RESUMO
Emulsion gels were prepared by adding lard with different degrees of oxidation (0, 1, 2, 3, 4, and 5 h, 110 °C) to porcine myofibrillar proteins (MP). The findings demonstrated that changes in sulfhydryl content and carbonyl content reflected that oxidized lard induced the oxidation of MP. Compared with the control (CON), moderately oxidized lard (2 h) led to the unfolding of the protein structure, increased ß-sheet content, and exposed hydrophobic groups. These modifications facilitated interactions between the protein and lard at the interface, enhancing the emulsifying properties of MPs. Furthermore, the moderate oxidation of lard (2 h) enhanced the organization of the gel structure and improved the gel performance of MPs, resulting in uniform water distribution. In contrast, the hardness and springiness of MP gel treated with excessively oxidized lard (5 h) were significantly reduced (p < 0.05). The microstructure of MP gel also exhibited irregular aggregation, resulting in a decline in protein digestibility. In addition, lard oxidation (2 h) had a positive effect on maintaining gel stability during storage.
RESUMO
A holistic understanding of the charge heterogeneity in monoclonal antibodies (mAbs) is paramount for ensuring acceptable product quality. Hence, biotherapeutic manufacturers are expected to thoroughly characterize their products via advanced analytical techniques. Recently, two-dimensional liquid chromatography (2DLC) methods have gained popularity for resolving complex charged species. Capillary electrophoresis (CE) is regarded as a sensitive and faster tool for charged species estimation in biotherapeutics. In this study, we aim to combine the separation power of chromatographic and electrophoretic tools (liquid chromatography [LC]-CE) so as to achieve maximum resolution of mAb charge variants. Hydrophobic interaction chromatography (HIC) has been used as the preferred LC mode with CE for achieving successful separation of both charge and hydrophobic variants for two of the mAbs (trastuzumab and rituximab). The standalone HIC and capillary zone electrophoresis (CZE) methods separated 4 hydrophobic variants and 7 charge variants for each mAb, whereas the 2DLC method separated 10 and 11 variants for mAbs A and B. On the other hand, the HIC-CZE-UV method resolved 29 variants in mAb A and 23 variants in mAb B. The reproducibility of the HIC-CZE-UV method was demonstrated by % change in values of retention time (RT) and peak area as <5% (mAb A), <3% (mAb B), and <12% (for both mAbs), respectively. Thus, the utility of the proposed LC-CE method for characterization of mAb charge variants has been displayed.
RESUMO
A receptor for advanced glycation end products (RAGE) has emerged as a crucial player in various pathological conditions due to its involvement in inflammation and cellular dysfunction. Its soluble isoform, sRAGE, has garnered significant attention for its competitive inhibitory effects and potential therapeutic applications. However, obtaining sRAGE with appropriate glycosylation patterns for binding to glycated proteins has been challenging, often requiring costly expression systems. Here, we present a novel approach for producing and purifying sRAGE from Sus scrofa lungs, bypassing the need for expensive expression systems. Previous protocols for sRAGE extraction faced reproducibility issues due to high viscosity and haemoglobin content of the solution. To address this, we developed a method for selective haemoglobin precipitation using a zinc-containing buffer, enabling purification via various chromatographic methods. Through a combination of chromatographic techniques, we obtained sRAGE in suitable purity, identified using HPLC-MS/MS. Additionally, producing glycated proteins for RAGE receptor activation often involved lengthy protocols or inadequate separation from reactants. Thus, we devised a rapid method for producing and purifying pure BSA glycated with ribose, addressing a critical gap in the field. Functional studies, conducted using Native PAGE, demonstrated the capability of purified proteins to bind to each other.
RESUMO
The detrimental environmental effects of surfactant-like contaminants (SLCs) with distinctive amphiphilic structures have garnered significant attention, particularly since perfluorooctanesulfonate was classified as a persistent organic pollutant. Despite the numerous absorbents developed for SLCs removal, the underlying interaction mechanisms remain speculative and lack experimental validation. To address this research gap, we elucidate the mechanistic insights into the selective removal of SLCs using mesoporous polydopamine nanospheres (MPDA) fabricated via a novel soft-template method. We employed low-field nuclear magnetic resonance to quantitatively characterize the hydrophilicity of the absorbents using water molecules as probes. The results demonstrated that MPDA with uniform mesopores exhibited a remarkable threefold enhancement in SLCs' adsorption capacity compared to conventional polydopamine particles via intraparticle diffusion. We further demonstrated the dominant effects of electrostatic and hydrophobic interactions on the selective removal of SLCs with MPDA by regulating the isoelectric pH value and performing a comparative analysis. The mechanism-inspired SLC-removal strategy achieved an average removal rate of 76.3% from highly contaminated wastewater. Our findings offer new avenues for applying MPDA as an efficient adsorbent and provide innovative and mechanistic insights for targeted SLC removal in complex wastewater matrices.
Assuntos
Nanosferas , Tensoativos , Águas Residuárias , Poluentes Químicos da Água , Nanosferas/química , Tensoativos/química , Águas Residuárias/química , Adsorção , Poluentes Químicos da Água/química , Polímeros/química , Indóis/química , Interações Hidrofóbicas e Hidrofílicas , PorosidadeRESUMO
Product-related impurities are challenging to remove during monoclonal antibody (mAb) purification process due to molecular similarity. Frontal chromatography on hydrophobic interaction resins has demonstrated its capability to effectively remove such impurities. However, process improvements geared towards purity level comes as a trade-off with the yield loss. In this work, we present a hydrophobic interaction chromatography process using multicolumn continuous chromatography (MCC) concept and frontal analysis to remove a high prevalence product related impurity. This design uses a two-column continuous system where the two columns are directly connected during product chase step to capture product wash loss without any in-process adjustment. This polish MCC operation resulted in a 10 % increase in yield while maintaining 99 % purity, despite the presence of 20 % product-related impurities in the feed material. One challenge associated with polish MCC design is that the accumulation of the impurities renders a non-steady state recycling. To surmount this issue and ensure a robust process, a mechanistic model was developed and validated to predict multicomponent breakthrough. This model was capable to predict multiple cycle behavior and accounts for increased impurity concentration. Assisted by the model, the optimized operation parameters and conditions can be determined to account for variation in product load quality. The simulated results demonstrate an effective doubling of productivity compared to conventional batch chromatography.
Assuntos
Anticorpos Monoclonais , Interações Hidrofóbicas e Hidrofílicas , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Cromatografia Líquida/métodos , Cricetulus , Células CHO , Animais , Contaminação de MedicamentosRESUMO
The solvent-induced interactions (SIIs) between flexible solutes can be separated into two distinct components: the solvation-induced conformational effect and the joint solvation interaction (JSI). The JSI quantifies the thermodynamic effect of the solvent simultaneously accommodating the solutes, generalizing the typical notion of the hydrophobic interaction. We present a formal definition of the JSI within the framework of the mixture expansion, demonstrate that this definition is equivalent to the SII between rigid solutes, and propose a method, partially connected molecular dynamics, which allows one to compute the interaction with existing free energy algorithms. We also compare the JSI to the more natural generalization of the hydrophobic interaction, the indirect solvent-mediated interaction, and argue that JSI is a more useful quantity for studying solute binding thermodynamics. Direct calculation of the JSI may prove useful in developing our understanding of solvent effects in self-assembly, protein aggregation, and protein folding, for which the isolation of the JSI from the conformational component of the SII becomes important due to the intra-species flexibility.
RESUMO
Cancer metastasis remains the most formidable cause of mortality and morbidity in cancer patients. Developing an effective and economical method toward cancer antimetastatic strategy demands immediate attention in anticancer therapy. Herein, we followed a cost-effective greener method for preparing a small family of amphiphilic catiomers with varied styrene content (45, 63, and 83%), which revealed the unique potential of promoting normal cell migration while retarding cancer metastasis. The styrenic polymers formed micellar self-assembly in aqueous phase and exhibited a cationic charge. Polymers were quite nontoxic up to 200 µg/mL concentration toward human embryonic kidney cell HEK293 as well as human, triple negative breast cancer cell MDAMB-231, mouse melanoma cell B16F10, and human oral squamous carcinoma cell FaDu. Confocal imaging and fluorescence activated cell sorting (FACS) showed effective incorporation of polymers within cells. Interestingly, the polymer-treated HEK293 cells underwent prominent wound healing in scratch assay. However, the as-synthesized polymer-treated cancer cells resisted migration as analyzed from the scratch assay. A mechanistic study using immunoblotting assay established upregulation of migratory proteins vimentin and TGF-ß and downregulation of E-cadherin in normal HEK293 cells. Remarkably, this trend was completely reversed in cancer cell MDAMB-231. This study describes the extraordinary potential of styrenic catiomers as wound healers for normal cells while inhibiting cancer metastasis.
Assuntos
Movimento Celular , Humanos , Movimento Celular/efeitos dos fármacos , Células HEK293 , Animais , Camundongos , Linhagem Celular Tumoral , Emulsões/química , Vimentina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Caderinas/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
Uncontrollable hemorrhage from trauma and open surgery leads to a high percentage of death. Even though some patch-type hemostatic materials have been used in the clinic, sufficient tissue adhesion property and the management of tissue adhesion and anti-adhesion have been the challenges. In this report, we designed Janus tissue adhesive hemostatic patch, consisting of Alaska pollock gelatin (Org-ApGltn) as a support layer and decanoyl group-modified ApGltn (C10-ApGltn) with pentaerythritol poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-PEG) as an adhesive layer, named as the C10-ApGltn patch. The C10-ApGltn patch adhered onto blood vessel surface by the activation 4S-PEG and hydrophobic groups in C10-ApGltn through the covalent bond formation and physical interaction. The burst strength of the C10-ApGltn patch was optimized in terms of the degree of substitution, the molecular weight of 4S-PEG, the concentration of C10-ApGltn, and the NHS/NH2 ratio. The optimized C10-ApGltn patch showed significantly higher burst strength with commercially available TachoSil®. The C10-ApGltn patch showed enzymatic degradability in a buffer solution with collagenase. In a rat liver hemorrhage model, the C10-ApGltn patch acted as a sealant on the hemorrhage site and exhibited competitive hemostatic property to TachoSil®.
RESUMO
The increasing presence of pharmaceuticals and personal care products (PPCPs) in aquatic systems pose significant environmental concerns. This study addresses this issue by synthesizing quaternized mesoporous SBA-15 (QSBA) with varied alkyl chain lengths of C1QSBA, C8QSBA, and C18QSBA. QSBA utilizes dual mechanisms: hydrophobic interactions via the alkyl chain and electrostatic attraction/ion exchange via the ammonium group. Diclofenac (DCF) and acetaminophen (ACT) were selected as target PPCPs due to their contrasting dissociation properties and hydrophobicity, which are the main characteristics of PPCPs. The adsorption of DCF and ACT revealed that longer alkyl chains enhanced the adsorption capacity of ACT through hydrophobic interactions, whereas dissociated DCF (DCF-) adsorption was superior owing to its high hydrophobicity (log Kow = 4.5) and electrostatic attraction. pH levels between 6 and 8 resulted in a high affinity for DCF-. Notably, among the three alkyl chains, only C18QSBA exhibited the most effective adsorption for DCF-. These PPCPs adsorption trends were confirmed through molecular simulations of adsorption under conditions in which competing ions coexisted. The molecular simulations show that while DCF- has lower adsorption energy than Cl-, OH-, and H3O+ ions in QSBA, enhancing its adsorption under various pH conditions. Conversely, ACT exhibits a higher adsorption energy, which reduces its adsorption efficiency. This suggests the potential application of QSBA with long alkyl chains in the treatment of highly hydrophobic and negatively charged PPCPs. Furthermore, this study emphasizes the importance of simulating adsorption under competing ion conditions.
Assuntos
Acetaminofen , Diclofenaco , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício , Poluentes Químicos da Água , Acetaminofen/química , Diclofenaco/química , Adsorção , Dióxido de Silício/química , Poluentes Químicos da Água/química , Concentração de Íons de HidrogênioRESUMO
Gram-positive bacteria, including lactic acid bacteria (LAB), possess lipoteichoic acid (LTA) on the cell surface. LTA is an amphiphilic molecule typically composed of hydrophilic glycerolphosphate polymer and hydrophobic anchor glycolipid moieties. It is involved in physiological properties of the cell surface and also plays roles in interactions with the host. Appropriate preparation procedures, such as extraction and purification, are required to clarify the structure-activity relationship. Structural diversity of LTA has been reported at the bacterial species and strain levels, and structural differences might affect interactions with the host. This chapter introduces techniques for preparation and structural analysis of LTA derived from LAB. It consists of four sections, covering butanol extraction, hydrophobic interaction chromatography, immunoblotting, and structural analysis. Technical notes containing supplemental information about the individual steps are also provided.
Assuntos
Membrana Celular , Lactobacillales , Lipopolissacarídeos , Ácidos Teicoicos , Ácidos Teicoicos/química , Lipopolissacarídeos/química , Lactobacillales/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Interações Hidrofóbicas e HidrofílicasRESUMO
The adsorption of l-tryptophan (l-Trp) was studied based on the hydrophobic interaction/ion exchange/ion exclusion mixed-mode adsorption resin D301. Firstly, the interaction mode between l-Trp and resin was analyzed by studying the influence of pH variation on the adsorption capability and the dissociation state of l-Trp. Secondly, the adsorption mechanism was illuminated by studying the adsorption equilibrium and kinetic behaviors. The adsorption equilibrium and a kinetics model were constructed. The augmentation of pH gradually elicited an enhancement in the adsorption capacity of l-Trp. l-Trp existing in varied dissociation states could be adsorbed by the resin, and the interaction mode relied upon the pH of the solution. An integrated adsorption equilibrium model with the coadsorption of different dissociation states of l-Trp was developed and could predict the adsorption isotherms at various pH levels satisfactorily. Both external mass transfer and intra-particle diffusion collectively imposed constraints on the mass transfer process of l-Trp onto the resin. An improved liquid film linear driving force model (ILM) was constructed, and the model provided a satisfactory fit for the adsorption kinetics curves of l-Trp at various pH levels. l-Trp molecules had a high mass transfer rate at a relatively low solution pH.
RESUMO
The separation and detection of six common inorganic anions (iodate (IO3-), bromate (BrO3-), bromide (Br-), nitrite (NO2-), nitrate (NO3-), and iodide (I-)) in pure water and 35 artificial seawater were examined by ion chromatography (IC). As packing materials of separation columns, 1-aminoundecyl group chemically bonded silica (AUS) gels were prepared. Separation of the anions in pure water was achieved using separation columns (150 mm × 4.6 mm i.d.) packed with the AUS gels, 0.1 M NaCl + 5 mM phosphate buffer (pH 4.5) as eluent, and a UV detector (wavelength 225 nm). The anions in artificial seawater were separated and detected with a 300 mm-long column without interferences by matrix anions such as chloride (Cl-) and sulfate (SO42-). The stationary phases have high-capacity anion-exchange/hydrophilic/hydrophobic interaction mixed-modes. The IC system was applied to five inorganic anions, IO3-, Br-, NO2-, NO3-, and I- in seawater of the Seto-Inland Sea, Japan. The detection limits (DLs, S/N = 3) were 11 µg L-1 (IO3-), 93 (Br-), 1.3 (NO2-), 1.4 (NO3-), and 1.1 (I-) for a 100-µL sample injection.
RESUMO
Thermoresponsive polymer brushes have attracted considerable research attention owing to their unique properties. Herein, we developed silica beads grafted with poly(N-isopropylacrylamide (NIPAAm)-co-3-acrylamidopropyl trimethylammonium chloride (APTAC)-co-tert-butyl acrylamide (tBAAm) and P(NIPAAm-co-APTAC-co-n-butyl methacrylate(nBMA)) brushes. The carbon, hydrogen, and nitrogen elemental analysis of the copolymer-grated silica beads revealed the presence of a large amount of the grafted copolymer on the silica beads. The electrostatic and hydrophobic interactions between biomolecules and prepared copolymer brushes were analyzed by observing their elution behaviors via high-performance liquid chromatography using the copolymer-brush-modified beads as the stationary phase. Adenosine nucleotides were retained in the bead-packed columns, which was attributed to the electrostatic interaction between the copolymers and adenosine nucleotides. Insulin was adsorbed on the copolymer brushes at high temperatures, which was attributed to its electrostatic and hydrophobic interactions with the copolymer. Similar adsorption behavior was observed in case of albumin. Further, at a low concentration of the phosphate buffer solution, albumin was adsorbed onto the copolymer brushes even at relatively low temperatures owing to its enhanced electrostatic interaction with the copolymer. These results indicated that the developed thermoresponsive strong cationic copolymer brushes can interact with peptides and proteins through a combination of electrostatic and temperature-modulated hydrophobic interactions. Thus, the developed copolymer brushes exhibits substantial potential for application in chromatographic matrices for the analysis and purification of peptides and proteins.
RESUMO
The photophysical behavior of a ß-blocker drug propranolol (PPL) in micellar environments, formed by alkyltrimethylammonium bromide surfactants viz.; Cetyltrimethylammonium bromide (CTAB), Tetradecyltrimethylammonium bromide (TTAB), and Dodecyltrimethylammonium bromide (DTAB), has been investigated through fluorescence and UV-visible spectroscopic techniques at pH levels of 3.5, 7.4, and 10.4. The impact of pH on the critical micelle concentration (cmc) and micropolarity of micelles were assessed using pyrene as a photophysical probe. The cmc values were found to be lower at pH 10.4 compared to pH 7.4 and pH 3.5. Fluorescence emission intensities of PPL at 323 nm, 338 nm, and 352 nm were significantly influenced by pH, hydrophobic alkyl chain length of surfactants, and their concentrations. Quenching experiments with Cetylpyridinium chloride (CpCl) indicated the localization of charged and uncharged forms of PPL within micelles, with quenching constant (Ksv) values dependent on alkyl chain length and pH. At pH < pKa, PPL is positioned near the Stern layer, whereas at pH 10.4, its naphthalene moiety resides near the hydrophobic micellar core. UV spectroscopy showed that the charged form of PPL interacted with micelles only above cmc, while the neutral form interacted even below the cmc. Density Functional Theory (DFT) reveals the HOMO of the surfactants to be localized on the hydrocarbon chains, and the LUMO localized around the quaternary ammonium unit. Upon complexation with PPL, both HOMO and LUMO shifted to the drug, thereby decreasing energy levels. The findings are explained based on weak noncovalent interactions, further supported and analyzed through Reduced Density Gradient (RDG) and Noncovalent Interaction (NCI) methods, confirming synergistic non-covalent interactions in surfactant-PPL complexes.
RESUMO
Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.
Assuntos
Espectrometria de Massas , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massa com Cromatografia LíquidaRESUMO
Given the prevalence of the malignant weed Chinese Sprangletop (Leptochloa chinensis (L.) Nees) in rice fields, the development of novel herbicides against this weed has aroused wide interest. Here, we report a novel diphenyl ether-pyrimidine hybrid, DEP-5, serving as a systematic pre/postemergence herbicide candidate for broad-spectrum weed control in rice fields, specifically for L. chinensis. Notably, DEP-5 exhibits over 80% herbicidal activity against the resistant biotypes even at 37.5 g a.i./ha under greenhouse conditions and has complete control of L. chinensis at 150 g a.i./ha in the rice fields. We uncover that DEP-5 acts as a noncompetitive inhibitor of acetohydroxyacid synthase (AHAS) with an inhibition constant (Ki) of 39.4 µM. We propose that DEP-5 binds to AHAS in two hydrophobic-driven binding modes that differ from commercial AHAS inhibitors. Overall, these findings demonstrate that DEP-5 has great potential to be developed into a herbicide for L. chinensis control and inspire fresh concepts for novel AHAS-inhibiting herbicide design.
Assuntos
Acetolactato Sintase , Herbicidas , Oryza , Proteínas de Plantas , Plantas Daninhas , Poaceae , Controle de Plantas Daninhas , Herbicidas/farmacologia , Herbicidas/química , Oryza/química , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/enzimologia , Acetolactato Sintase/metabolismo , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/antagonistas & inibidores , Poaceae/química , Poaceae/enzimologia , Poaceae/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Pirimidinas/farmacologia , Cinética , Éteres Fenílicos/farmacologia , Éteres Fenílicos/químicaRESUMO
Mechanistic models are powerful tools for chromatographic process development and optimization. However, hydrophobic interaction chromatography (HIC) mechanistic models lack an effective and logical parameter estimation method, especially for multi-component system. In this study, a parameter-by-parameter method for multi-component system (called as mPbP-HIC) was derived based on the retention mechanism to estimate the six parameters of the Mollerup isotherm for HIC. The linear parameters (ks,i and keq,i) and nonlinear parameters (ni and qmax,i) of the isotherm can be estimated by the linear regression (LR) and the linear approximation (LA) steps, respectively. The remaining two parameters (kp,i and kkin,i) are obtained by the inverse method (IM). The proposed method was verified with a two-component model system. The results showed that the model could accurately predict the protein elution at a loading of 10 g/L. However, the elution curve fitting was unsatisfactory for high loadings (12 g/L and 14 g/L), which is mainly attributed to the demanding experimental conditions of the LA step and the potential large estimation error of the parameter qmax. Therefore, the inverse method was introduced to further calibrate the parameter qmax, thereby reducing the estimation error and improving the curve fitting. Moreover, the simplified linear approximation (SLA) was proposed by reasonable assumption, which provides the initial guess of qmax without solving any complex matrix and avoids the problem of matrix unsolvable. In the improved mPbP-HIC method, qmax would be initialized by the SLA and finally determined by the inverse method, and this strategy was named as SLA+IM. The experimental validation showed that the improved mPbP-HIC method has a better curve fitting, and the use of SLA+IM reduces the error accumulation effect. In process optimization, the parameters estimated by the improved mPbP-HIC method provided the model with excellent predictive ability and reasonable extrapolation. In conclusion, the SLA+IM strategy makes the improved mPbP-HIC method more rational and can be easily applied to the practical separation of protein mixture, which would accelerate the process development for HIC in downstream of biopharmaceuticals.
Assuntos
Interações Hidrofóbicas e Hidrofílicas , Cromatografia Líquida/métodos , Modelos Lineares , Proteínas/isolamento & purificação , Proteínas/química , Proteínas/análise , Modelos QuímicosRESUMO
The use of a ternary mobile-phase system comprising ammonium sulphate, sodium chloride, and phosphate buffer was explored to tune retention and enhance selectivity in hydrophobic interaction chromatography. The accuracy of the linear solvent-strength model to predict protein retention with the ternary mobile-phase system based on isocratic scouting runs is limited, as the extrapolated retention factor at aqueous buffer conditions (k0) cannot be reliably established. The Jandera retention model utilizing a salt concentration averaged retention factor (k¯0) in aqueous buffer for ternary systems overcomes this bottleneck. Gradient retention factors were derived based on isocratic scouting runs after numerical integration of the isocratic Jandera model, leading to retention-time prediction errors below 11 % for linear gradients. Furthermore, an analytical expression was formulated to predict HIC retention for both linear and segmented linear gradients, considering the linear solvent-strength (LSS) model within ternary salt systems, relying on a fixed k0. The approach involved conducting two gradient scouting runs for each of the two binary salt systems to determine model parameters. Retention-time prediction errors for linear gradients were below 12 % for lysozyme and 3 % for trypsinogen and α-chymotrypsinogen A. Finally, the analytical expression for a ternary mobile-phase system was used in combination with a genetic algorithm to tune the HIC selectivity. With an optimized segmented ternary gradient, a critical-pair separation for a mixture of 7 proteins was achieved within 15 min with retention-time prediction errors ranging between 0.7 and 15.7 %.
Assuntos
Sulfato de Amônio , Interações Hidrofóbicas e Hidrofílicas , Muramidase , Muramidase/química , Muramidase/análise , Sulfato de Amônio/química , Cloreto de Sódio/química , Cromatografia Líquida/métodos , Algoritmos , Soluções Tampão , Fosfatos/química , Fosfatos/análise , Quimotripsinogênio/química , Modelos QuímicosRESUMO
Hibiscus sabdariffa L. (roselle) is a medicinal and edible plant which rich in anthocyanins with potent antioxidant properties. To enhance the stability of roselle anthocyanins, they were encapsulated in nanocapsules composed of carboxymethyl chitosan (CMC), chitosan hydrochloride (CHC), and ß-lactoglobulin (ß-Lg). In vitro simulated digestion assays evaluated the impact of various core-to-wall ratios and ß-Lg concentrations on the bioaccessibility of seven anthocyanins. Nanocapsules with a core-to-wall ratio of 1:2 and ß-Lg at 10 mg/mL exhibited the highest encapsulation efficiency (EE). Cyanidin-3-glucoside had the highest EE, while cyanidin-3-sambubioside showed the outstanding retention rate. Furthermore, simulated digestion experiments combined with molecular docking revealed that peonidin-3-glucoside and petunidin-3-glucoside likely interact with and bind to the outer ß-Lg layer of the nanocapsules, increasing their release during in vitro digestion. This study demonstrates that encapsulating roselle anthocyanins in CMC, CHC, and ß-Lg nanocapsules significantly enhances their bioaccessibility.
Assuntos
Antocianinas , Hibiscus , Nanocápsulas , Extratos Vegetais , Antocianinas/química , Hibiscus/química , Nanocápsulas/química , Extratos Vegetais/química , Digestão , Composição de Medicamentos , Simulação de Acoplamento Molecular , Humanos , Disponibilidade BiológicaRESUMO
Myofibrillar protein (MP) gels are susceptible to oxidation, which can be prevented by complexing with hydrophilic polyphenols, but may cause gel deterioration. Sodium metabisulfite (Na2S2O5) has been used to induce self-assembly of MP and analyze the impact of self-assembly on the quality of composite gels containing high amounts of (-)-epigallocatechin gallate (EGCG). Hydrophobic forces were confirmed as the main driver of self-assembly. Self-assembly reduced the size of the MP-EGCG complex to approximately 670 nm and increased the gel's hydrophobic force by approximately 3.6-fold. The maximum hardness of the Na2S2O5-treated MP-EGCG composite gel was 52.43 g/kg, which was approximately 49% greater than pure MP gel. After oxidative treatment, the Na2S2O5-treated MP-EGCG composite gel had considerably lower carbonyl and dityrosine levels (2.47-µmol/g protein and 450 a.u.) than the control (8.37-µmol/g protein and 964 a.u.). Therefore, Na2S2O5 shows potential as a cost-effective additive for alleviating MP limitations in the food industry.