Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.427
Filtrar
1.
Crit Rev Microbiol ; : 1-36, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39381985

RESUMO

Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.

2.
Sci Rep ; 14(1): 23945, 2024 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-39397128

RESUMO

Exposure to contagious pathogens can result in behavioural changes, which can alter the spread of infectious diseases. Healthy individuals can express generalized social distancing or avoid the sources of infection, while infected individuals can show passive or active self-isolation. Amphibians are globally threatened by contagious diseases, yet their behavioural responses to infections are scarcely known. We studied behavioural changes in agile frog (Rana dalmatina) juveniles upon exposure to a Ranavirus (Rv) using classic choice tests. We found that both non-infected and Rv-infected focal individuals spatially avoided infected conspecifics, while there were no signs of generalized social distancing, nor self-isolation. Avoidance of infected conspecifics may effectively hinder disease transmission, protecting non-infected individuals as well as preventing secondary infections in already infected individuals. On the other hand, the absence of self-isolation by infected individuals may facilitate it. Since infection status did not affect the time spent near conspecifics, it is unlikely that the pathogen manipulated host behaviour. More research is urgently needed to understand under what circumstances behavioural responses can help amphibians cope with infections, and how that affects disease dynamics in natural populations.


Assuntos
Comportamento Animal , Ranavirus , Animais , Ranavirus/fisiologia , Ranidae/virologia , Infecções por Vírus de DNA/transmissão , Infecções por Vírus de DNA/virologia
3.
mSphere ; : e0039824, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412263

RESUMO

Dr. Parimal Samir works in the field of host-pathogen interactions. In this mSphere of Influence article, he reflects on how the manuscript entitled "De novo gene synthesis by an antiviral reverse transcriptase" by Samuel Sternberg and colleagues made an impact by reminding him that there is still so much to discover in life sciences.

4.
Expert Rev Respir Med ; : 1-12, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39434706

RESUMO

INTRODUCTION: Tuberculosis (TB), an infective air-borne disease with worldwide non-homogeneous distribution, remains a top cause of morbidity and mortality. TB control is linked to early diagnosis and proper treatment of contagious TB cases and infected subjects at high risk of developing TB. AREAS COVERED: A narrative review of pulmonary TB in non-HIV adults with reference to high-income countries. Modern medicine offers several advancements in diagnostics and therapeutics of TB, but they often remain to be extensively implemented in real life. In high-income countries TB is now relatively uncommon, but it remains a health and socio-economic burden that should not be underestimated. EXPERT OPINION: Pulmonologists should maintain expertise toward TB for several reasons. First, the lung is the most common and the infectious moiety of TB. Second, TB remains a global issue due to common travels of western people and migrations from areas with high incidence of TB. Third, as TB has heterogenous clinics, its prompt diagnosis may be difficult. Fourth, TB is a curable disease, but its management is complex and predisposes to poor adherence with failures/relapses and selection of drug-resistant strains.

5.
FEBS J ; 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39428707

RESUMO

Adipose tissue is a rich source of diverse cell populations, including immune cells, adipocytes and stromal cells. Interactions between these different cell types are now appreciated to be critical for maintaining tissue structure and function, by governing processes such as adipogenesis, lipolysis and differentiation of white to beige adipocytes. Interactions between these cells also drive inflammation in obesity, leading to an expansion of adipose tissue immune cells, and the secretion of proinflammatory cytokines from immune cells and from adipocytes themselves. However, in evolutionary terms, obesity is a recent phenomenon, raising the question of why adipocytes evolved to express factors that influence the immune response. Studies of various pathogens indicate that adipocytes are highly responsive to infection, altering their metabolic profiles in a way that can be used to release nutrients and fuel the immune response. In the case of infection with the extracellular parasite Trypanosoma brucei, attenuating the ability of adipocytes to sense the cytokine IL-17 results in a loss of control of the local immune response and an increased pathogen load. Intriguingly, comparisons of the adipocyte response to infection suggest that the immune responses of these cells occur in a pathogen-dependent manner, further confirming their complexity. Here, with a focus on murine adipose tissue, we discuss the emerging concept that, in addition to their canonical function, adipocytes are immune signalling hubs that integrate and disseminate signals from the immune system to generate a local environment conducive to pathogen clearance.

7.
Immune Netw ; 24(4): e31, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39246616

RESUMO

Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections globally, manifesting in diverse clinical phenotypes with varying degrees of severity and complications. The mechanisms underlying UTIs are gradually being elucidated, leading to an enhanced understanding of the immune responses involved. Innate immune cells play a crucial defensive role against uropathogenic bacteria through various mechanisms. Despite their significant contributions to host defense, these cells often fail to achieve complete clearance of uropathogens, necessitating the frequent prescription of antibiotics for UTI patients. However, the persistence of infections and related pathological symptoms in the absence of innate immune cells in animal models underscore the importance of innate immunity in UTIs. Therefore, the host protective functions of innate immune cells, including neutrophils, macrophages, mast cells, NK cells, innate lymphoid cells, and γδ T cells, are delicately coordinated and timely regulated by a variety of cytokines to ensure successful pathogen clearance.

8.
Plants (Basel) ; 13(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273916

RESUMO

Soil seedbanks are particularly important for the resiliency of species living in habitats threatened by climate change, such as alpine meadows. We investigated the germination rate and seedbank potential for the endemic species Dianthus pavonius, a carnation native to the Maritime Alps that is used as model system for disease in natural populations due to its frequent infections by a sterilizing anther-smut pathogen. We aimed to ascertain whether this species can create a persistent reserve of viable seeds in the soil which could impact coevolutionary dynamics. Over three years, we collected data from seeds sown in natural soil and analyzed their germination and viability. We found that D. pavonius seeds are not physiologically dormant and they are able to create a persistent soil seed bank that can store seeds in the soil for up to three years, but lower than the estimated plant lifespan. We conclude that while the seedbank may provide some demographic stability to the host population, its short duration is unlikely to strongly affect the host's ability to respond to selection from disease. Our findings have implications for the conservation of this alpine species and for understanding the evolutionary dynamics between the host and its pathogen.

9.
Proc Natl Acad Sci U S A ; 121(38): e2410679121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39264739

RESUMO

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here, however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Enterotoxinas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Interações Hospedeiro-Patógeno , Escherichia coli Enterotoxigênica/metabolismo , Humanos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Enterotoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Animais , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Antígeno Carcinoembrionário/metabolismo , Antígeno Carcinoembrionário/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Diarreia/microbiologia , Diarreia/metabolismo
10.
Entropy (Basel) ; 26(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39330073

RESUMO

This study presents extended Immunity Agent-Based Model (IABM) simulations to evaluate vaccination strategies in controlling the spread of infectious diseases. The application of IABM in the analysis of vaccination configurations is innovative, as a vaccinated individual can be infected depending on how their immune system acts against the invading pathogen, without a pre-established infection rate. Analysis at the microscopic level demonstrates the impact of vaccination on individual immune responses and infection outcomes, providing a more realistic representation of how the humoral response caused by vaccination affects the individual's immune defense. At the macroscopic level, the effects of different population-wide vaccination strategies are explored, including random vaccination, targeted vaccination of specific demographic groups, and spatially focused vaccination. The results indicate that increased vaccination rates are correlated with decreased infection and mortality rates, highlighting the importance of achieving herd immunity. Furthermore, strategies focused on vulnerable populations or densely populated regions prove to be more effective in reducing disease transmission compared to randomly distributed vaccination. The results presented in this work show that vaccination strategies focused on highly crowded regions are more efficient in controlling epidemics and outbreaks. Results suggest that applying vaccination only in the densest region resulted in the suppression of infection in that region, with less intense viral spread in areas with lower population densities. Strategies focused on specific regions, in addition to being more efficient in reducing the number of infected and dead people, reduce costs related to transportation, storage, and distribution of doses compared to the random vaccination strategy. Considering that, despite scientific efforts to consolidate the use of mass vaccination, the accessibility, affordability, and acceptability of vaccines are problems that persist, investing in the study of strategies that mitigate such issues is crucial in the development and application of government policies that make immunization systems more efficient and robust.

11.
mBio ; 15(10): e0212424, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39292011

RESUMO

In both mice and humans, Type II interferon gamma (IFNγ) is crucial for the regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the host's immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ-driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent parasite premature egress and host cell death in human cells stimulated with IFNγ post-infection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ-driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.IMPORTANCEToxoplasma gondii, an intracellular parasite, affects nearly one-third of the global human population, posing significant risks for immunocompromised patients and infants infected in utero. In murine models, the core mechanisms of IFNγ-mediated immunity against T. gondii are consistently preserved, showcasing a remarkable conservation of immune defense mechanisms. In humans, the recognized restriction mechanisms vary among cell types, lacking a universally applicable mechanism. This difference underscores a significant variation in the genes employed by T. gondii to shield itself against the IFNγ response in human vs murine cells. Here, we identified a specific combination of four parasite-secreted effectors deployed into the host cell nucleus, disrupting IFNγ signaling. This disruption is crucial in preventing premature egress of the parasite and host cell death. Notably, this phenotype is exclusive to human cells, highlighting the intricate and unique mechanisms T. gondii employs to modulate host responses in the human cellular environment.


Assuntos
Morte Celular , Interferon gama , Proteínas de Protozoários , Toxoplasma , Toxoplasma/imunologia , Toxoplasma/genética , Toxoplasma/fisiologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Interferon gama/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Interações Hospedeiro-Parasita , Animais , Toxoplasmose/parasitologia , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Núcleo Celular/metabolismo , Camundongos , Fibroblastos/parasitologia , Fibroblastos/imunologia , Linhagem Celular , Transdução de Sinais
12.
mBio ; 15(10): e0156124, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39324816

RESUMO

Host-microbe interactions that facilitate entry into mammalian cells are essential for obligate intracellular bacterial survival and pathogenesis. Anaplasma phagocytophilum is an obligate intracellular bacterium that invades neutrophils to cause granulocytic anaplasmosis. The invasin-receptor pairs and signaling events that induce Anaplasma uptake are inadequately defined. A. phagocytophilum invasion protein A orchestrates entry via residues 9-21 (AipA9-21) engaging an unknown receptor. Yeast two-hybrid screening suggested that AipA binds within C-terminal amino acids 851-967 of CD13 (aminopeptidase N), a multifunctional protein that, when crosslinked, initiates Src kinase and Syk signaling that culminates in endocytosis. Co-immunoprecipitation validated the interaction and confirmed that it requires the AipA N-terminus. CD13 ectopic expression on non-phagocytic cells increased susceptibility to A. phagocytophilum infection. Antibody blocking and enzymatic inhibition experiments found that the microbe exploits CD13 but not its ectopeptidase activity to infect myeloid cells. A. phagocytophilum induces Src and Syk phosphorylation during invasion. Inhibitor treatment established that Src is key for A. phagocytophilum infection, while Syk is dispensable and oriented the pathogen-invoked signaling pathway by showing that Src is activated before Syk. Disrupting the AipA-CD13 interaction with AipA9-21 or CD13781-967 antibody inhibited Src and Syk phosphorylation and also infection. CD13 crosslinking antibody that induces Src and Syk signaling restored infectivity of anti-AipA9-21-treated A. phagocytophilum. The bacterium poorly infected CD13 knockout mice, providing the first demonstration that CD13 is important for microbial infection in vivo. Overall, A. phagocytophilum AipA9-21 binds CD13 to induce Src signaling that mediates uptake into host cells, and CD13 is critical for infection in vivo. IMPORTANCE: Diverse microbes engage CD13 to infect host cells. Yet invasin-CD13 interactions, the signaling they invoke for pathogen entry, and the relevance of CD13 to infection in vivo are underexplored. Dissecting these concepts would advance fundamental understanding of a convergently evolved infection strategy and could have translational benefits. Anaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging disease for which there is no vaccine and few therapeutic options. We found that A. phagocytophilum uses its surface protein and recently identified protective immunogen, AipA, to bind CD13 to elicit Src kinase signaling, which is critical for infection. We elucidated the AipA CD13 binding domain, which CD13 region AipA engages, and established that CD13 is key for A. phagocytophilum infection in vivo. Disrupting the AipA-CD13 interaction could be utilized to prevent granulocytic anaplasmosis and offers a model that could be applied to protect against multiple infectious diseases.


Assuntos
Anaplasma phagocytophilum , Ehrlichiose , Transdução de Sinais , Quinases da Família src , Anaplasma phagocytophilum/metabolismo , Animais , Quinases da Família src/metabolismo , Camundongos , Humanos , Ehrlichiose/microbiologia , Ehrlichiose/metabolismo , Interações Hospedeiro-Patógeno , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/genética , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido , Quinase Syk/metabolismo , Quinase Syk/genética
13.
Front Immunol ; 15: 1419782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295861

RESUMO

Bacterial infections remain a significant global health concern, necessitating a comprehensive understanding of the intricate host-pathogen interactions that play a critical role in the outcome of infectious diseases. Recent investigations have revealed that noncoding RNAs (ncRNAs) are key regulators of these complex interactions. Among them, long noncoding RNAs (lncRNAs) have gained significant attention because of their diverse regulatory roles in gene expression, cellular processes and the production of cytokines and chemokines in response to bacterial infections. The host utilizes lncRNAs as a defense mechanism to limit microbial pathogen invasion and replication. On the other hand, some host lncRNAs contribute to the establishment and maintenance of bacterial pathogen reservoirs within the host by promoting bacterial pathogen survival, replication, and dissemination. However, our understanding of host lncRNAs in the context of bacterial infections remains limited. This review focuses on the impact of host lncRNAs in shaping host-pathogen interactions, shedding light on their multifaceted functions in both host defense and bacterial survival, and paving the way for future research aimed at harnessing their regulatory potential for clinical applications.


Assuntos
Infecções Bacterianas , Interações Hospedeiro-Patógeno , RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Infecções Bacterianas/imunologia , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Animais , Bactérias/genética , Bactérias/imunologia , Regulação da Expressão Gênica
14.
Gut Microbes ; 16(1): 2400575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39312647

RESUMO

Enteropathogenic E. coli (EPEC) is a Gram-negative bacterial pathogen that causes persistent diarrhea. Upon attachment to the apical plasma membrane of the intestinal epithelium, the pathogen translocates virulence proteins called effectors into the infected cells. These effectors hijack numerous host processes for the pathogen's benefit. Therefore, studying the mechanisms underlying their action is crucial for a better understanding of the disease. We show that translocated EspH interacts with multiple host Rab GTPases. AlphaFold predictions and site-directed mutagenesis identified glutamic acid and lysine at positions 37 and 41 as Rab interacting residues in EspH. Mutating these sites abolished the ability of EspH to inhibit Akt and mTORC1 signaling, lysosomal exocytosis, and bacterial invasion. Knocking out the endogenous Rab8a gene expression highlighted the involvement of Rab8a in Akt/mTORC1 signaling and lysosomal exocytosis. A phosphoinositide binding domain with a critical tyrosine was identified in EspH. Mutating the tyrosine abolished the localization of EspH at infection sites and its capacity to interact with the Rabs. Our data suggest novel EspH-dependent mechanisms that elicit immune signaling and membrane trafficking during EPEC infection.


Assuntos
Membrana Celular , Escherichia coli Enteropatogênica , Proteínas rab de Ligação ao GTP , Humanos , Membrana Celular/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Exocitose , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosfatidilinositóis/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Transdução de Sinais
15.
Pathogens ; 13(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39338957

RESUMO

Viral hepatitis is a major cause of liver illness worldwide. Despite advances in the understanding of these infections, the pathogenesis of hepatitis remains a complex process driven by intricate interactions between hepatitis viruses and host cells at the molecular level. This paper will examine in detail the dynamics of these host-pathogen interactions, highlighting the key mechanisms that regulate virus entry into the hepatocyte, their replication, evasion of immune responses, and induction of hepatocellular damage. The unique strategies employed by different hepatitis viruses, such as hepatitis B, C, D, and E viruses, to exploit metabolic and cell signaling pathways to their advantage will be discussed. At the same time, the innate and adaptive immune responses put in place by the host to counter viral infection will be analyzed. Special attention will be paid to genetic, epigenetic, and environmental factors that modulate individual susceptibility to different forms of viral hepatitis. In addition, this work will highlight the latest findings on the mechanisms of viral persistence leading to the chronic hepatitis state and the potential implications for the development of new therapeutic strategies. Fully understanding the complex host-pathogen interactions in viral hepatitis is crucial to identifying new therapeutic targets, developing more effective approaches for treatment, and shedding light on the mechanisms underlying progression to more advanced stages of liver damage.

16.
Enzymes ; 55: 313-342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39222996

RESUMO

Carbonic anhydrases (CAs) catalyze the reversable hydration of carbon dioxide to bicarbonate placing them into the core of the biochemical carbon cycle. Due to the fundamental importance of their function, they evolved independently into eight classes, three of which have been recently discovered. Most research on CAs has focused on their representatives in eukaryotic organisms, while prokaryotic CAs received significantly less attention. Nevertheless, prokaryotic CAs play a key role in the fundamental ability of the biosphere to acquire CO2 for photosynthesis and to decompose the organic matter back to CO2. They also contribute to a broad spectrum of processes in pathogenic bacteria, enhancing their ability to survive in a host and, therefore, present a promising target for developing antimicrobials. This review focuses on the distribution of CAs among bacterial pathogens and their importance in bacterial virulence and host-pathogen interactions.


Assuntos
Bactérias , Anidrases Carbônicas , Anidrases Carbônicas/metabolismo , Bactérias/enzimologia , Bactérias/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Dióxido de Carbono/metabolismo , Virulência
17.
Crit Rev Microbiol ; : 1-20, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225080

RESUMO

Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.

18.
Microbiol Spectr ; : e0068024, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39345212

RESUMO

Coronavirus disease 2019 (COVID-19) and its associated severity have been linked to uncontrolled inflammation and may be associated with changes in the microbiome of mucosal sites including the gastrointestinal tract and oral cavity. These sites play an important role in host-microbe homeostasis, and disruption of epithelial barrier integrity during COVID-19 may potentially lead to exacerbated inflammation and immune dysfunction. Outcomes in COVID-19 are highly disparate, ranging from asymptomatic to fatal, and the impact of microbial dysbiosis on disease severity is unclear. Here, we obtained plasma, rectal swabs, oropharyngeal swabs, and nasal swabs from 86 patients hospitalized with COVID-19 and 12 healthy volunteers. We performed 16S rRNA sequencing to characterize the microbial communities in the mucosal swabs and measured concentrations of circulating cytokines, markers of gut barrier integrity, and fatty acids in the plasma samples. We compared these plasma concentrations and microbiomes between healthy volunteers and COVID-19 patients, some of whom had unfortunately died by the end of the study enrollment, and performed a correlation analysis between plasma variables and bacterial abundances. Rectal swabs of COVID-19 patients had reduced abundances of several commensal bacteria including Faecalibacterium prausnitzii and an increased abundance of the opportunistic pathogens Eggerthella lenta and Hungatella hathewayi. Furthermore, the oral pathogen Scardovia wiggsiae was more abundant in the oropharyngeal swabs of COVID-19 patients who died. The abundance of both H. hathewayi and S. wiggsiae correlated with circulating inflammatory markers including IL-6, highlighting the possible role of the microbiome in COVID-19 severity and providing potential therapeutic targets for managing COVID-19.IMPORTANCEOutcomes in coronavirus disease 2019 (COVID-19) are highly disparate and are associated with uncontrolled inflammation; however, the individual factors that lead to this uncontrolled inflammation are not fully understood. Here, we report that severe COVID-19 is associated with systemic inflammation, microbial translocation, and microbial dysbiosis. The rectal and oropharyngeal microbiomes of COVID-19 patients were characterized by a decreased abundance of commensal bacteria and an increased abundance of opportunistic pathogens, which positively correlated with markers of inflammation and microbial translocation. These microbial perturbations may, therefore, contribute to disease severity in COVID-19 and highlight the potential for microbiome-based interventions in improving COVID-19 outcomes.

19.
Planta ; 260(4): 92, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261328

RESUMO

MAIN CONCLUSION: The Ustilaginoidea virens -rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding. The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens-rice pathosystem research while identifying opportunities for future investigations.


Assuntos
Interações Hospedeiro-Patógeno , Hypocreales , Oryza , Doenças das Plantas , Locos de Características Quantitativas , Oryza/microbiologia , Doenças das Plantas/microbiologia , Hypocreales/patogenicidade , Hypocreales/genética , Hypocreales/fisiologia , Virulência/genética , Locos de Características Quantitativas/genética , Resistência à Doença/genética , Genoma Fúngico
20.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39091797

RESUMO

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA