Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
J Biosci Bioeng ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39419642

RESUMO

Non-invasive cell culture monitoring technology is crucial to improve the manufacturing efficiency of cell products. We have found that extracellular vesicles (EVs) are secreted into the culture supernatants in the differentiation process from human induced pluripotent stem cells (iPSCs) to dopaminergic progenitor cells, and that the composition of EVs changes in accordance with the differentiation processes. In this study, we hypothesized that it is possible to evaluate the cultured cellular states by detecting compositional changes of EVs secreted from cultured cells with label-free Raman spectroscopy in a non-invasive manner. Therefore, Raman signal analysis derived from EV fractions isolated from culture supernatants throughout the differentiation process was conducted. iPSCs cultures were simultaneously implemented under a standard condition (control) and an artificial deviation condition inducing reductions in pluripotency by depleting FGF2 in culture medium (-FGF2), which is indispensable for maintaining the pluripotency. Subsequently, the differentiation step was conducted for each iPSCs culture under the same condition. As a result, it was found that under -FGF2, the expression level of the pluripotency marker NANOG decreased compared to that of the control and correlated with the identification results based on Raman signals with a correlation coefficient of 0.77. Lipid-derived Raman signals were extracted as identification factors, suggesting that changes in the lipid component of EV occur depending on the cellular states. From the above, we have found that the change in composition of EVs in the culture supernatant by detecting Raman signals would be a monitoring index of the cellular state of differentiation and pluripotency.

2.
Front Bioeng Biotechnol ; 12: 1459273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372431

RESUMO

CRISPR/Cas9 genome editing is a rapidly advancing technology that has the potential to accelerate research and development in a variety of fields. However, manual genome editing processes suffer from limitations in scalability, efficiency, and standardization. The implementation of automated systems for genome editing addresses these challenges, allowing researchers to cover the increasing need and perform large-scale studies for disease modeling, drug development, and personalized medicine. In this study, we developed an automated CRISPR/Cas9-based genome editing process on the StemCellFactory platform. We implemented a 4D-Nucleofector with a 96-well shuttle device into the StemCellFactory, optimized several parameters for single cell culturing and established an automated workflow for CRISPR/Cas9-based genome editing. When validated with a variety of genetic backgrounds and target genes, the automated workflow showed genome editing efficiencies similar to manual methods, with indel rates of up to 98%. Monoclonal colony growth was achieved and monitored using the StemCellFactory-integrated CellCelector, which allowed the exclusion of colonies derived from multiple cells or growing too close to neighbouring colonies. In summary, we demonstrate the successful establishment of an automated CRISPR/Cas9-based genome editing process on the StemCellFactory platform. The development of such a standardized and scalable automated CRISPR/Cas9 system represents an exciting new tool in genome editing, enhancing our ability to address a wide range of scientific questions in disease modeling, drug development and personalized medicine.

3.
Food Chem Toxicol ; 193: 115039, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39389444

RESUMO

In our daily lives, we are inevitably exposed to a variety of environmental pollutants in numerous ways. Fortunately, recent years have witnessed significant advancements in the field of stem cell toxicology, which have provided new opportunities for research in environmental toxicology. Applying stem cell technology to environmental toxicology, overcomes some of the limitations of traditional screening methods and we can more accurately predict the toxicity of environmental pollutants. However, there are still several aspects of stem cell toxicology models that require improvement, such as increasing the throughput of detection and simplifying detection methods. Consequently, we developed an environmental pollutant toxicity detection model based on TBXT-EGFP iPS cells and screened the developmental toxicity of 38 typical environmental pollutants. Our results indicate that TBBPA-BDBPE, TBBPA-BHEE, DG, and AO2246 may interfere with the expression of TBXT, a critical marker gene for early human embryo development, implying that these environmental pollutants could lead to developmental abnormalities.

4.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273117

RESUMO

The high mortality in the global population due to chronic diseases highlights the urgency to identify effective alternative therapies. Regenerative medicine provides promising new approaches for this purpose, particularly in the use of induced pluripotent stem cells (iPSCs). The aim of the work is to establish a new pluripotency cell line obtained for the first time by reprogramming human gingival mesenchymal stem cells (hGMSCs) by a non-integrating method. The hGMSC-derived iPS line characterization is performed through morphological analysis with optical and electron scanning microscopy and through the pluripotency markers expression evaluation in cytofluorimetry, immunofluorescence, and RT-PCR. To confirm the pluripotency of new hGMSC-derived iPS, the formation of embryoid bodies (EBs), as an alternative to the teratoma formation test, is studied in morphological analysis and through three germ layers' markers' expression in immunofluorescence and RT-PCR. At the end, a comparative study between parental hGMSCs and derived iPS cells is performed also for the extracellular vesicles (EVs) and their miRNA content. The new hGMSC-derived iPS line demonstrated to be pluripotent in all aspects, thus representing an innovative dynamic platform for personalized tissue regeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa/métodos , Diferenciação Celular , Gengiva/citologia , Regeneração , Reprogramação Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Corpos Embrioides/metabolismo , Corpos Embrioides/citologia , Células Cultivadas , Linhagem Celular
5.
Glia ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308436

RESUMO

Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.

6.
J Biol Chem ; 300(11): 107825, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39342993

RESUMO

Our understanding of acute leukemia pathology is heavily dependent on 11q23 chromosomal translocations involving the mixed lineage leukemia-1 (MLL1) gene, a key player in histone H3 lysine 4 (H3K4) methylation. These translocations result in MLL1-fusion (MLL1F) proteins that are thought to drive leukemogenesis. However, the mechanism behind increased H3K4 trimethylation in MLL1F-leukemic stem cells (MLL1F-LSCs), following loss of the catalytic SET domain of MLL1 (known for H3K4 monomethylation and dimethylation) remains unclear. In our investigation, we introduced a homozygous loss-of-function point mutation in MLL1 within human-induced pluripotent stem cells. This mutation mimics the histone methylation, gene expression, and epithelial-mesenchymal transition phenotypes of MLL1F-LSCs-without requiring a translocation or functional WT MLL1. The mutation caused a genome-wide redistribution of the H3K4 trimethyl mark and upregulated LSC-maintenance genes like HoxA9-A13, Meis1, and the HOTTIP long noncoding RNA. Epithelial-mesenchymal transition markers such as ZEB1, SNAI2, and HIC-5 were also increased leading to enhanced cellular migration and invasiveness. These observations underscore the essential role of MLL1's enzymatic activity in restraining the cascade of epigenetic changes associated with the gene-activating H3K4 trimethylation mark, which we show may be catalyzed by mislocalized SETd1a H3K4 trimethyltransferase in the absence of MLL1's enzymatic activity. Challenging existing models, our findings imply that MLL1F-induced leukemias arise from a dominant-negative impact on MLL1's histone methyltransferase activity. We propose targeting SETd1a in precision medicine as a new therapeutic approach for MLL1-associated leukemias.

7.
Acta Biomater ; 188: 93-102, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39241820

RESUMO

Nerve-derived factors have attracted attention in bone regeneration therapy due to their ability to promote bone regeneration and nerve innervation. Mesenchymal stem cells transported to target sites promote osteogenesis. However, there are few reports on the effects of neural stem cells on bone regeneration. Therefore, the aim of this study was to investigate the role of neural stem cells in osteogenesis. Here, embryoid bodies (EB) or primary neurospheres (1NS) were generated using mouse induced pluripotent stem cells (iPS cells), which were then seeded onto gelatin (Gel) sponges. The seeded Gel sponges were then transplanted into mouse calvarial bone defects. We noted that 1NS-seeded Gel promoted bone regeneration and the presence of tartrate-resistant acid phosphatase (TRAP)-positive cells, whereas the EB-seeded Gel did not. RNA-sequencing of the 1NS-seeded and EB seeded Gels showed an upregulation of the transforming growth factor (TGF)-ß signaling pathway in the 1NS-seeded Gel group. Immunostaining confirmed the presence of Id3 positive cells in mice with bone defects treated with the 1NS-seeded Gel. These findings suggest that the transplantation of neural stem cells may contribute to the promotion of bone regeneration. STATEMENT OF SIGNIFICANCE: This study aimed to investigate whether neural stem cells, when seeded in Gel sponges, promoted bone regeneration. It has been well documented that bone is tightly linked with the nervous systems. Bioscaffolds comprising factors that promote innervation and bone regeneration have been investigated for use in bone therapy. However, there is limited research on the use of neural stem cells for promoting bone formation. To assess this relationship, we conducted both in vivo and in vitro assays to determine whether neural stem cells promoted bone formation. We noted that 1NS-seeded Gel sponges promoted bone formation significantly in mice with calvarial defects after 4 weeks. This study provides a novel approach of neural stem cells for bone therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Osteogênese , Crânio , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Crânio/patologia , Camundongos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Regeneração Óssea , Diferenciação Celular , Fator de Crescimento Transformador beta/metabolismo , Gelatina/química
8.
JCI Insight ; 9(16)2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171529

RESUMO

Patient-specific induced pluripotent stem cell-derived (iPSC-derived) cell lines allow for therapies to be tailored to individual patients, increasing therapeutic precision and efficiency. Bietti crystalline dystrophy (BCD) is a rare blinding disease estimated to affect about 67,000 individuals worldwide. Here, we used iPSC-derived retinal pigment epithelium (iRPE) cells from patients with BCD to evaluate adeno-associated virus-mediated (AAV-mediated) gene augmentation therapy strategies. We found that BCD iRPE cells were vulnerable to blue light-induced oxidative stress and that cellular phenotype can be quantified using 3 robust biomarkers: reactive oxygen species (ROS), 4-hydroxy 2-nonenal (4-HNE) levels, and cell death rate. Additionally, we demonstrated that AAV-mediated gene therapy can significantly reduce light-induced cell death in BCD iRPE cells. This is the first proof-of-concept study to our knowledge to show that AAV-CYP4V2 gene therapy can be used to treat light-induced RPE damage in BCD. Furthermore, we observed significant variability in cellular phenotypes among iRPE from patients with BCD of divergent mutations, which outlined genotype-phenotype correlations in BCD patient-specific cell disease models. Our results reveal that patient-specific iRPE cells retained personalized responses to AAV-mediated gene therapy. Therefore, this approach can advance BCD therapy and set a precedent for precision medicine in other diseases, emphasizing the necessity for personalization in healthcare to accommodate individual diversity.


Assuntos
Distrofias Hereditárias da Córnea , Dependovirus , Terapia Genética , Células-Tronco Pluripotentes Induzidas , Medicina de Precisão , Epitélio Pigmentado da Retina , Humanos , Medicina de Precisão/métodos , Terapia Genética/métodos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Distrofias Hereditárias da Córnea/terapia , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/patologia , Dependovirus/genética , Estresse Oxidativo/genética , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças Retinianas/terapia , Doenças Retinianas/genética , Doenças Retinianas/patologia , Aldeídos/metabolismo , Masculino
9.
Biochem Biophys Res Commun ; 733: 150605, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39197194

RESUMO

Electrical and dynamic stimulation are commonly employed to enhance the maturation of engineered cardiac tissue (ECT) derived from human induced pluripotent stem cells (iPSCs), reflecting the physiological environment of the heart. While electrical stimulation mimics natural bioelectrical signals and dynamic stimulation replicates mechanical forces, the combined effects of these stimuli on ECT maturation have not been thoroughly explored. We hypothesized that simultaneous electro-dynamic stimulation would enhance ECT maturation and function more effectively than either stimulus alone. Human iPSC-derived cardiovascular cells were co-cultured with Collagen I and Matrigel for 2 weeks, followed by a comparative analysis of four groups: no stimulation, dynamic stimulation, electrical stimulation, and simultaneous electro-dynamic stimulation. The functionality of ECTs was assessed by measuring contractile capacity and calcium indicators, and histological assessments examined structural maturation. Our results demonstrated that simultaneous electro-dynamic stimulation significantly increased the CM component, elevated TNNT2 mRNA expression levels, and enhanced calcium transient capacity. Additionally, ECTs subjected to simultaneous stimulation exhibited a positive force-frequency relationship in contractility and an elevation in peak calcium flux, indicative of advanced tissue maturation. Moreover, simultaneous stimulation promoted vascular network formation within the ECTs, suggesting improved structural organization. These findings underscore the importance of simultaneous stimulation for developing effective cardiac tissue engineering strategies.


Assuntos
Estimulação Elétrica , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Células Cultivadas , Troponina T/metabolismo , Troponina T/genética , Cálcio/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Técnicas de Cocultura/métodos , Contração Miocárdica , Colágeno/metabolismo
10.
JCI Insight ; 9(17)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042459

RESUMO

Primary ciliary dyskinesia (PCD) is a genetic condition that results in dysmotile cilia. The repercussions of cilia dysmotility and gene variants on the multiciliated cell remain poorly understood. We used single-cell RNA-Seq, proteomics, and advanced microscopy to compare primary culture epithelial cells from patients with PCD, their heterozygous mothers, and healthy individuals, and we induced pluripotent stem cells (iPScs) generated from a patient with PCD. Transcriptomic analysis revealed unique signatures in PCD airway cells compared with their mothers' cells and the cells of healthy individuals. Gene expression in heterozygous mothers' cells diverged from both control and PCD cells, marked by increased inflammatory and cellular stress signatures. Primary and iPS-derived PCD multiciliated cells had increased expression of glutathione-S-transferases GSTA2 and GSTA1, as well as NRF2 target genes, accompanied by elevated levels of reactive oxygen species (ROS). Immunogold labeling in human cilia and proteomic analysis of the ciliated organism Chlamydomonas reinhardtii demonstrated that GSTA2 localizes to motile cilia. Loss of human GSTA2 and C. reinhardtii GSTA resulted in slowed cilia motility, pointing to local cilia regulatory roles. Our findings identify cellular responses unique to PCD variants and independent of environmental stress and uncover a dedicated ciliary GSTA2 pathway essential for normal motility that may be a therapeutic target.


Assuntos
Cílios , Glutationa , Humanos , Cílios/metabolismo , Cílios/patologia , Cílios/genética , Glutationa/metabolismo , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Epiteliais/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Proteômica , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Masculino , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica
11.
J Dermatol Sci ; 115(3): 111-120, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033075

RESUMO

BACKGROUND: Xeroderma pigmentosum (XP) is characterized by photosensitivity that causes pigmentary disorder and predisposition to skin cancers on sunlight-exposed areas due to DNA repair deficiency. Patients with XP group A (XP-A) develop freckle-like pigmented maculae and depigmented maculae within a year unless strict sun-protection is enforced. Although it is crucial to study pigment cells (melanocytes: MCs) as disease target cells, establishing MCs in primary cultures is challenging. OBJECTIVE: Elucidation of the disease pathogenesis by comparison between MCs differentiated from XP-A induced pluripotent stem cells (iPSCs) and healthy control iPSCs on the response to UV irradiation. METHODS: iPSCs were established from a XP-A fibroblasts and differentiated into MCs. Differences in gene expression profiles between XP-A-iPSC-derived melanocytes (XP-A-iMCs) and Healthy control iPSC-derived MCs (HC-iMCs) were analyzed 4 and 12 h after irradiation with 30 or 150 J/m2 of UV-B using microarray analysis. RESULTS: XP-A-iMCs expressed SOX10, MITF, and TYR, and showed melanin synthesis. Further, XP-A-iMCs showed reduced DNA repair ability. Gene expression profile between XP-A-iMCs and HC-iMCs revealed that, numerous gene probes that were specifically upregulated or downregulated in XP-A-iMCs after 150-J/m2 of UV-B irradiation did not return to basal levels. Of note that apoptotic pathways were highly upregulated at 150 J/m2 UV exposure in XP-A-iMCs, and cytokine-related pathways were upregulated even at 30 J/m2 UV exposure. CONCLUSION: We revealed for the first time that cytokine-related pathways were upregulated even at low-dose UV exposure in XP-A-iMCs. Disease-specific iPSCs are useful to elucidate the disease pathogenesis and develop treatment strategies of XP.


Assuntos
Diferenciação Celular , Reparo do DNA , Células-Tronco Pluripotentes Induzidas , Melanócitos , Raios Ultravioleta , Xeroderma Pigmentoso , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Melanócitos/efeitos da radiação , Melanócitos/metabolismo , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Diferenciação Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Perfilação da Expressão Gênica , Células Cultivadas , Melaninas/biossíntese , Melaninas/metabolismo , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Transcriptoma/efeitos da radiação
12.
Cell Stem Cell ; 31(9): 1315-1326.e8, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996472

RESUMO

Recent advances have made modeling human small intestines in vitro possible, but it remains a challenge to recapitulate fully their structural and functional characteristics. We suspected interstitial flow within the intestine, powered by circulating blood plasma during embryonic organogenesis, to be a vital factor. We aimed to construct an in vivo-like multilayered small intestinal tissue by incorporating interstitial flow into the system and, in turn, developed the micro-small intestine system by differentiating definitive endoderm and mesoderm cells from human pluripotent stem cells simultaneously on a microfluidic device capable of replicating interstitial flow. This approach enhanced cell maturation and led to the development of a three-dimensional small intestine-like tissue with villi-like epithelium and an aligned mesenchymal layer. Our micro-small intestine system not only overcomes the limitations of conventional intestine models but also offers a unique opportunity to gain insights into the detailed mechanisms underlying intestinal tissue development.


Assuntos
Intestino Delgado , Engenharia Tecidual , Humanos , Intestino Delgado/citologia , Engenharia Tecidual/métodos , Diferenciação Celular , Mesoderma/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
13.
Front Cell Dev Biol ; 12: 1370723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989059

RESUMO

Juvenile nephronophthisis is an inherited renal ciliopathy with cystic kidney disease, renal fibrosis, and end-stage renal failure in children and young adults. Mutations in the NPHP1 gene encoding nephrocystin-1 protein have been identified as the most frequently responsible gene and cause the formation of cysts in the renal medulla. The molecular pathogenesis of juvenile nephronophthisis remains elusive, and no effective medicines to prevent end-stage renal failure exist even today. No human cellular models have been available yet. Here, we report a first disease model of juvenile nephronophthisis using patient-derived and gene-edited human induced pluripotent stem cells (hiPSCs) and kidney organoids derived from these hiPSCs. We established NPHP1-overexpressing hiPSCs from patient-derived hiPSCs and NPHP1-deficient hiPSCs from healthy donor hiPSCs. Comparing these series of hiPSCs, we found abnormalities in primary cilia associated with NPHP1 deficiency in hiPSCs. Kidney organoids generated from the hiPSCs lacking NPHP1 formed renal cysts frequently in suspension culture with constant rotation. This cyst formation in patient-derived kidney organoids was rescued by overexpression of NPHP1. Transcriptome analysis on these kidney organoids revealed that loss of NPHP1 caused lower expression of genes related to primary cilia in epithelial cells and higher expression of genes related to the cell cycle. These findings suggested the relationship between abnormality in primary cilia induced by NPHP1 loss and abnormal proliferative characteristics in the formation of renal cysts. These findings demonstrated that hiPSC-based systematic disease modeling of juvenile nephronophthisis contributed to elucidating the molecular pathogenesis and developing new therapies.

15.
Biochem Biophys Res Commun ; 729: 150353, 2024 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972137

RESUMO

Research into Schwann cell (SC)-related diseases has been hampered by the difficulty of obtaining human-derived SCs, which have limited proliferative capacity. This has resulted in a delay in progress in drug discovery and cell therapy targeting SCs. To overcome these limitations, we developed a robust method for inducing the differentiation of human induced pluripotent stem cells (hiPSCs) into SCs. We established hiPSC lines and successfully generated high-purity Schwann cell precursors (SCPs) from size-controlled hiPSC aggregates by precisely timed treatment with our proprietary enzyme solution. Such SCPs were successfully expanded and further differentiated into myelin basic protein (MBP) expressing SC populations when treated with an appropriate medium containing dibutyryl-cAMP (db-cAMP). These differentiated cells secreted factors that induced neurite outgrowth in vitro. Our method allows for the efficient and stable production of SCPs and SCs from hiPSCs. This robust induction and maturation method has the potential to be a valuable tool in drug discovery and cell therapy targeting SC-related diseases.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Células de Schwann , Células de Schwann/citologia , Células de Schwann/metabolismo , Humanos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/genética , Células Cultivadas , Linhagem Celular , Bucladesina/farmacologia , Técnicas de Cultura de Células/métodos
16.
J Microsc ; 296(1): 79-93, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38994744

RESUMO

Micropatterning is reliable method for quantifying pluripotency of human-induced pluripotent stem cells (hiPSCs) that differentiate to form a spatial pattern of sorted, ordered and nonoverlapped three germ layers on the micropattern. In this study, we propose a deep learning method to quantify spatial patterning of the germ layers in the early differentiation stage of hiPSCs using micropattern images. We propose decoding and encoding U-net structures learning labelled Hoechst (DNA-stained) hiPSC regions with corresponding Hoechst and bright-field micropattern images to segment hiPSCs on Hoechst or bright-field images. We also propose a U-net structure to extract extraembryonic regions on a micropattern, and an algorithm to compares intensities of the fluorescence images staining respective germ-layer cells and extract their regions. The proposed method thus can quantify the pluripotency of a hiPSC line with spatial patterning including cell numbers, areas and distributions of germ-layer and extraembryonic cells on a micropattern, and reveal the formation process of hiPSCs and germ layers in the early differentiation stage by segmenting live-cell bright-field images. In our assay, the cell-number accuracy achieved 86% and 85%, and the cell region accuracy 89% and 81% for segmenting Hoechst and bright-field micropattern images, respectively. Applications to micropattern images of multiple hiPSC lines, micropattern sizes, groups of markers, living and fixed cells show the proposed method can be expected to be a useful protocol and tool to quantify pluripotency of a new hiPSC line before providing it to the scientific community.


Assuntos
Diferenciação Celular , Aprendizado Profundo , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Processamento de Imagem Assistida por Computador/métodos , Camadas Germinativas/citologia
17.
Cells ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891104

RESUMO

Mutations in the DMD gene cause fatal Duchenne Muscular Dystrophy (DMD). An attractive therapeutic approach is autologous cell transplantation utilizing myogenic progenitors derived from induced pluripotent stem cells (iPSCs). Given that a significant number of DMD mutations occur between exons 45 and 55, we developed a gene knock-in approach to correct any mutations downstream of exon 44. We applied this approach to two DMD patient-specific iPSC lines carrying mutations in exons 45 and 51 and confirmed mini-DYSTROPHIN (mini-DYS) protein expression in corrected myotubes by western blot and immunofluorescence staining. Transplantation of gene-edited DMD iPSC-derived myogenic progenitors into NSG/mdx4Cv mice produced donor-derived myofibers, as shown by the dual expression of human DYSTROPHIN and LAMIN A/C. These findings further provide proof-of-concept for the use of programmable nucleases for the development of autologous iPSC-based therapy for muscular dystrophies.


Assuntos
Distrofina , Edição de Genes , Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Mutação , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas/genética , Distrofina/genética , Distrofina/metabolismo , Éxons/genética , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia
18.
Front Pharmacol ; 15: 1390058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841365

RESUMO

Preclinical transplantations using human neuroepithelial stem (NES) cells in spinal cord injury models have exhibited promising results and demonstrated cell integration and functional improvement in transplanted animals. Previous studies have relied on the generation of research grade cell lines in continuous culture. Using fresh cells presents logistic hurdles for clinical transition regarding time and resources for maintaining high quality standards. In this study, we generated a good manufacturing practice (GMP) compliant human iPS cell line in GMP clean rooms alongside a research grade iPS cell line which was produced using standardized protocols with GMP compliant chemicals. These two iPS cell lines were differentiated into human NES cells, from which six batches of cell therapy doses were produced. The doses were cryopreserved, thawed on demand and grafted in a rat spinal cord injury model. Our findings demonstrate that NES cells can be directly grafted post-thaw with high cell viability, maintaining their cell identity and differentiation capacity. This opens the possibility of manufacturing off-the-shelf cell therapy products. Moreover, our manufacturing process yields stable cell doses with minimal batch-to-batch variability, characterized by consistent expression of identity markers as well as similar viability of cells across the two iPS cell lines. These cryopreserved cell doses exhibit sustained viability, functionality, and quality for at least 2 years. Our results provide proof of concept that cryopreserved NES cells present a viable alternative to transplanting freshly cultured cells in future cell therapies and exemplify a platform from which cell formulation can be optimized and facilitate the transition to clinical trials.

19.
Bioessays ; : e2400072, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38922935

RESUMO

This year marks the tenth anniversary of the world's first transplantation of tissue generated from induced pluripotent stem cells (iPSCs). There is now a growing number of clinical trials worldwide examining the efficacy and safety of autologous and allogeneic iPSC-derived products for treating various pathologic conditions. As we patiently wait for the results from these and future clinical trials, it is imperative to strategize for the next generation of iPSC-based therapies. This review examines the lessons learned from the development of another advanced cell therapy, chimeric antigen receptor (CAR) T cells, and the possibility of incorporating various new bioengineering technologies in development, from RNA engineering to tissue fabrication, to apply iPSCs not only as a means to achieve personalized medicine but also as designer medical applications.

20.
Med Mol Morphol ; 57(3): 155-160, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38935299

RESUMO

The thymus is where T cells, among the most important immune cells involved in biological defense and homeostasis, are produced and developed. The thymus plays an important role in the defense against infection and cancer as well as the prevention of autoimmune diseases. However, the thymus gland atrophies with age, which might have pathological functions, and in some circumstances, there is a congenital defect in the thymus. These can be the cause of many diseases related to the dysregulation of T cell functions. Thus, the enhancement and/or normalization of thymic function may lead to protection against and treatment of a wide variety of diseases. Therefore, thymus transplantation is considered a strong candidate for permanent treatment. The status and issues related to thymus transplantation for possible immunotherapy are discussed although it is still at an early stage of development.


Assuntos
Imunoterapia , Linfócitos T , Timo , Timo/imunologia , Timo/transplante , Humanos , Linfócitos T/imunologia , Imunoterapia/métodos , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA