Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Biomed Mater ; 19(6)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39255825

RESUMO

Bioengineered vascular grafts (VGs) have emerged as a promising alternative to the treatment of damaged or occlusive vessels. It is thought that polyurethane (PU)-based scaffolds possess suitable hemocompatibility and biomechanics comparable to those of normal blood vessels. In this study, we investigated the properties of electrospun scaffolds comprising various blends of biostable polycarbonate-based PU (Carbothane™ 3575A) and gelatin. Scaffolds were characterized by scanning electron microscopy, infra-red spectroscopy, small-angle x-ray scattering, stress-loading tests, and interactions with primary human cells and blood. Data fromin vitroexperiments demonstrated that a scaffold produced from a blend of 5% Carbothane™ 3575A and 10% gelatin has proven to be a suitable material for fabricating a small-diameter VG. A comparativein vivostudy of such VGs and expanded polytetrafluoroethylene (ePTFE) grafts implanted in the abdominal aorta of Wistar rats was performed. The data of intravital study and histological examination indicated that Carbothane-based electrospun grafts outclass ePTFE grafts and represent a promising device for preclinical studies to satisfy vascular surgery needs.


Assuntos
Prótese Vascular , Teste de Materiais , Poliuretanos , Ratos Wistar , Alicerces Teciduais , Animais , Ratos , Poliuretanos/química , Humanos , Alicerces Teciduais/química , Aorta Abdominal/cirurgia , Materiais Biocompatíveis/química , Politetrafluoretileno/química , Gelatina/química , Masculino , Cimento de Policarboxilato/química , Microscopia Eletrônica de Varredura , Engenharia Tecidual/métodos
2.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948861

RESUMO

Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote these concerted response mechanisms remain understudied. Here, we show that K63-linked ubiquitin chains, known to promote proteasome-independent pathways, accumulate primarily in non-cytosolic compartments during oxidative stress induced by sodium arsenite in mammalian cells. Our subcellular ubiquitin proteomic analyses of non-cytosolic compartments expanded 10-fold the pool of proteins known to be ubiquitinated during arsenite stress (2,046) and revealed their involvement in pathways related to immune signaling and translation control. Moreover, subcellular proteome analyses revealed proteins that are recruited to non-cytosolic compartments under stress, including a significant enrichment of helper ubiquitin-binding adaptors of the ATPase VCP that processes ubiquitinated substrates for downstream signaling. We further show that VCP recruitment to non-cytosolic compartments under arsenite stress occurs in a ubiquitin-dependent manner mediated by its adaptor NPLOC4. Additionally, we show that VCP and NPLOC4 activities are critical to sustain low levels of non-cytosolic K63-linked ubiquitin chains, supporting a cyclical model of ubiquitin conjugation and removal that is disrupted by cellular exposure to reactive oxygen species. This work deepens our understanding of the role of localized ubiquitin and VCP signaling in the basic mechanisms of stress response and highlights new pathways and molecular players that are essential to reshape the composition and function of the human subcellular proteome under dynamic environments.

3.
Viruses ; 16(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39066279

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19 and responsible for the global coronavirus pandemic which started in 2019. Despite exhaustive efforts to trace its origins, including potential links with pangolins and bats, the precise origins of the virus remain unclear. Bats have been recognized as natural hosts for various coronaviruses, including the Middle East respiratory coronavirus (MERS-CoV) and the SARS-CoV. This study presents a comparative analysis of the SARS-CoV-2 nucleocapsid protein (N) interactome in human and bat cell lines. We identified approximately 168 cellular proteins as interacting partners of SARS-CoV-2 N in human cells and 196 cellular proteins as interacting partners with this protein in bat cells. The results highlight pathways and events that are both common and unique to either bat or human cells. Understanding these interactions is crucial to comprehend the reasons behind the remarkable resilience of bats to viral infections. This study provides a foundation for a deeper understanding of host-virus interactions in different reservoirs.


Assuntos
COVID-19 , Quirópteros , Proteínas do Nucleocapsídeo de Coronavírus , Fosfoproteínas , Proteômica , SARS-CoV-2 , Quirópteros/virologia , Humanos , SARS-CoV-2/metabolismo , Animais , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Linhagem Celular , Proteômica/métodos , Fosfoproteínas/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Interações Hospedeiro-Patógeno , Mapas de Interação de Proteínas
4.
Food Chem Toxicol ; 188: 114640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583501

RESUMO

This study investigates the individual and combined effects of the mycotoxins, Aflatoxin B1 (AFB1), Enniatin B (ENNB) and Sterigmatocystin (STG), on the cellular viability of gastric (NCI-N87), intestinal (Caco-2), hepatic (Hep-G2) and renal (Hek-293) cells, shedding light on synergistic or antagonistic effects using a constant ratio combination design proposed by Chou-Talalay. These toxins are prevalent in cereal-based foods, frequently consumed by children which raises concerns about their exposure to these mycotoxins. This population is particularly vulnerable to the effects of these toxins due to their underdeveloped organs and incompletely structured physiological processes. Results showed that ENB was the most toxic of the three mycotoxins across all cell lines, while STG and AFB1 showed lower toxicity. The combination of ENNB + STG was found to be the most potent in terms of binary mixtures. In regard to ternary combinations, Caco-2 cells are more sensitive to the tested mycotoxins, whereas NCI-N87 cells show lower levels of cell damage. Worrying dose reduction values (>10-fold) were found for ENNB in binary and ternary combinations at low exposure levels. These findings are significant for establishing initial reference values, which play a pivotal role in estimating reference doses that are subsequently incorporated into the broader risk assessment process.


Assuntos
Aflatoxina B1 , Depsipeptídeos , Esterigmatocistina , Humanos , Esterigmatocistina/toxicidade , Aflatoxina B1/toxicidade , Depsipeptídeos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células CACO-2 , Fígado/efeitos dos fármacos , Rim/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Células HEK293 , Células Hep G2
5.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607016

RESUMO

Hereditary spastic paraplegias (HSPs) are a heterogeneous group of mono-genetic inherited neurological disorders, whose primary manifestation is the disruption of the pyramidal system, observed as a progressive impaired gait and leg spasticity in patients. Despite the large list of genes linked to this group, which exceeds 80 loci, the number of cellular functions which the gene products engage is relatively limited, among which endoplasmic reticulum (ER) morphogenesis appears central. Mutations in genes encoding ER-shaping proteins are the most common cause of HSP, highlighting the importance of correct ER organisation for long motor neuron survival. However, a major bottleneck in the study of ER morphology is the current lack of quantitative methods, with most studies to date reporting, instead, on qualitative changes. Here, we describe and apply a quantitative image-based screen to identify genetic modifiers of ER organisation using a mammalian cell culture system. An analysis reveals significant quantitative changes in tubular ER and dense sheet ER organisation caused by the siRNA-mediated knockdown of HSP-causing genes ATL1 and RTN2. This screen constitutes the first attempt to examine ER distribution in cells in an automated and high-content manner and to detect genes which impact ER organisation.


Assuntos
Doenças do Sistema Nervoso , Paraplegia Espástica Hereditária , Animais , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Ligação ao GTP/metabolismo , Paraplegia Espástica Hereditária/genética , Mamíferos/metabolismo
6.
Genes (Basel) ; 15(3)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540366

RESUMO

DNA replication is a fundamental process ensuring the maintenance of the genome each time cells divide. This is particularly relevant early in development when cells divide profusely, later giving rise to entire organs. Here, we analyze and compare the genome replication progression in human embryonic stem cells, induced pluripotent stem cells, and differentiated cells. Using single-cell microscopic approaches, we map the spatio-temporal genome replication as a function of chromatin marks/compaction level. Furthermore, we mapped the replication timing of subchromosomal tandem repeat regions and interspersed repeat sequence elements. Albeit the majority of these genomic repeats did not change their replication timing from pluripotent to differentiated cells, we found developmental changes in the replication timing of rDNA repeats. Comparing single-cell super-resolution microscopic data with data from genome-wide sequencing approaches showed comparable numbers of replicons and large overlap in origins numbers and genomic location among developmental states with a generally higher origin variability in pluripotent cells. Using ratiometric analysis of incorporated nucleotides normalized per replisome in single cells, we uncovered differences in fork speed throughout the S phase in pluripotent cells but not in somatic cells. Altogether, our data define similarities and differences on the replication program and characteristics in human cells at different developmental states.


Assuntos
Cromatina , Genoma , Humanos , Cromatina/genética , Período de Replicação do DNA , Fase S , Replicação Viral
7.
J Am Soc Mass Spectrom ; 35(6): 1120-1127, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38514245

RESUMO

Capillary zone electrophoresis-mass spectrometry (CZE-MS) has been recognized as a valuable technique for the proteomics of mass-limited biological samples (i.e., single cells). However, its broad adoption for single cell proteomics (SCP) of human cells has been impeded by the low sample loading capacity of CZE, only allowing us to use less than 5% of the available peptide material for each measurement. Here we present a reversed-phase-based solid-phase microextraction (RP-SPME)-CZE-MS platform to solve the issue, paving the way for SCP of human cells using CZE-MS. The RP-SPME-CZE system was constructed in one fused silica capillary with zero dead volume for connection via in situ synthesis of a frit, followed by packing C8 beads into the capillary to form a roughly 2 mm long SPME section. Peptides captured by SPME were eluted with a buffer containing 30% (v/v) acetonitrile and 50 mM ammonium acetate (pH 6.5), followed by dynamic pH junction-based CZE-MS. The SPME-CZE-MS enabled the injection of nearly 40% of the available peptide sample for each measurement. The system identified 257 ± 24 proteins and 523 ± 69 peptides (N = 2) using a Q-Exactive HF mass spectrometer when only 0.25 ng of a commercial HeLa cell digest was available in the sample vial and 0.1 ng of the sample was injected. The amount of available peptide is equivalent to the protein mass of one HeLa cell. The data indicate that SPME-CZE-MS is ready for SCP of human cells.


Assuntos
Eletroforese Capilar , Proteômica , Análise de Célula Única , Microextração em Fase Sólida , Humanos , Microextração em Fase Sólida/métodos , Eletroforese Capilar/métodos , Proteômica/métodos , Análise de Célula Única/métodos , Espectrometria de Massas/métodos , Células HeLa , Peptídeos/análise , Peptídeos/química
8.
Curr Issues Mol Biol ; 46(3): 2658-2677, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534784

RESUMO

Microplastics and nanoplastics (MNPs) are becoming an increasingly severe global problem due to their widespread distribution and complex impact on living organisms. Apart from their environmental impact, the effects of MNPs on living organisms have also continued to attract attention. The harmful impact of MNPs has been extensively documented in marine invertebrates and larger marine vertebrates like fish. However, the research on the toxicity of these particles on mammals is still limited, and their possible effects on humans are poorly understood. Considering that MNPs are commonly found in food or food packaging, humans are primarily exposed to them through ingestion. It would be valuable to investigate the potential harmful effects of these particles on gut health. This review focuses on recent research exploring the toxicological impacts of micro- and nanoplastics on the gut, as observed in human cell lines and mammalian models. Available data from various studies indicate that the accumulation of MNPs in mammalian models and human cells may result in adverse consequences, in terms of epithelial toxicity, immune toxicity, and the disruption of the gut microbiota. The paper also discusses the current research limitations and prospects in this field, aiming to provide a scientific basis and reference for further studies on the toxic mechanisms of micro- and nanoplastics.

9.
Sci Total Environ ; 927: 171969, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547998

RESUMO

Frequent exposure to sea spray aerosols (SSA) containing marine microorganisms and bioactive compounds may influence human health. However, little is known about potential immunostimulation by SSA exposure. This study focuses on the effects of marine bacteria and endotoxins in SSA on several receptors and transcription factors known to play a key role in the human innate immune system. SSA samples were collected in the field (Ostend, Belgium) or generated in the lab using a marine aerosol reference tank (MART). Samples were characterized by their sodium contents, total bacterial counts, and endotoxin concentrations. Human reporter cells were exposed to SSA to investigate the activation of toll-like receptor 4 (TLR4) in HEK-Blue hTLR4 cells and TLR2/6 in HEK-Blue hTLR2/6 cells, as well as the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRF) in THP1-Dual monocytes. These responses were then correlated to the total bacterial counts and endotoxin concentrations to explore dose-effect relationships. Field SSA contained from 3.0 × 103 to 6.0 × 105 bacteria/m3 air (averaging 2.0 ± 1.9 × 105 bacteria/m3 air) and an endotoxin concentration ranging from 7 to 1217 EU/m3 air (averaging 389 ± 434 EU/m3 air). In contrast, MART SSA exhibited elevated levels of total bacterial count (from 2.0 × 105 to 2.4 × 106, averaging 7.3 ± 5.5 × 105 cells/m3 air) and endotoxin concentration from 536 to 2191 (averaging 1310 ± 513 EU/m3 air). SSA samples differentially activated TLR4, TLR2/6, NF-κB and IRF. These immune responses correlated dose-dependently with the total bacterial counts, endotoxin levels, or both. This study sheds light on the immunostimulatory potential of SSA and its underlying mechanisms, highlighting the need for further research to deepen our understanding of the health implications of SSA exposure.


Assuntos
Aerossóis , Endotoxinas , NF-kappa B , Humanos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Fatores Reguladores de Interferon/metabolismo , Receptor 2 Toll-Like/metabolismo , Bactérias , Poluentes Atmosféricos , Bélgica , Imunidade Inata
10.
J Therm Biol ; 120: 103813, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38412735

RESUMO

Heat treatment or hyperthermia is a promising therapy for many diseases, especially cancer, and can be traced back thousands of years. Despite its long history, little is known about the cellular and molecular effects of heat on human cells. Therefore, we investigated the impact of water-filtered infrared-A (wIRA) irradiation (39 °C, 60 min) on key cellular mechanisms, namely autophagy, mitochondrial function and mRNA expression, in human fibroblasts and peripheral blood mononuclear cells (PBMCs) from healthy donors and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients. Our results show an induction of autophagy in healthy fibroblasts and PBMCs from healthy donors and ME/CFS patients. ME/CFS patients have higher mitochondrial function compared to healthy donors. The wIRA treatment leads to a slight reduction in mitochondrial function in PBMCs from ME/CFS patients, thereby approaching the level of mitochondrial function of healthy donors. Furthermore, an activation of the mRNA expression of the autophagy-related genes MAP1LC3B and SIRT1 as well as for HSPA1, which codes for a heat shock protein, can be observed. These results confirm an impact of heat treatment in human cells on key cellular mechanisms, namely autophagy and mitochondrial function, in health and disease, and provide hope for a potential treatment option for ME/CFS patients.


Assuntos
Síndrome de Fadiga Crônica , Hipertermia Induzida , Humanos , Síndrome de Fadiga Crônica/terapia , Síndrome de Fadiga Crônica/metabolismo , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203797

RESUMO

One of the ways to regulate the sensitivity of human cells to the influenza virus is to knock out genes of the innate immune response. Promising targets for the knockout are genes of the interferon-inducible transmembrane protein (IFITM) family, in particular the IFITM3 gene, whose product limits the entry of a virus into the cell by blocking the fusion of the viral and endosomal membranes. In this study, by means of genome-editing system CRISPR/Cas9, monoclonal cell lines with an IFITM3 knockout were obtained based on WI-38 VA13 cells (human origin). It was found that such cell lines are more sensitive to infection by influenza A viruses of various subtypes. Nevertheless, this feature is not accompanied by an increased titer of newly formed viral particles in a culture medium.


Assuntos
Vírus da Influenza A , Humanos , Vírus da Influenza A/genética , Linhagem Celular , Meios de Cultura , Endossomos , Edição de Genes , Proteínas de Membrana/genética , Proteínas de Ligação a RNA
12.
Biochem Biophys Rep ; 37: 101622, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234371

RESUMO

In this study, we investigated the properties of ascorbic acid (vitamin C), which is a naturally occurring water-soluble vitamin. Our goal is to evaluate its pro-oxidative and/or antioxidant capabilities. To do this, we initially used a confocal laser scanning microscope (CLSM) to visualize the differentiation pattern in U-937 cells under the treatment of variable concentrations of ascorbic acid. Prior to induction, U-937 cells showed a spherical morphology. After treatment, significant morphological changes were observed in the form of prominent pseudopodia and amoeboid structures. Interestingly, pseudopodia incidences increased with an increase in ascorbic acid concentrations. In addition, our analysis of protein modification using anti-malondialdehyde antibodies showed changes in more than one protein. The findings reveal the link between the differentiation of U-937 cells into macrophages and the protein modifications triggered by the production of reactive oxygen species when U-937 cells are exposed to ascorbic acid. Furthermore, the transformation of ascorbic acid from a pro-oxidative to an antioxidant property is also demonstrated.

13.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260628

RESUMO

DNA origami (DO) are promising tools for in vitro or in vivo applications including drug delivery; biosensing, detecting biomolecules; and probing chromatin sub-structures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing visualizing and controlling important biological processes in live cells. Here we present an approach to deliver DO strucures into live cell nuclei. We show that labelled DOs do not undergo detectable structural degradation in cell culture media or human cell extracts for 24 hr. To deliver DO platforms into the nuclei of human U2OS cells, we conjugated 30 nm long DO nanorods with an antibody raised against the largest subunit of RNA Polymerase II (Pol II), a key enzyme involved in gene transcription. We find that DOs remain structurally intact in cells for 24hr, including within the nucleus. Using fluorescence microscopy we demonstrate that the electroporated anti-Pol II antibody conjugated DOs are efficiently piggybacked into nuclei and exihibit sub-diffusive motion inside the nucleus. Our results reveal that functionalizing DOs with an antibody raised against a nuclear factor is a highly effective method for the delivery of nanodevices into live cell nuclei.

14.
Biol Direct ; 19(1): 8, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254217

RESUMO

Gerontology research on anti-aging interventions with drugs could be an answer to age-related diseases, aiming at closing the gap between lifespan and healthspan. Here, we present two methods for assaying chronological lifespan in human cells: (1) a version of the classical outgrowth assay with quantitative assessment of surviving cells and (2) a version of the PICLS method (propidium iodide fluorescent-based measurement of cell death). Both methods are fast, simple to conduct, cost-effective, produce quantitative data for further analysis and can be used with diverse human cell lines. Whereas the first method is ideal for validation and testing the post-intervention reproductive potential of surviving cells, the second method has true high-throughput screening potential. The new technologies were validated with known anti-aging compounds (2,5-anhydro-D-mannitol and rapamycin). Using the high-throughput screening method, we screened a library of 162 chemical entities and identified three compounds that extend the longevity of human cells.


Assuntos
Ensaios de Triagem em Larga Escala , Longevidade , Humanos , Linhagem Celular , Manitol , Reprodução
15.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255903

RESUMO

Avian metapneumovirus subgroup C (aMPV/C) causes respiratory diseases and egg dropping in chickens and turkeys, resulting in severe economic losses to the poultry industry worldwide. Integrin ß1 (ITGB1), a transmembrane cell adhesion molecule, is present in various cells and mediates numerous viral infections. Herein, we demonstrate that ITGB1 is essential for aMPV/C infection in cultured DF-1 cells, as evidenced by the inhibition of viral binding by EDTA blockade, Arg-Ser-Asp (RSD) peptide, monoclonal antibody against ITGB1, and ITGB1 short interfering (si) RNA knockdown in cultured DF-1 cells. Simulation of the binding process between the aMPV/C fusion (F) protein and avian-derived ITGB1 using molecular dynamics showed that ITGB1 may be a host factor benefiting aMPV/C attachment or internalization. The transient expression of avian ITGB1-rendered porcine and feline non-permissive cells (DQ cells and CRFK cells, respectively) is susceptible to aMPV/C infection. Kinetic replication of aMPV/C in siRNA-knockdown cells revealed that ITGB1 plays an important role in aMPV/C infection at the early stage (attachment and internalization). aMPV/C was also able to efficiently infect human non-small cell lung cancer (A549) cells. This may be a consequence of the similar structures of both metapneumovirus F protein-specific motifs (RSD for aMPV/C and RGD for human metapneumovirus) recognized by ITGB1. Overexpression of avian-derived ITGB1 and human-derived ITGB1 in A549 cells enhanced aMPV/C infectivity. Taken together, this study demonstrated that ITGB1 acts as an essential receptor for aMPV/C attachment and internalization into host cells, facilitating aMPV/C infection.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Metapneumovirus , Humanos , Animais , Gatos , Suínos , Metapneumovirus/genética , Integrina beta1/genética , Galinhas , Anticorpos Antivirais
16.
Biotechniques ; 76(2): 52-62, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38084384

RESUMO

Additive manufacturing (3D printing) has been deployed across multiple platforms to fabricate bioengineered tissues. We demonstrate the use of a Thermal Inkjet Pipette System (TIPS) for targeted delivery of cells onto manufactured substrates to design bio-bandages. Two cell lines - HEK 293 (kidney) and K7M2 wt (bone) - were applied using TIPS. We demonstrate a novel means for targeted cell delivery to a hydrogel support structure. These cell/support constructs (bio-bandages) had a high viability for survival and growth over extended periods. Combining a flexible biosupport with application of cells via TIPS printing now for the first time allows for custom cell substrate constructs with various densities to be deployed for regenerative medicine applications.


Assuntos
Bioimpressão , Hidrogéis , Humanos , Engenharia Tecidual , Células HEK293 , Impressão Tridimensional , Alicerces Teciduais/química
17.
J Agric Food Chem ; 71(48): 19054-19065, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37988173

RESUMO

Mycotoxin citrinin (CTN), commonly found in food and health supplements, may induce chromosomal instability. In this study, human renal proximal tubule epithelial cells (hRPTECs) that were exposed to CTN (10 and 20 µM) over 3 days exhibited numerical chromosomal aberrations. Short-term (3 days) and long-term (30 days) exposures to CTN significantly promoted mitotic spindle abnormalities, wound healing, cell migration, and anchorage-independent growth in human embryonic kidney 293 (HEK293) cells. Short-term exposure to 10 and 20 µM CTN increased the number of migrated cells on day 10 by 1.7 and 1.9 times, respectively. The number of anchorage-independent colonies increased from 2.2 ± 1.3 to 7.8 ± 0.6 after short-term exposure to 20 µM CTN and from 2.0 ± 1.0 to 12.0 ± 1.2 after long-term exposure. The transcriptomic profiles of CTN-treated HEK293 were subjected to over-representative analysis (ORA), gene set enrichment analysis (GSEA), and Ingenuity pathway analysis (IPA). Short-term exposure to CTN promoted the RTK/KRAS/RAF/MAPK cascade, while long-term exposure altered the extracellular matrix organization. Both short- and long-term CTN exposure activated cancer and cell cycle-related signaling pathways. These results demonstrate the carcinogenic potential of CTN in human cells and provide valuable insights into the cancer risk associated with CTN.


Assuntos
Citrinina , Neoplasias , Humanos , Citrinina/toxicidade , Carcinógenos , Células HEK293 , Rim
18.
Biosci Biotechnol Biochem ; 88(1): 70-73, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37793878

RESUMO

We have devised a method for the direct screening of efficient short hairpin (sh)RNA molecules in human cells, eliminating the need for the time-consuming process of cloning in Escherichia coli. Our screening suggested that single mismatches to shRNAs can significantly alter their activity.


Assuntos
Vetores Genéticos , Humanos , RNA Interferente Pequeno/genética , Clonagem Molecular , Interferência de RNA
19.
Bio Protoc ; 13(20): e4849, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37900106

RESUMO

For the analysis of cellular architecture during mitosis, nanometer resolution is needed to visualize the organization of microtubules in spindles. Here, we present a detailed protocol that can be used to produce 3D reconstructions of whole mitotic spindles in cells grown in culture. For this, we attach mammalian cells enriched in mitotic stages to sapphire discs. Our protocol further involves cryo-immobilization by high-pressure freezing, freeze-substitution, and resin embedding. We then use fluorescence light microscopy to stage select mitotic cells in the resin-embedded samples. This is followed by large-scale electron tomography to reconstruct the selected and staged mitotic spindles in 3D. The generated and stitched electron tomograms are then used to semi-automatically segment the microtubules for subsequent quantitative analysis of spindle organization. Thus, by providing a detailed correlative light and electron microscopy (CLEM) approach, we give cell biologists a toolset to streamline the 3D visualization and analysis of spindle microtubules (http://kiewisz.shinyapps.io/asga). In addition, we refer to a recently launched platform that allows for an interactive display of the 3D-reconstructed mitotic spindles (https://cfci.shinyapps.io/ASGA_3DViewer/). Key features • High-throughput screening of mitotic cells by correlative light and electron microscopy (CLEM). • Serial-section electron tomography of selected cells. • Visualization of mitotic spindles in 3D and quantitative analysis of microtubule organization.

20.
Antioxidants (Basel) ; 12(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37891974

RESUMO

Plants are an inexhaustible source of bioactive compounds beneficial for contrasting oxidative stress, leading to many degenerative pathologies. Brassica rapa L. subsp. rapa is well known for its nutraceutical properties among edible vegetable species. In our work, we aimed to explore an eco-friendly way to enhance the beneficial dietary phytochemicals in this vast world of crop-growing plants at selected light quality conditions. White broad-spectrum (W) and red-blue (RB) light regimes were used for growing brassica microgreens. The organic extracts were tested on keratinocytes upon oxidative stress to explore their capability to act as natural antioxidant cell protectors. Our results show that both W and RB extracts caused a notable reduction in reactive oxygen species (ROS) levels induced by H2O2. Interestingly, according to its higher contents of polyphenols and flavonoids, the RB was more efficient in reducing ROS amount and DNA damage than the W extract, particularly at the lowest concentration tested. However, at higher concentrations (up to 100 µg/mL), the antioxidant effect reached a plateau, and there was little added benefit. These findings confirm that RB light effectively increases the antioxidant compounds in Brassica rapa L. microgreens, thus contributing to their enhanced activity against oxidative-induced genotoxicity compared to microgreens grown under W light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA