Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202995

RESUMO

A sedentary lifestyle has caused adults to spend more than 6 h seated, which has led to inactivity and spinal issues. This context underscores the growing sedentary behavior, exemplified by extended sitting hours among adults and university students. Such inactivity triggers various health problems and spinal disorders, notably Upper Crossed Syndrome (UCS) and its association with thoracic kyphosis, which can cause severe spinal curvature and related complications. Traditional detection involves clinical assessments and corrective exercises; however, this work proposes a multi-layered system for a back brace to detect, monitor, and potentially prevent the main signs of UCS. Building and using a framework that detects and monitors signs of UCS has facilitated patient-doctor interaction, automated the detection process for improved patient-physician coordination, and helped improve patients' spines over time. The smart wearable brace includes inertial measurement unit (IMU) sensors targeting hunched-back postures. The IMU sensors capture postural readings, which are then used for classification. Multiple classifiers were used where the long short-term memory (LSTM) model had the highest accuracy of 99.3%. Using the classifier helped detect and monitor UCS over time. Integrating the wearable device with a mobile interface enables real-time data visualization and immediate feedback for users to correct and mitigate UCS-related issues.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Visualização de Dados , Ácido Dioctil Sulfossuccínico , Transtornos da Pigmentação , Adulto , Humanos , Exercício Físico , Terapia por Exercício
2.
Dev Genes Evol ; 232(2-4): 51-65, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35678925

RESUMO

Aphids are hemimetabolous insects that undergo incomplete metamorphosis without pupation. The annual life cycle of most aphids includes both an asexual (viviparous) and a sexual (oviparous) phase. Sexual reproduction only occurs once per year and is followed by many generations of asexual reproduction, during which aphids propagate exponentially with telescopic development. Here, we discuss the potential links between viviparous embryogenesis and derived developmental features in the pea aphid Acyrthosiphon pisum, particularly focusing on germline specification and axis determination, both of which are key events of early development in insects. We also discuss potential evolutionary paths through which both viviparous and oviparous females might have come to utilize maternal germ plasm to drive germline specification. This developmental strategy, as defined by germline markers, has not been reported in other hemimetabolous insects. In viviparous females, furthermore, we discuss whether molecules that in other insects characterize germ plasm, like Vasa, also participate in posterior determination and how the anterior localization of the hunchback orthologue Ap-hb establishes the anterior-posterior axis. We propose that the linked chain of developing oocytes and embryos within each ovariole and the special morphology of early embryos might have driven the formation of evolutionary novelties in germline specification and axis determination in the viviparous aphids. Moreover, based upon the finding that the endosymbiont Buchnera aphidicola is closely associated with germ cells throughout embryogenesis, we propose presumptive roles for B. aphidicola in aphid development, discussing how it might regulate germline migration in both reproductive modes of pea aphids. In summary, we expect that this review will shed light on viviparous as well as oviparous development in aphids.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Feminino , Células Germinativas , Proteínas de Insetos , Oviparidade , Pisum sativum
3.
Curr Biol ; 32(11): 2430-2441.e3, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35512697

RESUMO

Neural circuit function underlies cognition, sensation, and behavior. Proper circuit assembly depends on the identity of the neurons in the circuit (gene expression, morphology, synapse targeting, and biophysical properties). Neuronal identity is established by spatial and temporal patterning mechanisms, but little is known about how these mechanisms drive circuit formation in postmitotic neurons. Temporal patterning involves the sequential expression of transcription factors (TFs) in neural progenitors to diversify neuronal identity, in part through the initial expression of homeodomain TF combinations. Here, we address the role of the Drosophila temporal TF Hunchback and the homeodomain TF Bicoid in the assembly of the Pair1 (SEZ_DN1) descending neuron locomotor circuit, which promotes larval pausing and head casting. We find that both Hunchback and Bicoid are expressed in larval Pair1 neurons, Hunchback activates Bicoid in Pair1 (opposite of their embryonic relationship), and the loss of Hunchback function or Bicoid function from Pair1 leads to ectopic presynapse numbers in Pair1 axons and an increase in Pair1-induced pausing behavior. These phenotypes are highly specific, as the loss of Bicoid or Hunchback has no effect on Pair1 neurotransmitter identity, dendrite morphology, or axonal morphology. Importantly, the loss of Hunchback or Bicoid in Pair1 leads to the addition of new circuit partners that may underlie the exaggerated locomotor pausing behavior. These data are the first to show a role for Bicoid outside of embryonic patterning and the first to demonstrate a cell-autonomous role for Hunchback and Bicoid in interneuron synapse targeting and locomotor behavior.


Assuntos
Proteínas de Drosophila , Animais , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Larva/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo
4.
Dev Biol ; 486: 109-120, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35381219

RESUMO

The serotonergic lineage (NB7-3) in the Drosophila ventral nerve cord produces six cells during neurogenesis. Four of the cells differentiate into neurons: EW1, EW2, EW3 and GW. The other two cells undergo apoptosis. This simple lineage provides an opportunity to examine genes that are required to induce or repress apoptosis during cell specification. Previous studies have shown that Notch signaling induces apoptosis within the NB7-3 lineage. The three EW neurons are protected from Notch-induced apoptosis by asymmetric distribution of Numb protein, an inhibitor of Notch signaling. In a numb1 mutant EW2 and EW3 undergo apoptosis. The EW1 and GW neurons survive even in a numb1 mutant background suggesting that these cells are protected from Notch-induced apoptosis by some factor other than Numb. The EW1 and GW neurons are mitotic sister cells, and uniquely express the transcription factor Hunchback. We present evidence that Hunchback prevents apoptosis in the NB7-3 lineage during normal CNS development and can rescue the two apoptotic cells in the lineage when it is ectopically expressed. We show that hunchback overexpression produces ectopic cells that express markers similar to the EW2 neuron and changes the expression pattern of the EW3 neuron to a EW2 neuron. In addition we show that hunchback overexpression can override apoptosis that is genetically induced by the pro-apoptotic genes grim and hid.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Apoptose/genética , Linhagem da Célula/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hormônios Juvenis/metabolismo , Receptores Notch/metabolismo
5.
Neural Dev ; 17(1): 3, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177098

RESUMO

BACKGROUND: Neural progenitors produce diverse cells in a stereotyped birth order, but can specify each cell type for only a limited duration. In the Drosophila embryo, neuroblasts (neural progenitors) specify multiple, distinct neurons by sequentially expressing a series of temporal identity transcription factors with each division. Hunchback (Hb), the first of the series, specifies early-born neuronal identity. Neuroblast competence to generate early-born neurons is terminated when the hb gene relocates to the neuroblast nuclear lamina, rendering it refractory to activation in descendent neurons. Mechanisms and trans-acting factors underlying this process are poorly understood. Here we identify Corto, an enhancer of Trithorax/Polycomb (ETP) protein, as a new regulator of neuroblast competence. METHODS: We used the GAL4/UAS system to drive persistent misexpression of Hb in neuroblast 7-1 (NB7-1), a model lineage for which the early competence window has been well characterized, to examine the role of Corto in neuroblast competence. We used immuno-DNA Fluorescence in situ hybridization (DNA FISH) in whole embryos to track the position of the hb gene locus specifically in neuroblasts across developmental time, comparing corto mutants to control embryos. Finally, we used immunostaining in whole embryos to examine Corto's role in repression of Hb and a known target gene, Abdominal B (Abd-B). RESULTS: We found that in corto mutants, the hb gene relocation to the neuroblast nuclear lamina is delayed and the early competence window is extended. The delay in gene relocation occurs after hb transcription is already terminated in the neuroblast and is not due to prolonged transcriptional activity. Further, we find that Corto genetically interacts with Posterior Sex Combs (Psc), a core subunit of polycomb group complex 1 (PRC1), to terminate early competence. Loss of Corto does not result in derepression of Hb or its Hox target, Abd-B, specifically in neuroblasts. CONCLUSIONS: These results show that in neuroblasts, Corto genetically interacts with PRC1 to regulate timing of nuclear architecture reorganization and support the model that distinct mechanisms of silencing are implemented in a step-wise fashion during development to regulate cell fate gene expression in neuronal progeny.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células-Tronco Neurais , Fatores de Transcrição/genética , Animais , Drosophila , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hibridização in Situ Fluorescente , Células-Tronco Neurais/fisiologia , Neurônios
6.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722899

RESUMO

The Hunchback (Hb) transcription factor is crucial for anterior-posterior patterning of the Drosophila embryo. The maternal hb mRNA acts as a paradigm for translational regulation due to its repression in the posterior of the embryo. However, little is known about the translatability of zygotically transcribed hb mRNAs. Here, we adapt the SunTag system, developed for imaging translation at single-mRNA resolution in tissue culture cells, to the Drosophila embryo to study the translation dynamics of zygotic hb mRNAs. Using single-molecule imaging in fixed and live embryos, we provide evidence for translational repression of zygotic SunTag-hb mRNAs. Whereas the proportion of SunTag-hb mRNAs translated is initially uniform, translation declines from the anterior over time until it becomes restricted to a posterior band in the expression domain. We discuss how regulated hb mRNA translation may help establish the sharp Hb expression boundary, which is a model for precision and noise during developmental patterning. Overall, our data show how use of the SunTag method on fixed and live embryos is a powerful combination for elucidating spatiotemporal regulation of mRNA translation in Drosophila.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/genética , Biossíntese de Proteínas/genética , RNA Mensageiro Estocado/genética , Fatores de Transcrição/genética , Animais , Padronização Corporal/genética , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Morfogênese/genética , Zigoto/fisiologia
7.
Dev Biol ; 475: 65-79, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33705738

RESUMO

Apoptosis is a fundamental remodeling process for most tissues during development. In this manuscript we examine a pro-apoptotic function for the Drosophila DNA binding protein Zfh-2 during development of the central nervous system (CNS) and appendages. In the CNS we find that a loss-of-function zfh-2 allele gives an overall reduction of apoptotic cells in the CNS, and an altered pattern of expression for the axonal markers 22C10 and FasII. This same loss-of-function zfh-2 allele causes specific cells in the NB7-3 lineage of the CNS that would normally undergo apoptosis to be inappropriately maintained, whereas a gain-of-function zfh-2 allele has the opposite effect, resulting in a loss of normal NB 7-3 progeny. We also demonstrate that Zfh-2 and Hunchback reciprocally repress each other's gene expression which limits apoptosis to later born progeny of the NB7-3 lineage. Apoptosis is also required for proper segmentation of the fly appendages. We find that Zfh-2 co-localizes with apoptotic cells in the folds of the imaginal discs and presumptive cuticular joints. A reduction of Zfh-2 levels with RNAi inhibits expression of the pro-apoptotic gene reaper, and produces abnormal joints in the leg, antenna and haltere. Apoptosis has previously been shown to be activated by Notch signaling in both the NB7-3 CNS lineage and the appendage joints. Our results indicate that Zfh-2 facilitates Notch-induced apoptosis in these structures.


Assuntos
Apoptose/genética , Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Animais , Apoptose/fisiologia , Axônios/metabolismo , Morte Celular , Sistema Nervoso Central/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
8.
Elife ; 92020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33074101

RESUMO

Thermodynamic models of gene regulation can predict transcriptional regulation in bacteria, but in eukaryotes, chromatin accessibility and energy expenditure may call for a different framework. Here, we systematically tested the predictive power of models of DNA accessibility based on the Monod-Wyman-Changeux (MWC) model of allostery, which posits that chromatin fluctuates between accessible and inaccessible states. We dissected the regulatory dynamics of hunchback by the activator Bicoid and the pioneer-like transcription factor Zelda in living Drosophila embryos and showed that no thermodynamic or non-equilibrium MWC model can recapitulate hunchback transcription. Therefore, we explored a model where DNA accessibility is not the result of thermal fluctuations but is catalyzed by Bicoid and Zelda, possibly through histone acetylation, and found that this model can predict hunchback dynamics. Thus, our theory-experiment dialogue uncovered potential molecular mechanisms of transcriptional regulatory dynamics, a key step toward reaching a predictive understanding of developmental decision-making.


Cells in the brain, liver and skin, as well as many other organs, all contain the same DNA, yet behave in very different ways. This is because before a gene can produce its corresponding protein, it must first be transcribed into messenger RNA. As an organism grows, the transcription of certain genes is switched on or off by regulatory molecules called transcription factors, which guide cells towards a specific 'fate'. These molecules bind to specific locations within the regulatory regions of DNA, and for decades biologist have tried to use the arrangement of these sites to predict which proteins a cell will make. Theoretical models known as thermodynamic models have been able to successfully predict transcription in bacteria. However, this has proved more challenging to do in eukaryotes, such as yeast, fruit flies and humans. One of the key differences is that DNA in eukaryotes is typically tightly wound into bundles called nucleosomes, which must be disentangled in order for transcription factors to access the DNA. Previous thermodynamic models have suggested that DNA in eukaryotes randomly switches between being in a wound and unwound state. The models assume that once unwound, regulatory proteins stabilize the DNA in this form, making it easier for other transcription factors to bind to the DNA. Now, Eck, Liu et al. have tested some of these models by studying the transcription of a gene involved in the development of fruit flies. The experiments showed that no thermodynamic model could accurately mimic how this gene is regulated in the embryos of fruit flies. This led Eck, Liu et al. to identify a model that is better at predicting the activation pattern of this developmental gene. In this model, instead of just 'locking' DNA into an unwound shape, transcription factors can also actively speed up the unwinding of DNA. This improved understanding builds towards the goal of predicting gene regulation, where DNA sequences can be used to tell where and when cell decisions will be made. In the future, this could allow the development of new types of therapies that can regulate transcription in different diseases.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Homeodomínio/genética , Modelos Genéticos , Proteínas Nucleares/genética , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Acetilação , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Larva/genética , Larva/metabolismo , Proteínas Nucleares/metabolismo , Termodinâmica , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
9.
Curr Top Dev Biol ; 137: 119-142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32143741

RESUMO

The regulation of the hunchback promoter expression by the maternal Bicoid gradient has been studied as a model system in development for many years. Yet, at the level of quantitative agreement between data and theoretical models, even the first step of this regulation, transcription, continues to be challenging. This situation is slowly progressing, thanks to quantitative live-imaging techniques coupled to advanced statistical data analysis and modeling. Here, we outline the current state of our knowledge of this apparently "simple" step, highlighting the newly appreciated role of bursty transcription dynamics and its regulation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Morfogênese , Transativadores/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Proteínas de Homeodomínio/genética , Transativadores/genética
10.
Development ; 146(7)2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30890568

RESUMO

The generation of neuronal diversity is essential for circuit formation and behavior. Morphological differences in sequentially born neurons could be due to intrinsic molecular identity specified by temporal transcription factors (henceforth called intrinsic temporal identity) or due to changing extrinsic cues. Here, we have used the Drosophila NB7-1 lineage to address this issue. NB7-1 generates the U1-U5 motor neurons sequentially; each has a distinct intrinsic temporal identity due to inheritance of different temporal transcription factors at its time of birth. We show that the U1-U5 neurons project axons sequentially, followed by sequential dendrite extension. We misexpressed the earliest temporal transcription factor, Hunchback, to create 'ectopic' U1 neurons with an early intrinsic temporal identity but later birth-order. These ectopic U1 neurons have axon muscle targeting and dendrite neuropil targeting that are consistent with U1 intrinsic temporal identity, rather than with their time of birth or differentiation. We conclude that intrinsic temporal identity plays a major role in establishing both motor axon muscle targeting and dendritic arbor targeting, which are required for proper motor circuit development.


Assuntos
Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores , Fatores de Transcrição/genética
11.
Insect Mol Biol ; 27(6): 752-765, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29892979

RESUMO

In animals, differentiation of germline from soma usually takes place during embryogenesis. Genes and their products that are preferentially expressed in the embryonic germ cells are regarded as candidates for maintaining germline fate or promoting germline identity. In Drosophila, for example, the protein encoded by the germline gene vasa is specifically restricted to the germ cells, while products of the gap gene hunchback (hb), a somatic gene, are preferentially expressed in the neuroblasts. In this study, we report the expression of both messenger RNA and protein encoded by Aphb, an hb orthologue in the asexual viviparous pea aphid Acyrthosiphon pisum, in germ cells as well as in neuroblasts. We infer that expression of Aphb messenger RNA in the germ cells during the formation of germaria is required for the anterior localization of Aphb in the protruding oocytes. Germarial expression and anterior localization of ApKrüppel was also identified but, unlike Aphb, its expression was not detected in the migrating germ cells. Very similar patterns of hb expression were also identified in the green peach aphid Myzus persicae, suggesting that germline expression of hb is conserved within the Aphididae. To date, this pattern of hb germline expression has not been reported in other insects.


Assuntos
Afídeos/metabolismo , Células Germinativas/metabolismo , Proteínas de Insetos/metabolismo , Animais , Afídeos/embriologia , Sequência de Bases , Proteínas de Ligação a DNA , Proteínas de Drosophila , Desenvolvimento Embrionário , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição
12.
Front Physiol ; 9: 1906, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687121

RESUMO

The pea aphid, Acyrthosiphon pisum, is an important agricultural pest and biological model organism, and RNA interference (RNAi) is an important tool for functional genomics and for insect pest management. However, the efficiency of RNAi in pea aphids is variable, limiting its application in aphids. In this study, we present optimized conditions for inducing and increasing the gene silencing efficiency of RNAi in pea aphids. The optimal gene silencing of the target Aphunchback gene was achieved by injecting 600 ng double-stranded (ds) RNA, and the highest mRNA depletion rate (74%) was detected at 36 h after injection. Moreover, the same gene silencing conditions were used to achieve transcript silencing for nine different genes in the pea aphid, although the silencing efficiencies for the different genes varied. Furthermore, the pre-exposure of aphids to dsRNA (600 ng dsGFP) led to significant hunchback silencing following a secondary exposure to 60 ng of dshunchback, a dose which did not lead to gene silencing when independently injected. The information presented here can be exploited to develop more efficient RNAi bioassays for pea aphids, both as gene functional study tools and an insect pest control strategy.

13.
BMC Syst Biol ; 11(1): 116, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29187214

RESUMO

BACKGROUND: Models that incorporate specific chemical mechanisms have been successful in describing the activity of Drosophila developmental enhancers as a function of underlying transcription factor binding motifs. Despite this, the minimum set of mechanisms required to reconstruct an enhancer from its constituent parts is not known. Synthetic biology offers the potential to test the sufficiency of known mechanisms to describe the activity of enhancers, as well as to uncover constraints on the number, order, and spacing of motifs. RESULTS: Using a functional model and in silico compensatory evolution, we generated putative synthetic even-skipped stripe 2 enhancers with varying degrees of similarity to the natural enhancer. These elements represent the evolutionary trajectories of the natural stripe 2 enhancer towards two synthetic enhancers designed ab initio. In the first trajectory, spatially regulated expression was maintained, even after more than a third of binding sites were lost. In the second, sequences with high similarity to the natural element did not drive expression, but a highly diverged sequence about half the length of the minimal stripe 2 enhancer drove ten times greater expression. Additionally, homotypic clusters of Zelda or Stat92E motifs, but not Bicoid, drove expression in developing embryos. CONCLUSIONS: Here, we present a functional model of gene regulation to test the degree to which the known transcription factors and their interactions explain the activity of the Drosophila even-skipped stripe 2 enhancer. Initial success in the first trajectory showed that the gene regulation model explains much of the function of the stripe 2 enhancer. Cases where expression deviated from prediction indicates that undescribed factors likely act to modulate expression. We also showed that activation driven Bicoid and Hunchback is highly sensitive to spatial organization of binding motifs. In contrast, Zelda and Stat92E drive expression from simple homotypic clusters, suggesting that activation driven by these factors is less constrained. Collectively, the 40 sequences generated in this work provides a powerful training set for building future models of gene regulation.


Assuntos
Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Animais , Sítios de Ligação , Simulação por Computador , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt B): 1676-1686, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28919007

RESUMO

Morphogens are proteins that form concentration gradients in embryos and developing tissues, where they act as postal codes, providing cells with positional information and allowing them to behave accordingly. Bicoid was the first discovered morphogen, and remains one of the most studied. It regulates segmentation in flies, forming a striking exponential gradient along the anterior-posterior axis of early Drosophila embryos, and activating the transcription of multiple target genes in a concentration-dependent manner. In this review, the work done by us and by others to characterize the mobility of Bicoid in D. melanogaster embryos is presented. The central role played by the diffusion of Bicoid in both the establishment of the gradient and the activation of target genes is discussed, and placed in the context of the need for these processes to be all at once rapid, precise and robust. The Bicoid system, and morphogen gradients in general, remain amongst the most amazing examples of the coexistence, often observed in living systems, of small-scale disorder and large-scale spatial order. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.


Assuntos
Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Transcrição Gênica/fisiologia , Animais , Proteínas de Drosophila , Drosophila melanogaster
15.
Scand J Psychol ; 58(5): 458-467, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28901575

RESUMO

Owuamalam, Weerabangsa, Karunagharan and Rubin found that Malaysians associate people in low status groups with anger more than their higher status counterparts: the hunchback heuristic. But is this belief accurate? Here, we propose the alternative possibility that members of low-status groups might deliberately suppress anger to counter this stigma, while members of high-status groups might disinhibit their anger to assert their superiority. To test these propositions, we manipulated undergraduate students' relative group status by leading them to believe that provocative comments about their undergraduate social identity came from a professor (low-status condition) or a junior foundation year student (high-status condition). Using eye-tracking, we then measured their gaze durations on the comments, which we used as a physiological signal of anger: dwelling (Experiment 1). Results revealed that dwelling was significantly greater in the high-status condition than in the low-status condition. Experiment 2 conceptually replicated this pattern using a self-report method and found that the suppression-disinhibition effect occurred only when reputational concerns were strong.


Assuntos
Ira , Hierarquia Social , Identificação Social , Estigma Social , Adulto , Feminino , Fixação Ocular , Humanos , Masculino , Distância Psicológica , Fúria , Adulto Jovem
16.
F1000Res ; 6: 41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28299188

RESUMO

Patterning in the Drosophila melanogaster embryo is affected by multiple maternal factors, but the effect of these factors on spatial gene expression has not been systematically analyzed. Here we characterize the effect of the maternal factors Zelda, Hunchback and Bicoid by cryosectioning wildtype and mutant blastoderm stage embryos and sequencing mRNA from each slice. The resulting atlas of spatial gene expression highlights the intersecting roles of these factors in regulating spatial patterns, and serves as a resource for researchers studying spatial patterning in the early embryo. We identify a large number of genes with both expected and unexpected patterning changes, and through integrated analysis of transcription factor binding data identify common themes in genes with complex dependence on these transcription factors.

17.
J Gerontol A Biol Sci Med Sci ; 72(5): 689-694, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27341855

RESUMO

BACKGROUND: Hyperkyphosis reduces the amount of space in the chest, mobility of the rib cage, and expansion of the lungs. Decline in pulmonary function may be greater in persons with more severe kyphosis; however, no prospective studies have assessed this association. We conducted a longitudinal study to quantify the impact of kyphosis severity on decline in pulmonary function over 16 years in women and men. METHODS: Participants included a convenience sample of 193 women and 82 men in the Framingham Study original cohort (mean age: 63 years; range: 50-79 years), who had measurements of kyphosis angle from lateral spine radiographs obtained in 1972-1976 and forced expiratory volume in 1 second (FEV1) from spirometry taken four times over 16 (±1.87) years from 1972 through 1988. RESULTS: Kyphosis severity was associated with greater decline in FEV1 in women but not in men. Adjusted mean change in FEV1 over 16 years was -162, -245, and -261mL (trend, p = .02) with increasing tertile of kyphosis angle in women and -372, -297, and -257mL (trend, p = .20) in men, respectively. CONCLUSIONS: This longitudinal study found that kyphosis severity increased subsequent decline in pulmonary function in women but not in men. Reasons for an association between kyphosis and pulmonary function in women but in not men may be due, at least in part, to the small number of men in our study. Nevertheless, our findings suggest that preventing or slowing kyphosis progression may reduce the burden of pulmonary decline in older adults.


Assuntos
Cifose/fisiopatologia , Pulmão/fisiopatologia , Idoso , Feminino , Humanos , Cifose/diagnóstico por imagem , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Índice de Gravidade de Doença
18.
Genes (Basel) ; 8(1)2016 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-28029123

RESUMO

Parental RNAi (pRNAi) is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR) via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field. In this study, we evaluated parameters required to generate a successful pRNAi response in WCR for the genes brahma and hunchback. The parameters tested included a concentration response, duration of the dsRNA exposure, timing of the dsRNA exposure with respect to the mating status in WCR females, and the effects of pRNAi on males. Results indicate that all of the above parameters affect the strength of pRNAi phenotype in females. Results are interpreted in terms of how this technology will perform in the field and the potential role for pRNAi in pest and resistance management strategies. More broadly, the described approaches enable examination of the dynamics of RNAi response in insects beyond pRNAi and crop pests.

19.
Dev Biol ; 413(2): 207-16, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27016505

RESUMO

Insect segment number within species appears to be fixed irrespective of germ types: long vs. short/intermediate. The present study showed induction of supernumerary segment formation by the knockdown of Bombyx hunchback (Bm-hb), presumably by terminal segment addition, a short/intermediate-like-segmentation mode that is not observed in normal Bombyx embryogenesis. This suggests that Bm-hb suppresses segmentation. The results obtained also suggest that the gap gene Bm-Kr (Bombyx Krüppel) provides a permissive environment for the progression of segmentation by suppressing the expression Bm-hb, which terminates segmentation. This indicates a novel mechanism by which the gap gene is involved in segmentation. It appears that Bm-Kr and Bm-hb are involved in segment counting and their interplay contributes to the correct number of segments being formed in Bombyx. Similar mechanisms may be operating in insects that employ the non-Drosophilan mode of segmentation such as in short/intermediate-germ insects.


Assuntos
Bombyx/embriologia , Genes de Insetos , Animais , Padronização Corporal/genética , Bombyx/genética , Técnicas de Silenciamento de Genes
20.
Biochem Soc Trans ; 43(5): 801-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517885

RESUMO

Pumilio is an RNA-binding protein originally identified in Drosophila, with a Puf domain made up of eight Puf repeats, three helix bundles arranged in a rainbow architecture, where each repeat recognizes a single base of the RNA-binding sequence. The eight-base recognition sequence can therefore be modified simply via mutation of the repeat that recognizes the base to be changed and this is understood in detail via high-resolution crystal structures. The binding mechanism is also altered in a variety of homologues from different species, with bases flipped out from the binding site to regenerate a consensus sequence. Thus Pumilios can be designed with bespoke RNA recognition sequences and can be fused to nucleases, split GFP, etc. as tools in vitro and in cells.


Assuntos
Modelos Moleculares , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Mutação , Conformação de Ácido Nucleico , Conformação Proteica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , RNA/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA