RESUMO
With the global population continuously rising, efficient bioconversion of inedible agricultural by-products is crucial for human food and energy sustainability. We here propose solid-state fermentation approaches to efficiently convert biopolymers into oligomers/monomers by accelerating the natural degradation process of the versatile Streptomyces sp. strain SCUT-3. Using fish skin as a representative by-product, 54.3 g amino acids and 14.7 g peptides (91 % < 2500 Da) were recovered from 89.0 g protein in 100 g tilapia skin sample by collagenase-overexpressed SCUT-3 for seven days at a 1:4 substrate:liquid ratio. Fish skin collagen hydrolysates exhibited excellent anti-oxidation, anti-hypertension, scratch-repairing, anti-aging, anti-ultraviolet radiation, and anti-inflammation effects on human skin fibroblasts In vitro and zebrafish larvae in vivo, indicating their potential applications in healthcare/skincare and anti-atopic dermatitis. As Laozi said, the divine law follows nature. This study underscores the efficacy of genetically engineered SCUT-3 according to its natural biomass utilization laws in large-scale biopolymer conversion.
Assuntos
Pele , Streptomyces , Peixe-Zebra , Animais , Streptomyces/metabolismo , Streptomyces/química , Pele/metabolismo , Humanos , Peixe-Zebra/metabolismo , Tilápia/metabolismo , Fermentação , Colágeno/metabolismo , Colágeno/química , Fibroblastos/metabolismoRESUMO
This study investigated mung bean protein hydrolysates (MBPH) produced using neutral protease, examining their physicochemical properties, stability, and lipid peroxidation inhibition capabilities. The research revealed that MBPH molecular weight ranged from 17 to 26 kDa and perform various functions, including catalytic, nutrient storage, and binding. Stability assessments showed that MBPH are stable at 45 °C and pH of 7.5 but are light-sensitive and unstable in solution or when combined with sugars. Additionally, increased concentrations of digestive enzymes reduce MBPH stability. Antioxidant tests in vitro and in Caenorhabditis elegans confirmed MBPH's ability to neutralizing radicals, enhance antioxidant enzyme activities, and reduce lipid peroxidation, thereby protecting against oxidative damage. Furthermore, in vivo experiments showed that MBPH extend the lifespan of worms and reduced their body lipid content, indicating potential benefits in mitigating cholesterol-related damage. This research demonstrates the potential of MBPH in inhibiting lipid peroxidation.
Assuntos
Caenorhabditis elegans , Peroxidação de Lipídeos , Proteínas de Plantas , Hidrolisados de Proteína , Vigna , Peroxidação de Lipídeos/efeitos dos fármacos , Vigna/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Peso Molecular , Concentração de Íons de HidrogênioRESUMO
Casein hydrolysates have been proven to exert varying sleep-enhancing and anxiolytic effects due to their distinct release of potential peptides. However, their underlying sleep-enhancing mechanisms at the metabolic level remain unclear. This study aims to investigate the potential sleep-enhancing mechanism of casein hydrolysates through an integrated approach of untargeted and targeted metabolomics in CUMS-induced anxiety mice for the first time. The results showed seven potential biomarkers were identified and screened using orthogonal partial least-squares discriminant analysis, random forest model, and pathway analysis, including ornithine, l-proline, l-prolinamide, inhibitory neurotransmitters gamma-aminobutyric acid, 5-HIAA, fumaric acid, and 4-oxoglutaramate. Moreover, casein hydrolysates exerted sleep-enhancing effects through multiple metabolic pathways, mainly including the GABAergic system, tryptophan metabolism, and cAMP response signaling pathway, which was validated by targeted metabolomics and vital protein expressions. It was interesting that casein hydrolysates with diverse representative peptide compositions exhibited varying activity, which could be attributed to distinct alterations in metabolites via different pathways.
RESUMO
El tratamiento de la alergia a las proteínas de la leche de vaca se basa en la eliminación completa de las proteínas de leche de vaca de la dieta del niño y de la madre en los que reciben leche materna. Para lograr la remisión de los síntomas y la tolerancia futura, la exclusión debe ser total. En los niños que reciben fórmula, esta deberá tener hidrolizado extenso de proteínas en las formas leves o moderadas, mientras que aquellas a base de aminoácidos se reservan para los casos más graves. El tiempo de tratamiento, la adquisición de tolerancia y el momento para la prueba de provocación oral van a variar según el cuadro clínico, el mecanismo inmunológico implicado y la edad del paciente. El objetivo de este consenso ha sido reflejar el conocimiento actualizado junto con la experiencia de neonatólogos, pediatras, especialistas en alergia, nutrición y gastroenterología.
The treatment of cow's milk protein allergy is based on the complete elimination of cow's milk protein from the diet. To achieve remission of symptoms and future tolerance, exclusion must be total. In formula fed infants the extensively hydrolysed formula is the most appropriate option in mild or moderate forms, while those based on amino acids are reserved for the most severe cases. The treatment time, the acquisition of tolerance and the moment for the oral provocation test will vary according to the clinical picture, the immunological mechanism involved and the age of the patient. The aim of this consensus has been to reflect the updated knowledge together with the experience of neonatologists, pediatricians, experts in allergy, nutrition and gastroenterology
Assuntos
Humanos , Lactente , Hipersensibilidade a Leite/diagnóstico , Hipersensibilidade a Leite/terapiaRESUMO
Fish protein hydrolysates (FPHs) were obtained from different fish sources using a combination of microbial enzymes. The industrially produced FPHs from blue whiting (Micromesistius poutassou) and sprat (Sprattus sprattus) were compared to freeze-dried FPHs generated in-house from hake (Merluccius merluccius) and mackerel (Scomber scombrus) in terms of their physicochemical composition and functionality. Significant differences (p < 0.05) were observed in the protein, moisture, and ash contents of the FPHs, with the majority having high levels of protein (73.24-89.31%). Fractions that were more extensively hydrolysed exhibited a high solubility index (74.05-98.99%) at different pHs. Blue whiting protein hydrolysate-B (BWPH-B) had the highest foaming capacity at pH 4 (146.98 ± 4.28%) and foam stability over 5 min (90-100%) at pH 4, 6, and 8. The emulsifying capacity ranged from 61.11-108.90 m2/g, while emulsion stability was 37.82-76.99% at 0.5% (w/v) concentration. In terms of peptide bioactivity, sprat protein hydrolysate (SPH) had the strongest overall reducing power. The highest Cu2+ chelating activity was exhibited by hake protein hydrolysate (HPH) and mackerel protein hydrolysate (MPH), with IC50 values of 0.66 and 0.78 mg protein/mL, respectively, while blue whiting protein hydrolysate-A (BWPH-A) had the highest activity against Fe2+ (IC50 = 1.89 mg protein/mL). SPH scavenged DPPH and ABTS radicals best with IC50 values of 0.73 and 2.76 mg protein/mL, respectively. All FPHs displayed noteworthy scavenging activity against hydroxyl radicals, with IC50 values ranging from 0.48-3.46 mg protein/mL. SPH and MPH showed the highest scavenging potential against superoxide radicals with IC50 values of 1.75 and 2.53 mg protein/mL and against hydrogen peroxide with 2.22 and 3.66 mg protein/mL, respectively. While inhibition of α-glucosidase was not observed, the IC50 values against α-amylase ranged from 8.81-18.42 mg protein/mL, with SPH displaying the highest activity. The stability of FPHs following simulated gastrointestinal digestion (SGID) showed an irregular trend. Overall, the findings suggest that marine-derived protein hydrolysates may serve as good sources of natural nutraceuticals with antioxidant and antidiabetic properties.
Assuntos
Antioxidantes , Digestão , Hidrolisados de Proteína , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Animais , Digestão/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Proteínas de Peixes/farmacologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Solubilidade , Trato Gastrointestinal/metabolismo , Gadiformes/metabolismo , Organismos Aquáticos , Concentração de Íons de HidrogênioRESUMO
Maillard reaction products (MRPs) produced by heating protease-catalyzed soy protein hydrolysates (SPHs) with cysteine and ribose can generate meat-like flavors. However, the impact of protease reaction conditions on the volatile compound composition of MRPs has not been thoroughly investigated. In this study, seven SPHs were prepared using two proteases, flavourzyme and trypsin, over reaction times of 10, 120, and 1440 min. The volatile compound compositions, including sulfur-containing compounds, aldehydes, pyrazines, and furans, of the seven SPHs and the corresponding seven MRPs varied according to the protease reaction conditions and the Maillard reaction. Differences in pH, free amino acid composition, and peptide composition were responsible for these variations. Notably, soy-derived peptides containing unique cysteine sequences, such as PGCPST, DETICT, ECQIQK, and HCQR, were significantly reduced during the Maillard reaction, suggesting that these sequences may serve as precursors to volatile compounds.
RESUMO
One of the causes of hypertension is the activity of angiotensin-I converting enzyme (ACEI), making its inhibition a crucial strategy for controlling the disease. Protein hydrolysates are a known source of bioactive peptides that contribute to ACE-I inhibition. This study aims to evaluate the ACE-I inhibitory activity of amaranth seed hydrolysates after fermentation with Enterococcus faecium-LR9 and to compare it with Leuconostoc mesenteroides-18C6 and enzymatic hydrolysis (Alcalase®). The fermentation strategy with LR9 proved to be more effective in inhibiting ACE-I (79.1 ± 2.6 %) in vitro compared to 18C6 (68.0 ± 9.8 %) and enzymatic hydrolysis (69.4 ± 1.2 %). Consequently, these protein hydrolysates were subjected to in silico analysis, identifying 125 novel peptides. Bioinformatics and molecular docking analyses revealed 10 peptides with high ACE-I inhibitory potential. Among them, the IFQFPKTY and VIKPPSRAW peptides stood out. Therefore, E. faecium-LR9 is a promising strain for the release of bioactive peptides from seed storage proteins.
RESUMO
This study explored the use of pig blood fibrinogen hydrolysates, enzymatically hydrolyzed with trypsin and flavorzyme, to enhance myofibrillar protein gels, addressing issues like poor gel strength and water loss in meat products. By incorporating varying concentrations of fibrinogen hydrolysates into myofibrillar proteins, heat-induced gels were prepared. The composite gels showed improved textural properties, rheological characteristics and water-holding capacity. Scanning electron microscopy and atomic force microscopy analyses revealed a uniform, dense surface and an orderly internal structure in the composite gels. The study also noted decreased α-helix and random coil and increased ß-sheet and ß-turn contents, indicating a more ordered secondary structure. Hydrophobic interactions and disulfide bonds were identified as key factors in enhancing gelation, and a model was proposed to explain these molecular effects. This research demonstrates a potential of fibrinogen hydrolysates to improve quality and structure of myofibrillar protein gels designed for high-quality meat products.
RESUMO
Hypertension is a prevalent non-communicable disease with serious cardiovascular complications, including heart failure, myocardial infarction, and stroke, often resulting from uncontrolled hypertension. While current treatments primarily target the renin-angiotensin-aldosterone pathway, the therapeutic response remains modest in many patients, with some developing resistant hypertension. Newer therapeutic approaches aim to address hypertension from various aspects beyond conventional drugs, including targeting central nervous system pathways, inflammatory pathways, vascular smooth muscle function, and baroreceptors. Despite these advancements, each therapy faces unique clinical and mechanistic challenges that influence its clinical translatability and long-term viability. This review explores the mechanisms of novel molecules in preclinical and clinical development, highlights potential therapeutic targets, and discusses the challenges and ethical considerations related to hypertension therapeutics and their development.
RESUMO
BACKGROUND: Keratin hydrolysates are active components used in food supplements to alleviate aging signs on skin, hair, and nails. AIMS: This randomized, double-blind, placebo-controlled study evaluates a novel keratin hydrolysate obtained from poultry feathers. This feather keratin hydrolysate (FKH) results in a characteristic mix of free L-amino acids (≥ 83.5%). FKH was administered as a food supplement to a panel of adult women showing aging physiological signs. METHODS: Participants were randomly assigned in three groups to receive daily dosages of 500 or 1000 mg of FKH or placebo for 90 days. Parameters of skin roughness, wrinkle features, deep skin moisturization, skin maximum elongation and elasticity, skin thickness, skin anisotropy, skin density, gloss of skin, hair and nails, and nail hardness were evaluated. Subjects also answered a questionnaire related to the treatment efficacy perception. RESULTS: Both FKH treatments showed a significant improvement of all parameters compared to day 0 and to placebo, with an exception for fiber anisotropy and fiber density which showed a significant improvement compared to day 0 and a tendency to improve compared to placebo. These measurements were bolstered by the results of a self-assessment questionnaire, showing an overall set of positive answers for both treatments compared to placebo. CONCLUSIONS: Oral supplementation of FKH for 90 days is associated with an improvement in the appearance of facial skin, hair, and nails. This study highlights the benefits of free L-amino acids mix as potential aminobiotics and not just as building blocks of proteins, suggesting a new perspective of nutricosmetic food.
RESUMO
Protein hydrolysates from the goat placenta provide multiple benefits, such as immune system enhancement, antioxidant activities, and reductions in uric acid levels. Despite these benefits, their industrial applications have been underexplored. This study aimed to prepare extract protein hydrolysates (GPERPs) from residual goat placenta extract (GPER) and assess their functional properties, focusing on how different drying methods influence these properties. The essential amino acid contents were 30.94% for the GPER and 34.11% for the GPERPs. Moreover, all the essential amino acids were present, and the amino acid score (AAS) for each exceeded 1.0 in the GPERPs. The foaming properties of the spray-dried GPERPs (95.56 ± 5.89%) were significantly greater than those of the freeze-dried GPERPs (49.13 ± 4.17%) at pH values of 4.0~10.0. The emulsion stability (ES) of the spray-dried GPERPs (453.44 ± 8.13 min) was notably greater than that of the freeze-dried GPERPs (245.58 ± 7.12 min). Furthermore, the water retention capacity (WRC) of the freeze-dried GPERPs (201.49 ± 6.12%) was significantly greater than that of the spray-dried GPERPs (103.35 ± 7.13%), except at pH 10.0 (101.44 ± 8.13%). Similarly, at pH values of 6.0, 8.0, and 10.0, the oil retention capacity (ORC) of the freeze-dried GPERPs (715.58 ± 12.15%) was significantly greater than that of the spray-dried GPERPs (560.56 ± 11.15%), although the opposite trend was noted under acidic conditions. In terms of the antioxidant activity, the ability of the goat placenta extract residual protein hydrolysates (GPERPs) to scavenge DPPH radicals and superoxide anion radicals increased with the increasing peptide powder concentration, and the maximum scavenging rates of the DPPH radicals (39.5 ± 0.56%) and superoxide anions (81.2 ± 0.54%) in the freeze-dried peptide powder were greater than those in the spray-dried peptide powder. These findings contribute to the understanding of the physicochemical and antioxidant properties of GPERPs under various drying methods and provide fundamental data for the development of functional foods based on GPERPs.
RESUMO
BACKGROUND: Premature ovarian failure (POF) is a common disease among women, which can cause many complications and seriously threaten women's physical and mental health. Currently, hormone replacement therapy is the primary treatment for premature ovarian failure. However, the side effects are serious and will increase the chance of breast cancer and endometrial cancer. Deer blood hydrolysate (DBH) is the product of enzymatic hydrolysis of deer blood, has antioxidant, anti-ageing, and anti-fatigue effects, and has the potential to improve premature ovarian failure. METHODS: In our experiment, a mouse model of premature ovarian failure was established through intraperitoneal injection of 400 mg/kg/d of D-gal for 42 days. At the same time, different doses of DBH were gavaged to observe its ameliorative effect on premature ovarian failure. RESULTS: The experimental findings indicated that DBH could restore the irregular oestrus cycle of POF mice, improve the abnormal amounts in serum hormones follicle-stimulating hormone (FSH), luteinising hormone (LH), progesterone (P) and estradiol (E2), increase the number of primordial follicles and decrease the number of atretic follicles. In addition, DBH also raised the level of superoxide dismutase (SOD) and reduced the level of malondialdehyde (MDA) and reduced the apoptosis of ovarian granulosa cells in mice. The WB assay results showed that gavage of DBH restored the decrease in the indication of nuclear factor erythroid 2-related factor 2 (Nrf2), Heme Oxygenase-1 (Ho-1), and B-cell lymphoma-2 (Bcl-2) proteins and reduced the elevated expression of Kelch-like ECH-associated protein 1 (Keap1), Bcl-2 associated X protein (Bax), and Cysteinyl aspartate specific proteinase-3 (Caspase-3) proteins that were induced by D-gal. CONCLUSIONS: To sum up, the present research indicated that DBH can ameliorate D-gal-induced oxidative stress and apoptosis by regulating the Nrf2/HO-1 signalling pathway and the Bcl-2/Bax/caspase-3 apoptosis pathway, which can be used for further development as a nutraceutical product to improve premature ovarian failure.
Assuntos
Apoptose , Cervos , Galactose , Estresse Oxidativo , Insuficiência Ovariana Primária , Animais , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/sangue , Feminino , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Modelos Animais de Doenças , Hidrolisados de Proteína/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Hormônio Foliculoestimulante/sangueRESUMO
Cultivated meat products, generated by growing isolated skeletal muscle and fat tissue, offer the promise of a more sustainable and ethical alternative to traditional meat production. However, with cell culture media used to grow the cells accounting for 55-95% of the overall production cost, achieving true sustainability requires significant media optimization. One means of dealing with these high costs is the use of low-cost complex additives such as hydrolysates to provide a wide range of nutrients, from small molecules (metabolites) to growth factors and peptides. Despite their potential, most hydrolysate products remain poorly characterized and many are thought to suffer from persistent issues of high batch-to-batch variability. Although there have been a number of isolated efforts to determine metabolic profiles for a handful of hydrolysate products, we present the first attempt at a more comprehensive metabolomic characterization of nine different products (four plant and five yeast-based) from two to four different lots each. NMR analysis identified 90 unique metabolites, with only 15 metabolites common to all hydrolysate products (including eight of the nine essential amino acids), and 16 metabolites found in only a single hydrolysate product. The different hydrolysate products were found to have substantial differences in metabolite concentrations (as a fraction of overall mass), ranging from a high of 43% in yeast extract to a low of 14% in soy hydrolysates. The proportion of various metabolites also varied between products, with carbohydrate concentrations particularly high in soy hydrolysates and nucleosides more prominent in two of the yeast products. Overall, yeast extract generally had higher metabolite concentrations than all the other products, whereas both yeast extract and cotton had the largest variety of metabolites. A direct calculation of batch-to-batch variability revealed although there are significant differences between lots, these are largely driven by a relatively small fraction of compounds. This report will hopefully serve as a useful starting point for a more nuanced consideration of hydrolysate products in cell culture media optimization, both in the context of cultivated meat and beyond.
RESUMO
Fish provides a low-caloric content, polyunsaturated fatty acids, many essential trace elements and is also a rich source of protein, ranging from 10% to 25%. Therefore, the production of FPH (fish protein hydrolysates) is of great interest, as the resulting products exhibit a variety of important bioactive and technological properties, making them potential ingredients for new functional foods and supplements. The aim of this review was to compile and analyze information on enzymatic hydrolysates, with particular emphasis on those derived from fish by-products, as a potential ingredient in human nutrition. Their nutritional characteristics, food safety aspects, bioactive properties, technological attributes, key influencing factors, and applications in food products were evaluated. The findings revealed that these properties are influenced by several factors, such as the raw material, enzymes used, degree of hydrolysis, and the molecular weight of the peptides, which need to be considered as a whole. In conclusion, the gathered information suggests that it is possible to obtain high-value products through enzymatic hydrolysis, even when using fish by-products. However, although numerous studies focused on FPH derived from fish muscle, research on by-products remains limited. Further investigation is needed to determine whether the behavior of FPH from by-products differs from that of muscle-derived FPH.
RESUMO
The production of inflammatory cytokines such as tumor necrosis factor (TNF)-α by activated macrophage cells plays an important role in the development of intestinal inflammation. The present study investigated the anti-inflammatory effect of the protein hydrolysates prepared from the jack bean (JBPHs), Canavalia ensiformis (L.) DC, using the enzyme Alcalase, in a murine macrophage model, RAW 264.7 cells, which were stimulated by lipopolysaccharides. JBPHs reduced the TNF-α expression at the protein and mRNA levels through the downregulation of cellular signaling pathways involved in nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), and p38. A combination of mass spectrometry and in silico approaches identified 10 potential anti-inflammatory peptides in the JBPHs, including LFLLP and DFFL. Interestingly, while LFLLP targeted the NF-κB pathway, DFFL targeted p38 and ERK to suppress the TNF-α production in the RAW 264.7 cells. In addition, LFLLP and DFFL were localized in the cytosol of the cells. These results demonstrated that LFLLP and DFFL were incorporated by RAW 264.7 cells and, at least in part, contributed to the reduction in TNF-α by JBPHs. These peptides isolated from JBPHs may well be utilized as new alternatives to alleviate intestinal inflammation.
RESUMO
Bacillus coagulans, a Gram-positive thermophilic bacterium, is recognized for its probiotic properties and recent development as a microbial cell factory. Despite its importance for biotechnological applications, the current understanding of B. coagulans' robustness is limited, especially for undomesticated strains. To fill this knowledge gap, we characterized the metabolic capability and performed functional genomics and systems analysis of a novel, robust strain, B. coagulans B-768. Genome sequencing revealed that B-768 has the largest B. coagulans genome known to date (3.94 Mbp), about 0.63 Mbp larger than the average genome of sequenced B. coagulans strains, with expanded carbohydrate metabolism and mobilome. Functional genomics identified a well-equipped genetic portfolio for utilizing a wide range of C5 (xylose, arabinose), C6 (glucose, mannose, galactose), and C12 (cellobiose) sugars present in biomass hydrolysates, which was validated experimentally. For growth on individual xylose and glucose, the dominant sugars in biomass hydrolysates, B-768 exhibited distinct phenotypes and proteome profiles. Faster growth and glucose uptake rates resulted in lactate overflow metabolism, which makes B. coagulans a lactate overproducer; however, slower growth and xylose uptake diminished overflow metabolism due to the high energy demand for sugar assimilation. Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) made up 60%-65% of the measured proteomes but were allocated differently when growing on xylose and glucose. The trade-off in proteome reallocation, with high investment in COG-C over COG-G, explains the xylose growth phenotype with significant upregulation of xylose metabolism, pyruvate metabolism, and tricarboxylic acid (TCA) cycle. Strain B-768 tolerates and effectively utilizes inhibitory biomass hydrolysates containing mixed sugars and exhibits hierarchical sugar utilization with glucose as the preferential substrate.IMPORTANCEThe robustness of B. coagulans makes it a valuable microorganism for biotechnology applications; yet, this phenotype is not well understood at the cellular level. Through phenotypic characterization and systems analysis, this study elucidates the functional genomics and robustness of a novel, undomesticated strain, B. coagulans B-768, capable of utilizing inhibitory switchgrass biomass hydrolysates. The genome of B-768, enriched with carbohydrate metabolism genes, demonstrates high regulatory capacity. The coordination of proteome reallocation in Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) is critical for effective cell growth, sugar utilization, and lactate production via overflow metabolism. Overall, B-768 is a novel, robust, and promising B. coagulans strain that can be harnessed as a microbial biomanufacturing platform to produce chemicals and fuels from biomass hydrolysates.
RESUMO
The current evaluation was conducted to investigate the chemical composition and functional properties of protein hydrolysates from different Satureja species. The major amino acids (mg/100 g protein) in the protein from different Satureja species were arginine (6.06-14.37), asparagine (1.39-17.06), glutamine (2.42-11.60), glutamic acid (6.34-9.32), beta-aminoisobutyric acid (3.31-10.29), alanine (4.64-9.59), aspartic acid (5.73-9.54), proline (4.25-8.14), leucine (3.63-5.69), serine (2.64-4.83), lysine (1.89-4.56), glycine (0.96-5.27), valine (2.76-4.83), and phenylalanine (2.86-3.75). Protein hydrolysates from Satureja species exhibited comparable antioxidant activity (IC50 = 0.270-0.328 mg/mL), anti-linoleic acid oxidation (IC50 = 0.231-0.301 mg/mL), anti-lecithin oxidation (IC50 = 0.198-0.258 mg/mL), anti-starch oxidation (IC50 = 0.201-0.277 mg/mL), anti-amylase activity (IC50 = 0.314-0.337 mg/mL), and anti-lipase activity (IC50 = 0.309-0.369 mg/mL). The physico-chemical properties of gelatin dispersion were electrical conductivity (1197 microsiemens/cm), osmolarity (190 milliosmol/kg), surface tension (45 mN/m), particle size (179 nm), zeta potential (-48 mV), and viscosity (4.92 mPa.s). Techno-functional characteristics of freeze-dried gelatin particles were as follows: water content (7.68%), water solubility (84.57%), water swelling (151.33%), hygroscopicity (38.20%), hydrophobicity (6.50 µg/g), emulsification activity (68.54%), emulsification stability (57.86%), foam expansion activity (56.08%), foam stability (41.84%), oil-holding capacity (1.96 g/g), and water-holding capacity (4.45 g/g). Protein hydrolysate causes minor changes in the physico-chemical and techno-functional properties of gelatin. The current investigation introduces Satureja protein hydrolysate as a possible functional and techno-functional ingredient for bioactive food products for treating diabetes and oxidative stress and as a natural preservative for the food industry.
RESUMO
Menaquinone-7 (MK-7) is a form of vitamin K2 with health-beneficial effects. A novel fermentation strategy based on combining soy protein hydrolysates (SPHs) with biofilm-based fermentation was investigated to enhance menaquinone-7 (MK-7) biosynthesis by Bacillus subtilis natto. Results showed the SPHs increased MK-7 yield by 199.4% in two-stage aeration fermentation as compared to the SP-based medium in submerged fermentation, which was related to the formation of robust biofilm with wrinkles and the enhancement of cell viability. Moreover, there was a significant correlation between key genes related to MK-7 and biofilm synthesis, and the quorum sensing (QS) related genes, Spo0A and SinR, were downregulated by 0.64-fold and 0.39-fold respectively, which promoted biofilm matrix synthesis. Meanwhile, SPHs also enhanced the MK-7 precursor, isoprene side chain, supply, and MK-7 assembly efficiency. Improved fermentation performances of bacterial cells during fermentation were attributed to abundant oligopeptides (Mw < 1 kDa) and moderate amino acids, particularly Arg, Asp, and Phe in SPHs. All these results revealed that SPHs were a potential and superior nitrogen source for MK-7 production by Bacillus subtilis natto.
Assuntos
Bacillus subtilis , Biofilmes , Fermentação , Hidrolisados de Proteína , Proteínas de Soja , Vitamina K 2 , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo , Hidrolisados de Proteína/metabolismo , Proteínas de Soja/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Percepção de QuorumRESUMO
Hydrolyzed collagen (HC) consists of many small and low-molecular-weight amino acid chains (3-6 kDa) that can be produced either in basic or acidic media through enzymatic activity. This review details the sources of hydrolyzed collagen, its biosynthesis and its uses in the food industry, as well as its production process and beneficial health effects. HC can be extracted from a variety of sources, during which acetic acid is used for the extraction of collagen type I from bovine, porcine, marine, chicken, and fish cartilage. An enzymatic treatment combined with an acidic treatment has shown more efficient extraction results. Because of its properties, it is frequently employed in the food industry since it improves sensorial qualities, as well as in the cosmetic industry as a functional component in face and body cream because of its moisturizing properties. It is also used in the pharmaceutical development of antioxidant supplements often combined with hyaluronic acid and vitamin C. HC has an excellent therapeutic effect on osteoporosis and osteoarthritis, where a daily dose of 12 g enhances pain symptoms and contributes to bone health. It also increases mineral density and protects articular cartilage. This review presents the structure and properties of hydrolyzed collagen, which mainly consists of the amino acids glycine, proline and hydroxyproline in a triple helix, its extraction process and its sources, as well as its applications. In particular, the creation of Enzymatic Membrane Reactor allows the production of HC with different molecular weight distributions, allowing wider application.
RESUMO
This study investigates the production of protein hydrolysates with dipeptidyl peptidase-IV (DPP-IV) inhibitory activity from agro-industrial by-products, namely olive seed, sunflower seed, rapeseed, and lupin meals, as well as from two plant protein isolates such as pea and potato. Furthermore, the effect of simulated gastrointestinal digestion on the DPP-IV inhibitory activity of all the hydrolysates was evaluated. Overall, the lowest values of IC50 (1.02 ± 0.09 - 1.24 ± 0.19 mg protein/mL) were observed for the hydrolysates with a high proportion of short-chain [< 1 kDa] peptides (i.e., olive seed, sunflower seed, and lupin) or high content of proline (i.e., rapeseed). Contrarily, the IC50 of the pea and potato hydrolysates was significantly higher (1.50 ± 0.13 - 1.93 ± 0.13 mg protein/mL). In vitro digestion led to an increase in peptides <1 kDa for almost all hydrolysates (except olive and sunflower seed meals), which was noticeable for rapeseed, pea, and potato hydrolysates. Digestion did not significantly modify the DPP-IV inhibitory activity of olive, sunflower, rapeseed, and potato hydrolysates, whereas a significant decrease in IC50 value was obtained for pea hydrolysate and a significant increase in IC50 was obtained for lupin hydrolysate. Thus, this work shows the potential of agro-industrial by-products for the production of protein hydrolysates exhibiting DPP-IV inhibition.