse events (AEs) on days 0-7 were mostly mild, as were unsolicited vaccine-related AEs during days 0-28, with no serious AEs. On day 28, anti-Spike binding antibodies increased from baseline by 487- and 146-fold in Groups A1 and A2, and neutralizing antibodies against ancestral SARS-CoV-2 by 55- and 37-fold, respectively. Humoral responses were strongest against ancestral SARS-CoV-2, followed by the delta, then the omicron BA.2 and BA.1 variants. T-cell-produced interferon-γ increased approximately 10-fold in both groups. CONCLUSIONS: A single heterologous Ad26.COV2.S booster dose after two BBIBP-CorV doses was well tolerated and induced robust humoral and cell-mediated immune responses measured at day 28 in both interval groups. CLINICAL TRIALS REGISTRATION: NCT05109559.


Assuntos
COVID-19 , Vacinas , Adulto , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19/efeitos adversos , Ad26COVS1 , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunogenicidade da Vacina
17.
Vaccine ; 41(25): 3763-3771, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37198021

RESUMO

BACKGROUND: We evaluated the immunogenicity and safety of a booster dose of NVX-CoV2373 in Japanese adults who had completed a primary series of COVID-19 mRNA vaccine 6-12 months previously. METHODS: This single-arm, open-label, phase 3 study, conducted at two Japanese centres, enrolled healthy adults ≥ 20 years old. Participants received a booster dose of NVX-CoV2373. The primary immunogenicity endpoint was non-inferiority (lower limit of the 95 % confidence interval [CI] ≥ 0.67) of the geometric mean titre (GMT) ratio of titres of serum neutralizing antibodies (nAbs) against the SARS-CoV-2 ancestral strain 14 days after booster vaccination (day 15) in this study, compared with those 14 days after the second primary NVX-CoV2373 vaccination (day 36) in the TAK-019-1501 study (NCT04712110). Primary safety endpoints included local and systemic solicited adverse events (AEs) up to day 7 and unsolicited AEs up to day 28. RESULTS: Between 15 April 2022 and 10 May 2022, 155 participants were screened and 150, stratified by age (20-64 years old [n = 135] or ≥ 65 years old [n = 15]), received an NVX-CoV2373 booster dose. The GMT ratio between titres of serum nAbs against the SARS-CoV-2 ancestral strain on day 15 in this study and those on day 36 in the TAK-019-1501 study was 1.18 (95 % CI, 0.95-1.47), meeting the non-inferiority criterion. Following vaccination, the proportion of participants who reported local and systemic solicited AEs up to day 7 was 74.0 % and 48.0 %, respectively. The most common local and systemic solicited AEs were tenderness (102 participants [68.0 %]) and malaise (39 participants [26.0 %]), respectively. Seven participants (4.7 %) reported unsolicited AEs between vaccination and day 28; all were severity grade ≤ 2. DISCUSSION: A single heterologous NVX-CoV2373 booster induced rapid and robust anti-SARS-CoV-2 immune responses, addressing waning immunity in healthy Japanese adults, and had an acceptable safety profile. CLINICALTRIALS: gov identifier: NCT05299359.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , População do Leste Asiático , Imunização Secundária , SARS-CoV-2 , Anticorpos Neutralizantes , Imunogenicidade da Vacina , Anticorpos Antivirais , Vacinas de mRNA
18.
Vaccines (Basel) ; 11(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37242998

RESUMO

There is limited information on the kinetics of the humoral response elicited by a fourth dose with a heterologous mRNA1273 booster in patients who previously received a third dose with BNT162b2 and two doses of BBIBP-CorV as the primary regimen. We conducted a prospective cohort study to assess the humoral response using Elecsys® anti-SARS-CoV-2 S (anti-S-RBD) of 452 healthcare workers (HCWs) in a private laboratory in Lima, Peru at 21, 120, 210, and 300 days after a third dose with a BNT162b2 heterologous booster in HCW previously immunized with two doses of BBIBP-CorV, depending on whether or not they received a fourth dose with the mRNA1273 heterologous vaccine and on the history of previous SARS infection -CoV-2. Of the 452 HCWs, 204 (45.13%) were previously infected (PI) with SARS-CoV-2, and 215 (47.57%) received a fourth dose with a heterologous mRNA-1273 booster. A total of 100% of HCWs presented positive anti-S-RBD 300 days after the third dose. In HCWs receiving a fourth dose, GMTs 2.3 and 1.6 times higher than controls were observed 30 and 120 days after the fourth dose. No statistically significant differences in anti-S-RBD titers were observed in those HCWs PI and NPI during the follow-up period. We observed that HCWs who received a fourth dose with the mRNA1273 and those previously infected after the third dose with BNT162b2 (during the Omicron wave) presented higher anti-S-RBD titers (5734 and 3428 U/mL, respectively). Further studies are required to determine whether patients infected after the third dose need a fourth dose.

19.
Front Public Health ; 11: 1146059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081954

RESUMO

Background: With the widespread transmission of the Omicron SARS-CoV-2 variant, reinfections have become increasingly common. Here, we explored the role of immunity, primary infection severity, and variant predominance in the risk of reinfection and severe COVID-19 during Omicron predominance in Mexico. Methods: We analyzed reinfections in Mexico in individuals with a primary infection separated by at least 90 days from reinfection using a national surveillance registry of SARS-CoV-2 cases from March 3rd, 2020, to August 13th, 2022. Immunity-generating events included primary infection, partial or complete vaccination, and booster vaccines. Reinfections were matched by age and sex with controls with primary SARS-CoV-2 infection and negative RT-PCR or antigen test at least 90 days after primary infection to explore reinfection and severe disease risk factors. We also compared the protective efficacy of heterologous and homologous vaccine boosters against reinfection. Results: We detected 231,202 SARS-CoV-2 reinfections in Mexico, most occurring in unvaccinated individuals (41.55%). Over 207,623 reinfections occurred during periods of Omicron (89.8%), BA.1 (36.74%), and BA.5 (33.67%) subvariant predominance and a case-fatality rate of 0.22%. Vaccination protected against reinfection, without significant influence of the order of immunity-generating events and provided >90% protection against severe reinfections. Heterologous booster schedules were associated with ~11% and ~ 54% lower risk for reinfection and reinfection-associated severe COVID-19, respectively, modified by time-elapsed since the last immunity-generating event, when compared against complete primary schedules. Conclusion: SARS-CoV-2 reinfections increased during Omicron predominance. Hybrid immunity provides protection against reinfection and associated severe COVID-19, with potential benefit from heterologous booster schedules.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Reinfecção/epidemiologia , México/epidemiologia , Imunidade Adaptativa
20.
J Infect Dis ; 228(3): 261-269, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37005365

RESUMO

BACKGROUND: China has been using inactivated coronavirus disease 2019 (COVID-19) vaccines as primary series and booster doses to protect the population from severe to fatal COVID-19. We evaluated primary and booster vaccine effectiveness (VE) against Omicron BA.2 infection outcomes. METHODS: This was a 13-province retrospective cohort study of quarantined close contacts of BA.2-infected individuals. Outcomes were BA.2 infection, COVID-19 pneumonia or worse, and severe/critical COVID-19. Absolute VE was estimated by comparison with an unvaccinated group. RESULTS: There were 289 427 close contacts ≥3 years old exposed to Omicron BA.2 cases; 31 831 turned nucleic acid amplification test-positive during quarantine, 97.2% with mild or asymptomatic infection, 2.6% with COVID-19 pneumonia, and 0.15% with severe/critical COVID-19. None died. Adjusted VE (aVE) against any infection was 17% for primary series and 22% when boosted. Primary series aVE in adults >18 years was 66% against COVID-19 pneumonia or worse and 91% against severe/critical COVID-19. Booster dose aVE was 74% against pneumonia or worse, and 93% against severe/critical COVID-19. CONCLUSIONS: Inactivated COVID-19 vaccines provided modest protection from infection, very good protection against pneumonia, and excellent protection against severe/critical COVID-19. Booster doses are necessary to provide strongest protection.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Pré-Escolar , COVID-19/prevenção & controle , Estudos Retrospectivos , China/epidemiologia , Infecções Assintomáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA