Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
J Med Food ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167545

RESUMO

Fermented red ginseng (FRG) enhances the bioactivity and bioavailability of ginsenosides, which possess various immunomodulatory, antiaging, anti-obesity, and antidiabetic properties. However, the effects of FRG extract on muscle atrophy and the underlying molecular mechanisms remain unclear. This study aimed to elucidate the effects of FRG extract on muscle atrophy using both in vitro and in vivo models. In vitro experiments used dexamethasone (DEX)-induced C2C12 myotubes to assess cell viability, myotube diameter, and fusion index. In vivo experiments were conducted on hind limb immobilization (HI)-induced mice to evaluate grip strength, muscle mass, and fiber cross-sectional area (CSA) of the gastrocnemius (GAS), quadriceps (QUA), and soleus (SOL) muscles. Molecular mechanisms were investigated through the analysis of key signaling pathways associated with muscle protein synthesis, energy metabolism, and protein degradation. FRG extract treatment enhanced viability of DEX-induced C2C12 myotubes and restored myotube diameter and fusion index. In HI-induced mice, FRG extract improved grip strength, increased muscle mass and CSA of GAS, QUA, and SOL muscles. Mechanistic studies revealed that FRG extract activated the insulin-like growth factor 1/protein kinase B (Akt)/mammalian target of rapamycin signaling pathway, promoted muscle energy metabolism via the sirtuin 1/peroxisome proliferator-activated receptor gamma-coactivator-1α pathway, and inhibited muscle protein degradation by suppressing the forkhead box O3a, muscle ring-finger 1, and F-box protein (Fbx32) signaling pathways. FRG extract shows promise for ameliorating muscle atrophy by modulating key molecular pathways associated with muscle protein synthesis, energy metabolism, and protein degradation, offering insights for future drug development.

2.
Bull Exp Biol Med ; 177(1): 26-29, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38954303

RESUMO

We present a two-stage model for the study of chronic hind limb ischemia in rats. In the area of ischemia, sclerotic changes with atrophic rhabdomyocytes and reduced vascularization were revealed. CD31 expression in the endothelium increased proportionally to the number of vessels in the ischemic zone, and at the same time, focal expression of ßIII-tubulin was detected in the newly formed nerve fibers. These histological features are equivalent to the development of peripheral arterial disease in humans, which allows using our model in the search for new therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Membro Posterior , Isquemia , Músculo Esquelético , Animais , Ratos , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigação sanguínea , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Isquemia/patologia , Isquemia/metabolismo , Isquemia/fisiopatologia , Masculino , Ratos Wistar , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Tubulina (Proteína)/metabolismo , Doença Arterial Periférica/patologia , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/fisiopatologia
3.
Front Immunol ; 15: 1395945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799435

RESUMO

Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APCs), particularly dendritic cells (DCs), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DCs (cDCs) and APCs on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation. By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. Notably, the skin component exhibited heightened immunogenicity when compared to the entire VCA, evidenced by increased frequencies of pan (CD11b-CD11c+), mature (CD11b-CD11c+MHCII+) and active (CD11b-CD11c+CD40+) DCs and cDC2 subset (CD11b+CD11c+ MHCII+) in the lymphoid tissues and the blood of skin transplant recipients. While donor depletion of cDC and APC reduced frequencies, maturation and activation of DCs in all analyzed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APCs and cDCs mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.


Assuntos
Células Dendríticas , Rejeição de Enxerto , Membro Posterior , Transplante de Pele , Animais , Células Dendríticas/imunologia , Camundongos , Membro Posterior/imunologia , Membro Posterior/transplante , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Aloenxertos Compostos/imunologia , Alotransplante de Tecidos Compostos Vascularizados/métodos , Linfócitos T CD8-Positivos/imunologia , Masculino , Doadores de Tecidos , Pele/imunologia
4.
Dis Model Mech ; 17(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616715

RESUMO

Preclinical and clinical studies on the administration of bone marrow-derived cells to restore perfusion show conflicting results. We conducted a systematic review and meta-analysis on preclinical studies to assess the efficacy of bone marrow-derived cells in the hind limb ischemia model and identify possible determinants of therapeutic efficacy. In vivo animal studies were identified using a systematic search in PubMed and EMBASE on 10 January 2022. 85 studies were included for systematic review and meta-analysis. Study characteristics and outcome data on relative perfusion were extracted. The pooled mean difference was estimated using a random effects model. Risk of bias was assessed for all included studies. We found a significant increase in perfusion in the affected limb after administration of bone marrow-derived cells compared to that in the control groups. However, there was a high heterogeneity between studies, which could not be explained. There was a high degree of incomplete reporting across studies. We therefore conclude that the current quality of preclinical research is insufficient (low certainty level as per GRADE assessment) to identify specific factors that might improve human clinical trials.


Assuntos
Células da Medula Óssea , Membro Posterior , Isquemia , Animais , Membro Posterior/irrigação sanguínea , Isquemia/terapia , Isquemia/patologia , Células da Medula Óssea/citologia , Perfusão , Transplante de Medula Óssea , Humanos , Viés de Publicação , Terapia Baseada em Transplante de Células e Tecidos/métodos
5.
Am J Vet Res ; 85(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626795

RESUMO

OBJECTIVE: To describe the microvascular anatomy of the equine hind limb suspensory ligament. ANIMALS: 18 hind limbs harvested from 9 adult horses euthanized for reasons unrelated to lameness. METHODS: A catheter was placed in the transected cranial tibial artery at the level of the mid-distal tibia for each hind limb and used to inject 120 to 150 mL of contrast medium (2 limbs) to identify principal vasculature using contrast-enhanced CT or India ink (11 limbs) to identify microvasculature using the Spalteholz tissue-clearing technique. Routine histologic evaluation was performed on transverse sections from 4 hind limbs. RESULTS: The hind limb suspensory ligament is principally supplied by branches of the medial and lateral plantar metatarsal arteries and, to a lesser extent, the medial and lateral plantar arteries as well as the associated proximal and distal deep plantar arches. A uniformly distributed intraligamentous microvascular supply was observed without relative deficiencies in vascularity between the proximal, midbody, and distal regions. Histologic examination supported these findings, demonstrating a network of connective tissue surrounding and entering the suspensory ligament containing cross-sections of branches of the principal vasculature. CLINICAL RELEVANCE: The equine hind limb suspensory ligament has a uniformly distributed and abundant microvascular supply throughout its length, with no evidence of relative deficiency of vascular supply in any region. A region of hypovascularity does not appear to be a viable explanation for the high rate of injury to and commonality of lameness associated with the proximal hind suspensory ligament in horses.


Assuntos
Membro Posterior , Ligamentos , Animais , Cavalos/anatomia & histologia , Membro Posterior/irrigação sanguínea , Ligamentos/anatomia & histologia , Microvasos/anatomia & histologia , Feminino , Masculino
6.
Transl Res ; 270: 13-23, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38548174

RESUMO

BACKGROUND: Post-ischemic angiogenesis is critical for perfusion recovery and tissue repair. ELABELA (ELA) plays an essential role in embryonic heart development and vasculogenesis. However, the mechanism of ELA on post-ischemic angiogenesis is poorly characterized. METHODS: We first assessed ELA expression after hind limb ischemia (HLI) in mice. We then established a HLI model in tamoxifen-inducible endothelial-ELA-specific knockout mice (ELAECKO) and assessed the rate of perfusion recovery, capillary density, and VEGFR2 pathway. Knockdown of ELA with lentivirus or siRNA and exogenous addition of ELA peptides were employed to analyze the effects of ELA on angiogenic capacity and VEGFR2 pathway in endothelial cells in vitro. The serum levels of ELA in healthy people and patients with type 2 diabetes mellitus (T2DM) and diabetic foot ulcer (DFU) were detected by a commercial ELISA kit. RESULTS: In murine HLI models, ELA was significantly up-regulated in the ischemic hindlimb. Endothelial-specific deletion of ELA impaired perfusion recovery and angiogenesis. In physiologic conditions, no significant difference in VEGFR2 expression was found between ELAECKO mice and ELAWT mice. After ischemia, the expression of VEGFR2, p-VEGFR2, and p-AKT was significantly lower in ELAECKO mice than in ELAWT mice. In cellular experiments, the knockdown of ELA inhibited endothelial cell proliferation and tube formation, and the addition of ELA peptides promoted proliferation and tube formation. Mechanistically, ELA upregulated the expression of VEGFR2, p-VEGFR2, and p-AKT in endothelial cells under hypoxic conditions. In clinical investigations, DFU patients had significantly lower serum levels of ELA compared to T2DM patients. CONCLUSION: Our results indicated that endothelial ELA is a positive regulator of post-ischemic angiogenesis via upregulating VEGFR2 expression. Targeting ELA may be a potential therapeutic option for peripheral arterial diseases.


Assuntos
Membro Posterior , Isquemia , Camundongos Knockout , Neovascularização Fisiológica , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Isquemia/metabolismo , Isquemia/genética , Humanos , Camundongos , Membro Posterior/irrigação sanguínea , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Pé Diabético/metabolismo , Pé Diabético/genética , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Angiogênese
8.
Clin Ther ; 45(11): 1077-1086, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37770310

RESUMO

PURPOSE: This narrative review summarizes recent research examining treatment targets for peripheral artery disease (PAD)-related limb ischemia. METHODS: Targeted searches of the PubMed and clinical trial registry databases were performed to identify recent findings from animal models of limb ischemia and clinical studies examining PAD progression and treatment. Ongoing clinical trials testing new treatments for PAD were also reviewed. Relevant full-text articles were retrieved and critically reviewed. Where indicated, data were tabulated and summarized in the text. FINDINGS: Most people with PAD need treatment to improve their walking and function and limit leg pain. Currently, the available treatments of cilostazol, exercise therapy, and revascularization have several deficiencies, including limited access, poor uptake, limited efficacy, and risk of complications. Severe PAD threatens limb viability and is treated by endovascular or open surgical revascularization but is not always successful in achieving limb salvage. Research is ongoing to develop and test new therapies, including new exercise programs, drugs, stem cell treatments and RNA therapeutics, so that new and adjunctive PAD treatments can be offered. Results from multiple clinical trials are expected within the next 5 years. IMPLICATIONS: It is envisaged that a range of new therapies for PAD will be available in the future.


Assuntos
Doença Arterial Periférica , Animais , Humanos , Doença Arterial Periférica/terapia , Isquemia/etiologia , Isquemia/terapia , Salvamento de Membro/efeitos adversos , Caminhada , Resultado do Tratamento , Fatores de Risco
9.
Acta Pharmacol Sin ; 44(12): 2492-2503, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37468692

RESUMO

Endothelial dysfunction, a central hallmark of cardiovascular pathogenesis in diabetes mellitus, is characterized by impaired endothelial nitric oxide synthase (eNOS) and NO bioavailability. However, the underlying mechanisms remain unclear. Here in this study, we aimed to identify the role of calmodulin (CaM) in diabetic eNOS dysfunction. Human umbilical vein endothelial cells and murine endothelial progenitor cells (EPCs) treated with high glucose (HG) exhibited downregulated CaM mRNA/protein and vascular endothelial growth factor (VEGF) expression with impeded eNOS phosphorylation and cell migration/tube formation. These perturbations were reduplicated in CALM1-knockdown cells but prevented in CALM1-overexpressing cells. EPCs from type 2 diabetes animals behaved similarly to HG-treated normal EPCs, which could be rescued by CALM1-gene transduction. Consistently, diabetic animals displayed impaired eNOS phosphorylation, endothelium-dependent dilation, and CaM expression in the aorta, as well as deficient physical interaction of CaM and eNOS in the gastrocnemius. Local CALM1 gene delivery into a diabetic mouse ischemic hindlimb improved the blunted limb blood perfusion and gastrocnemius angiogenesis, and foot injuries. Diabetic patients showed insufficient foot microvascular autoregulation, eNOS phosphorylation, and NO production with downregulated CaM expression in the arterial endothelium, and abnormal CALM1 transcription in genome-wide sequencing analysis. Therefore, our findings demonstrated that downregulated CaM expression is responsible for endothelium dysfunction and angiogenesis impairment in diabetes, and provided a novel mechanism and target to protect against diabetic endothelial injury.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Endotélio/metabolismo , Isquemia/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Neovascularização Fisiológica
10.
Front Vet Sci ; 10: 1194167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519994

RESUMO

Introduction: Dogs with medial patellar luxation can be affected by pelvic limb deformities whose corrective osteotomies and associated biomechanical rebalancing might provide higher success rates than standard surgical procedures limited to the stifle joint. In bilaterally affected canine patients, comparison with the contralateral normal limb is impossible. Reference values are useful for orthopedic decision-making. Inconsistency of published reference values might depend on methodology or canine breed. We hypothesized that canine pelvic limb alignment is breed-specific. Methods: CT scans of 42 pelvic limbs of dog breeds predisposed for medial patellar luxation, with an orthotopic patellar position and stability were studied. Several angleswere measured with an open-source 3D Slicer plugin using vector calculations. The breeds were compared with a general linear model with a Bonferonni adjustment using SPSS. Results: Chihuahuas, Pomeranians, Jack Russel Terriers, Pugs, French Bulldogs, Maltese were examined. In the order of the listed breeds, the angles were as follows: 28.3°±10.7°, 20.1°±2.9°, 35.4°±6.9°, 32.8°±3.0°, 19.0°±7.1°, 26.6°±5.3° for the antetorsion, 5.3°±1.8°, 2.8°±2.8°, 8°±4.4°, 3.8 °±3.1°, 4.7°±3.3°, 2.3°±3.3° for the femoral varus, of -5.5°±6.2°, 1.1°±4.1°, -5.2°±9.5°, 6.1°±8.0°, -0.1°±5.9°, -9.2°±4.7° for the tibial torsion, 2.0°±2.9°, 2.1°±2.7°, 6.4°±6.8°, 0.0°±5.7°, 3.0°±5.8°, 8.8°±8.6° for the tibial valgus, 1.2°±10.4°, 1.8°±3.4°, -1.7°±4.9°, -1.7°±9.4°, 5.1°±8.8°, -0.2°±8.6° for the femorotibial rotation and -3.4°±2.2°, 1.1°±4.1°, -2.8°±3.4°, -5.2°±4.0°, -2.1°±4.4°, -5.4°±3.7° for the tibiotalar rotation. There were significant differences between breeds in femoral torsion, femoral varus, and tibial torsion angles, but no significant differences in tibial valgus, femorotibial, and tibiotalar rotation angles. Discussion: Our hypothesis is therefore partially correct. Our results are limited to small dogs prone to medial patellar luxation and might not be generalized. To establish robust reference values larger case numbers and more breeds should be evaluated. In conclusion, canine pelvic limb alignment reference values for small dogs with a predisposition for medial patellar luxation should be considered breed-specific.

11.
Biology (Basel) ; 12(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508336

RESUMO

Brain-derived neurotropic factor (BDNF) has been shown to be expressed in many nonneuronal tissues including skeletal muscle. Skeletal muscle BDNF has been studied regarding its function in metabolism and exercise; however, less is known about its role in skeletal muscle injury. The precursor to BDNF, proBDNF, has an unknown role in skeletal muscle. The levels of proBDNF, mature BDNF, and their receptors were compared in the skeletal muscle and brain tissues of C57BL/6J mice. Tourniquet-induced hind limb ischemia-reperfusion injury was used to assess the function of skeletal muscle-derived proBDNF in skeletal muscle injury. Skeletal muscle-specific knockout of BDNF and pharmacological inhibition of p75NTR, the proBDNF receptor, were used to determine the role of proBDNF-p75NTR signaling. We show for the first time that proBDNF is the predominantly expressed form of BDNF in skeletal muscle and that proBDNF is significantly upregulated in skeletal muscle following hind limb ischemia-reperfusion injury. Skeletal muscle-specific knockout of BDNF blunted the inflammatory response in the injured tissue and appears to be mediated by the proBDNF-p75NTR pathway, as shown by the pharmacological inhibition of p75NTR. These findings suggest that skeletal muscle proBDNF plays a critical role in driving the inflammatory response following skeletal muscle injury.

12.
Biol Res ; 56(1): 16, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005678

RESUMO

BACKGROUND/AIMS: Diabetes mellitus (DM) is highly susceptible to diabetic hind limb ischemia (DHI). MicroRNA (MiR)-17-5p is downregulated in DM and plays a key role in vascular protection. Endothelial progenitor cell (EPC)-released exosomes (EPC-EXs) contribute to vascular protection and ischemic tissue repair by transferring their contained miRs to target cells. Here, we investigated whether miR-17-5p-enriched EPC-EXs (EPC-EXsmiR-17-5p) had conspicuous effects on protecting vascular and skeletal muscle in DHI in vitro and in vivo. METHODS: EPCs transfected with scrambled control or miR-17-5p mimics were used to generate EPC-EXs and EPC-EXsmiR-17-5p. Db/db mice were subjected to hind limb ischemia. After the surgery, EPC-EXs and EPC-EXsmiR-17-5p were injected into the gastrocnemius muscle of the hind limb once every 7 days for 3 weeks. Blood flow, microvessel density, capillary angiogenesis, gastrocnemius muscle weight, structure integrity, and apoptosis in the hind limb were assessed. Vascular endothelial cells (ECs) and myoblast cells (C2C12 cells) were subjected to hypoxia plus high glucose (HG) and cocultured with EPC-EXs and EPC-EXsmiR-17-5p. A bioinformatics assay was used to analyze the potential target gene of miR-17-5p, the levels of SPRED1, PI3K, phosphorylated Akt, cleaved caspase-9 and cleaved caspase-3 were measured, and a PI3K inhibitor (LY294002) was used for pathway analysis. RESULTS: In the DHI mouse model, miR-17-5p was markedly decreased in hind limb vessels and muscle tissues, and infusion of EPC-EXsmiR-17-5p was more effective than EPC-EXs in increasing miR-17-5p levels, blood flow, microvessel density, and capillary angiogenesis, as well as in promoting muscle weight, force production and structural integrity while reducing apoptosis in gastrocnemius muscle. In Hypoxia plus HG-injured ECs and C2C12 cells, we found that EPC-EXsmiR-17-5p could deliver their carried miR-17-5p into target ECs and C2C12 cells and subsequently downregulate the target protein SPRED1 while increasing the levels of PI3K and phosphorylated Akt. EPC-EXsmiR-17-5p were more effective than EPC-EXs in decreasing apoptosis and necrosis while increasing viability, migration, and tube formation in Hypoxia plus HG-injured ECs and in decreasing apoptosis while increasing viability and myotube formation in C2C12 cells. These effects of EPC-EXsmiR-17-5p could be abolished by a PI3K inhibitor (LY294002). CONCLUSION: Our results suggest that miR-17-5p promotes the beneficial effects of EPC-EXs on DHI by protecting vascular ECs and muscle cell functions.


Assuntos
Diabetes Mellitus , MicroRNAs , Camundongos , Animais , Células Endoteliais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Movimento Celular , Músculo Esquelético/metabolismo , Isquemia , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia
13.
Vet Sci ; 10(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37104460

RESUMO

This study aimed to describe the anatomy of the nerve supply of the hindlimb's distal portion in a dromedary camel's foot. In our study, we used ten adult slaughtered dromedary camels (twenty distal hindlimbs) of different sexes and ages (4-6 years). The hindlimbs were preserved using 10% formalin for about one week. The distal part of the hindlimb of the camels was dissected with extreme precision to show the group of nerves responsible for the nervous supply to the distal part of the hindlimb in dromedary camels. This study shows the numerous branches of the superficial fibular nerve along its extension to the dorsal surface metatarsus and the abaxial aspect of the third digit. The results show that the tibial nerve possesses many branches along its extension to the plantar surface skin of the metatarsus. Additionally, it provides the axial and abaxial plantar surfaces of the fourth digit and the interdigital surfaces as well as its branches to supply the plantar-abaxial and plantar-axial of the third digit. The present study shows the anatomical nerve supply of the hindlimb's distal portion that is essential for anesthesia and surgery in this region.

14.
Anat Histol Embryol ; 52(4): 560-570, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36892010

RESUMO

In this study, the foot and hind limb bones of pigeons and quails were measured morphometrically. Additionally, microscopic classifications of the muscles affecting the foot and digit joints were made. For the macroscopic inspection, 40 birds were used, including 20 adult quails (10 males, 10 females) and 20 adult pigeons (10 males, 10 females). Diethyl ether was inhaled to anaesthetize the animals. The poultry animals were put under anaesthesia, and radiographic pictures of their left feet were obtained individually. DAP measurements were performed separately from the images taken with the Image J program. Then, they were euthanized by cervical dislocation under diethyl ether anaesthesia. The right legs of the euthanized animals were preserved in a 10% neutral formalin solution for histology procedures just after the legs were dissected from the trunk. Morphometric measurements of bone lengths were made in accordance with the measurement points specified by von den Driesch. After fixation for histological examination, routine tissue follow-up was performed and the tissues were embedded in paraffin. The presence of SO-type I, FG-type IIb and FOG-type IIa in 4-5 µ sections taken from paraffin blocks was demonstrated using the indirect streptavidin-biotin-complex method from immunohistochemical methods. The result of our study was statistically evaluated at p < 0.05 and p < 0.001 levels. The length of the hallux, the articulation point to the TMT and the fibre arrangements in the two flexor group muscles showed that the hind limbs and feet of the pigeons had a more favourable anatomical and histological structure for the perching movement.


Assuntos
Columbidae , Codorniz , Masculino , Feminino , Animais , Éter , Parafina , Ossos do Pé , Músculo Esquelético/diagnóstico por imagem
15.
Artigo em Inglês | MEDLINE | ID: mdl-36931425

RESUMO

Humans are unique among terrestrial mammals in our manner of walking and running, reflecting 7 to 8 Ma of musculoskeletal evolution since diverging with the genus Pan. One component of this is a shift in our skeletal muscle biology towards a predominance of myosin heavy chain (MyHC) I isoforms (i.e. slow fibers) across our pelvis and lower limbs, which distinguishes us from chimpanzees. Here, new MyHC data from 35 pelvis and hind limb muscles of a Western gorilla (Gorilla gorilla) are presented. These data are combined with a similar chimpanzee dataset to assess the MyHC I content of humans in comparison to African apes (chimpanzees and gorillas) and other terrestrial mammals. The responsiveness of human skeletal muscle to behavioral interventions is also compared to the human-African ape differential. Humans are distinct from African apes and among a small group of terrestrial mammals whose pelvis and lower limb muscle is slow fiber dominant, on average. Behavioral interventions, including immobilization, bed rest, spaceflight and exercise, can induce modest decreases and increases in human MyHC I content (i.e. -9.3% to 2.3%, n = 2033 subjects), but these shifts are much smaller than the mean human-African ape differential (i.e. 31%). Taken together, these results indicate muscle fiber content is likely an evolvable trait under selection in the hominin lineage. As such, we highlight potential targets of selection in the genome (e.g. regions that regulate MyHC content) that may play an important role in hominin skeletal muscle evolution.


Assuntos
Hominidae , Cadeias Pesadas de Miosina , Humanos , Animais , Cadeias Pesadas de Miosina/genética , Pan troglodytes , Músculo Esquelético , Fibras Musculares Esqueléticas , Isoformas de Proteínas , Mamíferos
16.
Front Cardiovasc Med ; 10: 1118738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937923

RESUMO

Skeletal muscle injury in peripheral artery disease (PAD) has been attributed to vascular insufficiency, however evidence has demonstrated that muscle cell responses play a role in determining outcomes in limb ischemia. Here, we demonstrate that genetic ablation of Pax7+ muscle progenitor cells (MPCs) in a model of hindlimb ischemia (HLI) inhibited muscle regeneration following ischemic injury, despite a lack of morphological or physiological changes in resting muscle. Compared to control mice (Pax7WT), the ischemic limb of Pax7-deficient mice (Pax7Δ) was unable to generate significant force 7 or 28 days after HLI. A significant increase in adipose was observed in the ischemic limb 28 days after HLI in Pax7Δ mice, which replaced functional muscle. Adipogenesis in Pax7Δ mice corresponded with a significant increase in PDGFRα+ fibro/adipogenic progenitors (FAPs). Inhibition of FAPs with batimastat decreased muscle adipose but increased fibrosis. In vitro, Pax7Δ MPCs failed to form myotubes but displayed increased adipogenesis. Skeletal muscle from patients with critical limb threatening ischemia displayed increased adipose in more ischemic regions of muscle, which corresponded with fewer satellite cells. Collectively, these data demonstrate that Pax7+ MPCs are required for muscle regeneration after ischemia and suggest that muscle regeneration may be an important therapeutic target in PAD.

17.
Animals (Basel) ; 13(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766402

RESUMO

This case report describes a new therapeutic approach for a domestic shorthaired female cat, who has an extensive posttraumatic wound in the right hind limb. After patient stabilization, general anesthesia was started and the wound was cleaned and debrided of devitalized tissues, followed by the application of ozone therapy and bandage. Eight sessions of ozone therapy were performed for 17 days until the application of the skin graft. Three more sessions of ozone therapy were performed every 3 days postoperatively. The bagging method and the perilesional infiltration method were used. The ozone therapy ensured an accelerated recovery of the patient without any complications. According to our knowledge, this is the first case report with the use of ozone therapy to support a free skin graft in a cat. The new therapeutic approach could be used to accelerate healing of the wounds with a significant lack of substance, by supporting pre- and post-operative skin grafts.

18.
Biol. Res ; 56: 16-16, 2023. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1439483

RESUMO

BACKGROUND/AIMS: Diabetes mellitus (DM) is highly susceptible to diabetic hind limb ischemia (DHI). MicroRNA (MiR)-17-5p is downregulated in DM and plays a key role in vascular protection. Endothelial progenitor cell (EPC)-released exosomes (EPC-EXs) contribute to vascular protection and ischemic tissue repair by transferring their contained miRs to target cells. Here, we investigated whether miR-17-5p-enriched EPC-EXs (EPC-EXsmiR-17-5p) had conspicuous effects on protecting vascular and skeletal muscle in DHI in vitro and in vivo. METHODS: EPCs transfected with scrambled control or miR-17-5p mimics were used to generate EPC-EXs and EPC-EXsmiR-17-5p. Db/db mice were subjected to hind limb ischemia. After the surgery, EPC-EXs and EPC-EXsmiR-17-5p were injected into the gastrocnemius muscle of the hind limb once every 7 days for 3 weeks. Blood flow, microvessel density, capillary angiogenesis, gastrocnemius muscle weight, structure integrity, and apoptosis in the hind limb were assessed. Vascular endothelial cells (ECs) and myoblast cells (C2C12 cells) were subjected to hypoxia plus high glucose (HG) and cocultured with EPC-EXs and EPC-EXsmiR-17-5p. A bioinformatics assay was used to analyze the potential target gene of miR-17-5p, the levels of SPRED1, PI3K, phosphorylated Akt, cleaved caspase-9 and cleaved caspase-3 were measured, and a PI3K inhibitor (LY294002) was used for pathway analysis. RESULTS: In the DHI mouse model, miR-17-5p was markedly decreased in hind limb vessels and muscle tissues, and infusion of EPC-EXsmiR-17-5p was more effective than EPC-EXs in increasing miR-17-5p levels, blood flow, microvessel density, and capillary angiogenesis, as well as in promoting muscle weight, force production and structural integrity while reducing apoptosis in gastrocnemius muscle. In Hypoxia plus HG-injured ECs and C2C12 cells, we found that EPC-EXsmiR-17-5p could deliver their carried miR-17-5p into target ECs and C2C12 cells and subsequently downregulate the target protein SPRED1 while increasing the levels of PI3K and phosphorylated Akt. EPC-EXsmiR-17-5p were more effective than EPC-EXs in decreasing apoptosis and necrosis while increasing viability, migration, and tube formation in Hypoxia plus HG-injured ECs and in decreasing apoptosis while increasing viability and myotube formation in C2C12 cells. These effects of EPC-EXsmiR-17-5p could be abolished by a PI3K inhibitor (LY294002). CONCLUSION: Our results suggest that miR-17-5p promotes the beneficial effects of EPC-EXs on DHI by protecting vascular ECs and muscle cell functions.


Assuntos
Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Diabetes Mellitus , Movimento Celular , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases , Células Endoteliais , Isquemia , Hipóxia
19.
Cell Transplant ; 31: 9636897221139734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36448598

RESUMO

Recent studies have shown that the use of mesenchymal stem/stromal cells (MSCs) may be a promising strategy for treating spinal cord injury (SCI). This study aimed to explore the effectiveness of human umbilical cord-derived MSCs (hUC-MSCs) with different administration routes and dosages on SCI rats. Following T10-spinal cord contusion in Sprague-Dawley rats (N = 60), three different dosages of hUC-MSCs were intrathecally injected into rats (SCI-ITH) after 24 h. Intravenous injection of hUC-MSCs (SCI-i.v.) and methylprednisolone reagent (SCI-PC) were used as positive controls (N = 10/group). A SCI control group without treatment and a sham operation group were injected with Multiple Electrolyte Injection solution. The locomotor function was assessed by Basso Beattie Bresnahan (BBB) rating score, magnetic resonance imaging (MRI), histopathology, and immunofluorescence. ELISA was conducted to further analyze the nerve injury and inflammation in the rat SCI model. Following SCI, BBB scores were significantly lower in the SCI groups compared with the sham operation group, but all the treated groups showed the recovery of hind-limb motor function, and rats receiving the high-dose intrathecal injection of hUC-MSCs (SCI-ITH-H) showed improved outcomes compared with rats in hUC-MSCs i.v. and positive control groups. Magnetic resonance imaging revealed significant edema and spinal cord lesion in the SCI groups, and significant recovery was observed in the medium and high-dose hUC-MSCs ITH groups. Histopathological staining showed that the necrotic area in spinal cord tissue was significantly reduced in the hUC-MSCs ITH-H group, and the immunofluorescence staining confirmed the neuroprotection effect of hUC-MSCs infused on SCI rats. The increase of inflammatory cytokines was repressed in hUC-MSCs ITH-H group. Our results confirmed that hUC-MSC administered via intrathecal injection has dose-dependent neuroprotection effect in SCI rats.


Assuntos
Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/terapia , Fatores Imunológicos
20.
Life (Basel) ; 12(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36362993

RESUMO

Microgravity (modeled by head-tilt bedrest and hind-limb unloading), experienced during prolonged spaceflight, results in neurological consequences, central nervous system (CNS) dysfunction, and potentially impairment during the performance of critical tasks. Similar pathologies are observed in bedrest, sedentary lifestyle, and muscle disuse on Earth. In our previous study, we saw that head-tilt bedrest together with social isolation upregulated the milieu of pro-inflammatory cytokines in the hippocampus and plasma. These changes were mitigated in a MCAT mouse model overexpressing human catalase in the mitochondria, pointing out the importance of ROS signaling in this stress response. Here, we used a head-tilt model in socially housed mice to tease out the effects of head-tilt bedrest without isolation. In order to find the underlying molecular mechanisms that provoked the cytokine response, we measured CD68, an indicator of microglial activation in the hippocampus, as well as changes in normal in-cage behavior. We hypothesized that hindlimb unloading (HU) will elicit microglial hippocampal activations, which will be mitigated in the MCAT ROS-quenching mice model. Indeed, we saw an elevation of the activated microglia CD68 marker following HU in the hippocampus, and this pathology was mitigated in MCAT mice. Additionally, we identified cytokines in the hippocampus, which had significant positive correlations with CD68 and negative correlations with exploratory behaviors, indicating a link between neuroinflammation and behavioral consequences. Unveiling a correlation between molecular and behavioral changes could reveal a biomarker indicative of these responses and could also result in a potential target for the treatment and prevention of cognitive changes following long space missions and/or muscle disuse on Earth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA