RESUMO
Inorganic cesium lead halide perovskite (CsPbX3) is a promising light-harvesting material to increase the thermal stability and the device performance as compared to the organic-inorganic hybrid counterparts. However, the photoactive stability at ambient conditions is an unresolved issue. Here, we studied the influence of Nb5+ ions' incorporation in the CsPbI2Br perovskite processed at ambient conditions. Our results exhibited that 0.5% Nb-incorporated CsPb1-xNbxI2Br (herein x = 0.005) thin films show excellent uniformity and improved grain size because of the optimum concentration of Nb5+ doping and hot-air flow. The improved grain size and uniform film thickness deliver a superior interface between the CsPb1-xNbxI2Br layer and the hole-transporting material. The fabricated all-inorganic perovskite solar cell (IPVSC) devices exhibited the Nb5+ cation incorporation which enables decreased charge recombination, leading to negligible hysteresis. The champion device produces an open-circuit voltage (VOC) as high as 1.317 V. The IPVSC device containing a CsPb0.995Nb0.005I2Br composition delivers the highest power conversion efficiency of 16.45% under a 100 mW cm-2 illumination and exhibits a negligible efficiency loss over 96 h in ambient conditions.
RESUMO
Replacement of conventional organic cations by thermally stable inorganic cations in perovskite solar cells (PSCs) is one of the promising approaches to make thermally stable photovoltaics. However, conventional spin-coating and solvent-engineering processes in a controlled inert atmosphere hamper the upscaling. In this study, we demonstrated a dynamic hot-air (DHA) casting process to control the morphology and stability of all-inorganic PSCs which is processed under ambient conditions and free from conventional harmful antisolvents. Furthermore, CsPbI2Br perovskite was doped with barium (Ba2+) alkaline earth metal cations (BaI2:CsPbI2Br). This DHA method facilitates the formation of uniform grain and controlled crystallization that makes stable all-inorganic PSCs which enables an intact black α-phase under ambient conditions. The DHA-processed BaI2:CsPbI2Br perovskite photovoltaics shows the champion power conversion efficiency (PCE) of 14.85% (reverse scan) for a small exposure area of 0.09 cm2 and 13.78% for a large area of 1 × 1 cm2 with excellent reproducibility. Interestingly, the hot-air-processed devices retain >92% of the initial efficiency after 300 h. This DHA method facilitates a wide processing window for upscaling the all-inorganic perovskite photovoltaics.