Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.350
Filtrar
1.
Acad Radiol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969575

RESUMO

RATIONALE AND OBJECTIVES: To assess image quality and radiation dose of ultra-high-pitch CT pulmonary angiography (CTPA) with free-breathing technique for diagnosis of pulmonary embolism using a photon-counting detector (PCD) CT compared to matched energy-integrating detector (EID)-based single-energy CTPA. MATERIALS AND METHODS: Fifty-one PCD-CTPAs were prospectively compared to 51 CTPAs on a third-generation dual-source EID-CT. CTPAs were acquired with an ultra-high-pitch protocol with free-breathing technique (40 mL contrast medium, pitch 3.2) at 140 kV (PCD) and 70-100 kV (EID). Iodine maps were reconstructed from spectral PCD-CTPAs. Image quality of CTPAs and iodine maps was assessed independently by three radiologists. Additionally, CT attenuation numbers within pulmonary arteries as well as signal-to-noise and contrast-to-noise ratios (SNR, CNR) were compared. Administered radiation dose was compared. RESULTS: CT attenuation was higher in the PCD-group (all P < 0.05). CNR and SNR were higher in lobar pulmonary arteries in PCD-CTPAs (P < 0.05), whereas no difference was ascertained within the pulmonary trunk (P > 0.05). Image quality of PCD-CTPA was rated best by all readers (excellent/good image quality in 96.1% of PCD-CTPAs vs. 50.9% of EID-CTPAs). PCD-CT produced no non-diagnostic scans vs. three non-diagnostic (5.9%) EID-CTPAs. Radiation dose was lower with PCD-CT than with EID-CT (effective dose 1.33 ± 0.47 vs. 1.80 ± 0.82 mSv; all P < 0.05). CONCLUSION: Ultra-high-pitch CTPA with free-breathing technique with PCD-CT allows for superior image quality with significantly reduced radiation dose and full spectral information. With the ultra-high pitch, only PCD-CTPA enables reconstruction of iodine maps containing additional functional information.

2.
PeerJ Comput Sci ; 10: e2083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983190

RESUMO

Aiming to automatically monitor and improve stereoscopic image and video processing systems, stereoscopic image quality assessment approaches are becoming more and more important as 3D technology gains popularity. We propose a full-reference stereoscopic image quality assessment method that incorporate monocular and binocular features based on binocular competition and binocular integration. To start, we create a three-channel RGB fused view by fusing Gabor filter bank responses and disparity maps. Then, using the monocular view and the RGB fusion view, respectively, we extract monocular and binocular features. To alter the local features in the binocular features, we simultaneously estimate the saliency of the RGB fusion image. Finally, the monocular and binocular quality scores are calculated based on the monocular and binocular features, and the quality scores of the stereo image prediction are obtained by fusion. Performance testing in the LIVE 3D IQA database Phase I and Phase II. The results of the proposed method are compared with newer methods. The experimental results show good consistency and robustness.

3.
J Am Coll Radiol ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950833

RESUMO

PURPOSE/OBJECTIVE: To share the experience and results of the first cohort of the ACR Mammography Positioning Improvement Collaborative, in which participating sites aimed to increase the mean percentage of screening mammograms meeting the established positioning criteria to 85% or greater and show at least modest evidence of improvement at each site by the end of the improvement program. METHODS: The sites comprising the first cohort of the Collaborative were selected on the basis of strength of local leadership support, intra-organizational relationships, access to data and analytic support, and experience with quality improvement (QI) initiatives. During the improvement program, participating sites organized their teams, developed goals, gathered data, evaluated their current state, identified key drivers and root causes of their problems, and developed and tested interventions. A standardized image quality scoring system was also established. The impact of the interventions implemented at each site was assessed by tracking the percentage of screening mammograms meeting overall passing criteria over time. RESULTS: Six organizations were selected to participate as the first cohort, beginning with participation in the improvement program. Interventions developed and implemented at each site during the program resulted in improvement in the average percentage of screening mammograms meeting overall passing criteria per week from a collaborative mean of 51% to 86%, with four of six sites meeting or exceeding the target mean performance of 85% by the end of the improvement program. Afterwards, all respondents to the post-program survey indicated that the program was a positive experience. CONCLUSION: Using a structured improvement program within a learning network framework, the first cohort of the Collaborative demonstrated that improvement in mammography positioning performance can be achieved at multiple sites simultaneously, and validated the hypothesis that local sites' shared experiences, insights, and learnings would not only improve performance but would also build a community of improvers collaborating to create the best experience for technologists, staff, and patients.

4.
F1000Res ; 13: 691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962692

RESUMO

Background: Non-contrast Computed Tomography (NCCT) plays a pivotal role in assessing central nervous system disorders and is a crucial diagnostic method. Iterative reconstruction (IR) methods have enhanced image quality (IQ) but may result in a blotchy appearance and decreased resolution for subtle contrasts. The deep-learning image reconstruction (DLIR) algorithm, which integrates a convolutional neural network (CNN) into the reconstruction process, generates high-quality images with minimal noise. Hence, the objective of this study was to assess the IQ of the Precise Image (DLIR) and the IR technique (iDose 4) for the NCCT brain. Methods: This is a prospective study. Thirty patients who underwent NCCT brain were included. The images were reconstructed using DLIR-standard and iDose 4. Qualitative IQ analysis parameters, such as overall image quality (OQ), subjective image noise (SIN), and artifacts, were measured. Quantitative IQ analysis parameters such as Computed Tomography (CT) attenuation (HU), image noise (IN), posterior fossa index (PFI), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in the basal ganglia (BG) and centrum-semiovale (CSO) were measured. Paired t-tests were performed for qualitative and quantitative IQ analyses between the iDose 4 and DLIR-standard. Kappa statistics were used to assess inter-observer agreement for qualitative analysis. Results: Quantitative IQ analysis showed significant differences (p<0.05) in IN, SNR, and CNR between the iDose 4 and DLIR-standard at the BG and CSO levels. IN was reduced (41.8-47.6%), SNR (65-82%), and CNR (68-78.8%) were increased with DLIR-standard. PFI was reduced (27.08%) the DLIR-standard. Qualitative IQ analysis showed significant differences (p<0.05) in OQ, SIN, and artifacts between the DLIR standard and iDose 4. The DLIR standard showed higher qualitative IQ scores than the iDose 4. Conclusion: DLIR standard yielded superior quantitative and qualitative IQ compared to the IR technique (iDose4). The DLIR-standard significantly reduced the IN and artifacts compared to iDose 4 in the NCCT brain.


Assuntos
Encéfalo , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Projetos Piloto , Feminino , Tomografia Computadorizada por Raios X/métodos , Masculino , Estudos Prospectivos , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Adulto , Processamento de Imagem Assistida por Computador/métodos , Idoso , Razão Sinal-Ruído , Algoritmos
5.
Magn Reson Med ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997797

RESUMO

PURPOSE: Comprehensive assessment of image quality requires accounting for spatial variations in (i) intensity artifact, (ii) geometric distortion, (iii) signal-to-noise ratio (SNR), and (iv) spatial resolution, among other factors. This work presents an ensemble of methods to meet this need, from phantom design to image analysis, and applies it to the scenario of imaging near metal. METHODS: A modular phantom design employing a gyroid lattice is developed to enable the co-registered volumetric quantitation of image quality near a metallic hip implant. A method for measuring spatial resolution by means of local point spread function (PSF) estimation is presented and the relative fitness of gyroid and cubic lattices is examined. Intensity artifact, geometric distortion, and SNR maps are also computed. Results are demonstrated with 2D-FSE and MAVRIC-SL scan protocols on a 3T MRI scanner. RESULTS: The spatial resolution method demonstrates a worst-case error of 0.17 pixels for measuring in-plane blurring up to 3 pixels (full width at half maximum). The gyroid outperforms a cubic lattice design for the local PSF estimation task. The phantom supports four configurations toggling the presence/absence of both metal and structure with good spatial correspondence for co-registered analysis of the four quality factors. The marginal scan time to evaluate one scan protocol amounts to five repetitions. The phantom design can be fabricated in 2 days at negligible material cost. CONCLUSION: The phantom and associated analysis methods can elucidate complex image quality trade-offs involving intensity artifact, geometric distortion, SNR, and spatial resolution. The ensemble of methods is suitable for benchmarking imaging performance near metal.

6.
Abdom Radiol (NY) ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958754

RESUMO

OBJECTIVE: To assess impact of image quality on prostate cancer extraprostatic extension (EPE) detection on MRI using a deep learning-based AI algorithm. MATERIALS AND METHODS: This retrospective, single institution study included patients who were imaged with mpMRI and subsequently underwent radical prostatectomy from June 2007 to August 2022. One genitourinary radiologist prospectively evaluated each patient using the NCI EPE grading system. Each T2WI was classified as low- or high-quality by a previously developed AI algorithm. Fisher's exact tests were performed to compare EPE detection metrics between low- and high-quality images. Univariable and multivariable analyses were conducted to assess the predictive value of image quality for pathological EPE. RESULTS: A total of 773 consecutive patients (median age 61 [IQR 56-67] years) were evaluated. At radical prostatectomy, 23% (180/773) of patients had EPE at pathology, and 41% (131/318) of positive EPE calls on mpMRI were confirmed to have EPE. The AI algorithm classified 36% (280/773) of T2WIs as low-quality and 64% (493/773) as high-quality. For EPE grade ≥ 1, high-quality T2WI significantly improved specificity for EPE detection (72% [95% CI 67-76%] vs. 63% [95% CI 56-69%], P = 0.03), but did not significantly affect sensitivity (72% [95% CI 62-80%] vs. 75% [95% CI 63-85%]), positive predictive value (44% [95% CI 39-49%] vs. 38% [95% CI 32-43%]), or negative predictive value (89% [95% CI 86-92%] vs. 89% [95% CI 85-93%]). Sensitivity, specificity, PPV, and NPV for EPE grades ≥ 2 and ≥ 3 did not show significant differences attributable to imaging quality. For NCI EPE grade 1, high-quality images (OR 3.05, 95% CI 1.54-5.86; P < 0.001) demonstrated a stronger association with pathologic EPE than low-quality images (OR 1.76, 95% CI 0.63-4.24; P = 0.24). CONCLUSION: Our study successfully employed a deep learning-based AI algorithm to classify image quality of prostate MRI and demonstrated that better quality T2WI was associated with more accurate prediction of EPE at final pathology.

8.
Radiologie (Heidelb) ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020050

RESUMO

BACKGROUND: A recent innovation in computed tomography (CT) imaging has been the introduction of photon-counting detector CT (PCD-CT) systems, which are able to register the number and the energy level of incoming x­ray photons and have smaller detector elements compared with conventional CT scanners that operate with energy-integrating detectors (EID-CT). OBJECTIVES: The study aimed to evaluate the potential benefits of a novel, non-CE certified PCD-CT in detecting myeloma-associated osteolytic bone lesions (OL) compared with a state-of-the-art EID-CT. MATERIALS AND METHODS: Nine patients with multiple myeloma stage III (according to Durie and Salmon) underwent magnetic resonance imaging (MRI), EID-CT, and PCD-CT of the lower lumbar spine and pelvis. The PCD-CT and EID-CT images of all myeloma lesions that were visible in clinical MRI scans were reviewed by three radiologists for corresponding OL. Additionally, the visualization of destructions to cancellous or cortical bone, and trabecular structures, was compared between PCD-CT and EID-CT. RESULTS: Readers detected 21% more OL in PCD-CT than in EID-CT images (138 vs. 109; p < 0.0001). The sensitivity advantage of PCD-CT in lesion detection increased with decreasing lesion size. The visualization quality of cancellous and cortical destructions as well as of trabecular structures was rated higher by all three readers in PCD-CT images (mean image quality improvements for PCD-CT over EID-CT were +0.45 for cancellous and +0.13 for cortical destructions). CONCLUSIONS: For myeloma-associated OL, PCD-CT demonstrated significantly higher sensitivity, especially with small size. Visualization of bone tissue and lesions was considered significantly better in PCD-CT than in EID-CT. This implies that PCD-CT scanners could potentially be used in the early detection of myeloma-associated bone lesions.

9.
J Radiol Prot ; 44(3)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38950524

RESUMO

The aim of this study was to investigate the performance of eight digital radiography systems and to optimise the dose-image quality relationship for digital pelvis radiography. The study involved eight digital radiography systems used for general examinations at Vilnius University Hospital Santaros Klinikos. An anthropomorphic pelvic phantom (CIRS, US) was used to simulate a patient undergoing clinical pelvis radiography. Dose quantities entrance surface dose, dose area product (DAP) and exposure parameters (kVp, mA, mAs) were measured and the effects on the images were evaluated, considering physical contrast to noise ratio (CNR) and observer-based evaluations as image quality metrics. Increasing the tube voltage by 5 kVp from standard protocol led to a reduction in radiation dose (DAP) by 12%-20% with a slight impact on image quality (CNR decreases by 2%-10%). There was an inter-observer variability in image rating across different equipment (kappa value between 0 and 0.3); however, both observers agreed that increasing kVp up to 85-90 kV had no effect on perceived image quality. The results indicate that optimisation strategies should be tailored specifically for each x-ray system since significant performance differences and wide variations in radiation dose exist across various digital radiography systems used in clinical settings. The use of high kVp can be used for dose optimisation in digital pelvis radiography without compromising image diagnostic accuracy.


Assuntos
Pelve , Imagens de Fantasmas , Doses de Radiação , Intensificação de Imagem Radiográfica , Pelve/diagnóstico por imagem , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Int J Neural Syst ; : 2450054, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984421

RESUMO

The quality of medical images is crucial for accurately diagnosing and treating various diseases. However, current automated methods for assessing image quality are based on neural networks, which often focus solely on pixel distortion and overlook the significance of complex structures within the images. This study introduces a novel neural network model designed explicitly for automated image quality assessment that addresses pixel and semantic distortion. The model introduces an adaptive ranking mechanism enhanced with contrast sensitivity weighting to refine the detection of minor variances in similar images for pixel distortion assessment. More significantly, the model integrates a structure-aware learning module employing graph neural networks. This module is adept at deciphering the intricate relationships between an image's semantic structure and quality. When evaluated on two ultrasound imaging datasets, the proposed method outshines existing leading models in performance. Additionally, it boasts seamless integration into clinical workflows, enabling real-time image quality assessment, crucial for precise disease diagnosis and treatment.

11.
F1000Res ; 13: 683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962690

RESUMO

Background: Recent innovations are making radiology more advanced for patient and patient services. Under the immense burden of radiology practice, Artificial Intelligence (AI) assists in obtaining Computed Tomography (CT) images with less scan time, proper patient placement, low radiation dose (RD), and improved image quality (IQ). Hence, the aim of this study was to evaluate and compare the positioning accuracy, RD, and IQ of AI-based automatic and manual positioning techniques for CT kidney ureters and bladder (CT KUB). Methods: This prospective study included 143 patients in each group who were referred for computed tomography (CT) KUB examination. Group 1 patients underwent manual positioning (MP), and group 2 patients underwent AI-based automatic positioning (AP) for CT KUB examination. The scanning protocol was kept constant for both the groups. The off-center distance, RD, and quantitative and qualitative IQ of each group were evaluated and compared. Results: The AP group (9.66±6.361 mm) had significantly less patient off-center distance than the MP group (15.12±9.55 mm). There was a significant reduction in RD in the AP group compared with that in the MP group. The quantitative image noise (IN) was lower, with a higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the AP group than in the MP group (p<0.05). Qualitative IQ parameters such as IN, sharpness, and overall IQ also showed significant differences (p< 0.05), with higher scores in the AP group than in the MP group. Conclusions: The AI-based AP showed higher positioning accuracy with less off-center distance (44%), which resulted in 12% reduction in RD and improved IQ for CT KUB imaging compared with MP.

12.
J Xray Sci Technol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38995762

RESUMO

BACKGROUND: Due to the incomplete projection data collected by limited-angle computed tomography (CT), severe artifacts are present in the reconstructed image. Classical regularization methods such as total variation (TV) minimization, ℓ0 minimization, are unable to suppress artifacts at the edges perfectly. Most existing regularization methods are single-objective optimization approaches, stemming from scalarization methods for multiobjective optimization problems (MOP). OBJECTIVE: To further suppress the artifacts and effectively preserve the edge structures of the reconstructed image. METHOD: This study presents a multiobjective optimization model incorporates both data fidelity term and ℓ0-norm of the image gradient as objective functions. It employs an iterative approach different from traditional scalarization methods, using the maximization of structural similarity (SSIM) values to guide optimization rather than minimizing the objective function.The iterative method involves two steps, firstly, simultaneous algebraic reconstruction technique (SART) optimizes the data fidelity term using SSIM and the Simulated Annealing (SA) algorithm for guidance. The degradation solution is accepted in the form of probability, and guided image filtering (GIF) is introduced to further preserve the image edge when the degradation solution is rejected. Secondly, the result from the first step is integrated into the second objective function as a constraint, we use ℓ0 minimization to optimize ℓ0-norm of the image gradient, and the SSIM, SA algorithm and GIF are introduced to guide optimization process by improving SSIM value like the first step. RESULTS: With visual inspection, the peak signal-to-noise ratio (PSNR), root mean square error (RMSE), and SSIM values indicate that our approach outperforms other traditional methods. CONCLUSIONS: The experiments demonstrate the effectiveness of our method and its superiority over other classical methods in artifact suppression and edge detail restoration.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38993651

RESUMO

In this study, we investigate the performance of advanced 2D acquisition geometries - Pentagon and T-shaped - in digital breast tomosynthesis (DBT) and compare them against the conventional 1D geometry. Unlike the conventional approach, our proposed 2D geometries also incorporate anterior projections away from the chest wall. Implemented on the Next-Generation Tomosynthesis (NGT) prototype developed by X-ray Physics Lab (XPL), UPenn, we utilized various phantoms to compare three geometries: a Defrise slab phantom with alternating plastic slabs to study low-frequency modulation; a Checkerboard breast phantom (a 2D adaptation of the Defrise phantom design) to study the ability to reconstruct the fine features of the checkerboard squares; and the 360° Star-pattern phantom to assess aliasing and compute the Fourier-spectral distortion (FSD) metric that assesses spectral leakage and the contrast transfer function. We find that both Pentagon and T-shaped scans provide greater modulation amplitude of the Defrise phantom slabs and better resolve the squares of the Checkerboard phantom against the conventional scan. Notably, the Pentagon geometry exhibited a significant reduction in aliasing of spatial frequencies oriented in the right-left (RL) medio-lateral direction, which was corroborated by a near complete elimination of spectral leakage in the FSD plot. Conversely T-shaped scan redistributes the aliasing between both posteroanterior (PA) and RL directions thus maintaining non-inferiority against the conventional scan which is predominantly affected by PA aliasing. The results of this study underscore the potential of incorporating advanced 2D geometries in DBT systems, offering marked improvements in imaging performance over the conventional 1D approach.

14.
Diagnostics (Basel) ; 14(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001323

RESUMO

Speckle noise in ultrasound images (UIs) significantly reduces the accuracy of disease diagnosis. The aim of this study was to quantitatively evaluate its feasibility in salivary gland ultrasound imaging by modeling the adaptive non-local means (NLM) algorithm. UIs were obtained using an open-source device provided by SonoSkills and FUJIFILM Healthcare Europe. The adaptive NLM algorithm automates optimization by modeling the isotropic search window, eliminating the need for manual configuration in conventional NLM methods. The coefficient of variation (COV), contrast-to-noise ratio (CNR), and edge rise distance (ERD) were used as quantitative evaluation parameters. UIs of the salivary glands revealed evident visualization of the internal echo shape of the malignant tumor and calcification line using the adaptive NLM algorithm. Improved COV and CNR results (approximately 4.62 and 2.15 times, respectively) compared with noisy images were achieved. Additionally, when the adaptive NLM algorithm was applied to the UIs of patients with salivary gland sialolithiasis, the noisy images and ERD values were calculated almost similarly. In conclusion, this study demonstrated the applicability of the adaptive NLM algorithm in optimizing search window parameters for salivary gland UIs.

15.
Eur Spine J ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007984

RESUMO

OBJECTIVES: To investigate potential of enhancing image quality, maintaining interobserver consensus, and elevating disease diagnostic efficacy through the implementation of deep learning-based reconstruction (DLR) processing in 3.0 T cervical spine fast magnetic resonance imaging (MRI) images, compared with conventional images. METHODS: The 3.0 T cervical spine MRI images of 71 volunteers were categorized into two groups: sagittal T2-weighted short T1 inversion recovery without DLR (Sag T2w-STIR) and with DLR (Sag T2w-STIR-DLR). The assessment covered artifacts, perceptual signal-to-noise ratio, clearness of tissue interfaces, fat suppression, overall image quality, and the delineation of spinal cord, vertebrae, discs, dopamine, and joints. Spanning canal stenosis, neural foraminal stenosis, herniated discs, annular fissures, hypertrophy of the ligamentum flavum or vertebral facet joints, and intervertebral disc degeneration were evaluated by three impartial readers. RESULTS: Sag T2w-STIR-DLR images exhibited markedly superior performance across quality indicators (median = 4 or 5) compared to Sag T2w-STIR sequences (median = 3 or 4) (p < 0.001). No statistically significant differences were observed between the two sequences in terms of diagnosis and grading (p > 0.05). The interobserver agreement for Sag T2w-STIR-DLR images (0.604-0.931) was higher than the other (0.545-0.853), Sag T2w-STIR-DLR (0.747-1.000) demonstrated increased concordance between reader 1 and reader 3 in comparison to Sag T2w-STIR (0.508-1.000). Acquisition time diminished from 364 to 197 s through the DLR scheme. CONCLUSIONS: Our investigation establishes that 3.0 T fast MRI images subjected to DLR processing present heightened image quality, bolstered diagnostic performance, and reduced scanning durations for cervical spine MRI compared with conventional sequences.

16.
Pediatr Radiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017676

RESUMO

BACKGROUND: Ventricular volumetry using a short-axis stack of two-dimensional (D) cine balanced steady-state free precession (bSSFP) sequences is crucial in any cardiac magnetic resonance imaging (MRI) examination. This task becomes particularly challenging in children due to multiple breath-holds. OBJECTIVE: To assess the diagnostic performance of accelerated 3-RR cine MRI sequences using deep learning reconstruction compared with standard 2-D cine bSSFP sequences. MATERIAL AND METHODS: Twenty-nine consecutive patients (mean age 11 ± 5, median 12, range 1-17 years) undergoing cardiac MRI were scanned with a conventional segmented 2-D cine and a deep learning accelerated cine (three heartbeats) acquisition on a 1.5-tesla scanner. Short-axis volumetrics were performed (semi-)automatically in both datasets retrospectively by two experienced readers who visually assessed image quality employing a 4-point grading scale. Scan times and image quality were compared using the Wilcoxon rank-sum test. Volumetrics were assessed with linear regression and Bland-Altman analyses, and measurement agreement with intraclass correlation coefficient (ICC). RESULTS: Mean acquisition time was significantly reduced with the 3-RR deep learning cine compared to the standard cine sequence (45.5 ± 13.8 s vs. 218.3 ± 44.8 s; P < 0.001). No significant differences in biventricular volumetrics were found. Left ventricular (LV) mass was increased in the deep learning cine compared with the standard cine sequence (71.4 ± 33.1 g vs. 69.9 ± 32.5 g; P < 0.05). All volumetric measurements had an excellent agreement with ICC > 0.9 except for ejection fraction (EF) (LVEF 0.81, RVEF 0.73). The image quality of deep learning cine images was decreased for end-diastolic and end-systolic contours, papillary muscles, and valve depiction (2.9 ± 0.5 vs. 3.5 ± 0.4; P < 0.05). CONCLUSION: Deep learning cine volumetrics did not differ significantly from standard cine results except for LV mass, which was slightly overestimated with deep learning cine. Deep learning cine sequences result in a significant reduction in scan time with only slightly lower image quality.

17.
J Med Radiat Sci ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845126

RESUMO

INTRODUCTION: Reject analysis in digital radiography helps guide the training of staff to reduce patient radiation dose and improve department efficiency. The purpose of this study was to perform a multi-centre, vendor agnostic reject analysis across different room usage types, and to provide benchmarks for comparison. METHODS: Retrospective reject and exposure log data were collected via USB from fixed general X-ray systems across multiple Australian sites, for collation and analysis. The overall reject rate, local reject reference level, absolute and relative reject rates for body part categories, reject rates by room usage types and the reject rate for each reason of rejection were calculated. RESULTS: Data were collected from 44 X-ray systems, across 11 hospitals. A total of 2,031,713 acquired images and 172,495 rejected images were included. The median reject rate was 9.1%. The local reject reference level (LRRL), set as the 75th percentile of all reject rates, was 10.6%. Median reject rates by room type were emergency (7.4%), inpatients + outpatients (9.6%), outpatients (9.2%), and hybrid (10.1%). The highest absolute reject rates by body part were chest (2.1%) and knee (1.4%). The highest relative rates by body part were knee (18.1%) and pelvis (17.2%). The most frequent reasons for image rejection were patient positioning (76%) and patient motion (7.5%). CONCLUSIONS: The results compare well with previously published data. The range of reject rates highlights the need to analyse typical reject rates in different ways. With analysis feedback to participating sites and the implementation of standardised reject reasons, future analysis should monitor whether reject rates reduce.

18.
J Magn Reson Imaging ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896049

RESUMO

BACKGROUND: Reduced field of view (rFOV) diffusion-weighted imaging (DWI) in MRI shows potential for enhanced image quality compared with traditional full field of view (fFOV) DWI. Evaluating rFOV DWI's impact on image quality is important for clinical adoption. OBJECTIVE: To assess the efficacy of rFOV DWI in improving image quality, focusing on artifact reduction, signal-to-noise ratio (SNR) improvement, and lesion detectability. STUDY TYPE: Meta-analysis. POPULATION: Systematic literature search was conducted in PubMed, Embase, the Cochrane Library, and Web of Science ending in January 2024. Thirteen studies with 765 participants focusing on DWI quality using rFOV was analyzed. FIELD STRENGTH/SEQUENCE: SS-EPI, Rtr-SS-EPI, 2D-SS-EPI at 3.0 T. ASSESSMENT: Two investigators performed the data extraction. QUADAS-2 assessed bias. The image quality assessment of rFOV and fFOV DWI were compared. STATISTICAL TESTS: Standardized mean difference (SMD) was utilized to evaluate and standardize MRI image quality. Heterogeneity was assessed using the I2 statistic and publication bias was evaluated with Egger's test. RESULTS: The QUADAS-2 analysis revealed that most studies exhibited a low risk of bias and minimal concerns regarding applicability. Statistical analysis indicated that rFOV DWI yielded higher subjective image quality scores (SMD = 0.535, 95% CI: 0.339, 0.731, I2 = 45.7%) compared with fFOV DWI and was more effective in reducing artifacts (SMD = 0.44, 95% CI: 0.209, 0.672, I2 = 42.3%) than fFOV DWI. However, a decrease in SNR was noted with rFOV DWI (SMD = -0.670, 95% CI: -1.187 to -0.152, I2 = 87.9%). Additionally, rFOV DWI demonstrated enhancements in lesion visibility (SMD = 0.432, 95% CI: -1.187, -0.152, I2 = 53.1%) and anatomical details (SMD = 0.598, 95% CI: 0.121, 1.075, I2 = 90.8%). DATA CONCLUSION: rFOV DWI enhances MRI image quality by reducing artifacts and improving lesion visibility with a SNR trade-off. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.

20.
Int J Retina Vitreous ; 10(1): 43, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877585

RESUMO

BACKGROUND: Diabetic retinopathy (DR) stands as the foremost cause of preventable blindness in adults. Despite efforts to expand DR screening coverage in the Brazilian public healthcare system, challenges persist due to various factors including social, medical, and financial constraints. Our objective was to evaluate the quality of images obtained with the AirDoc, a novel device, compared to Eyer portable camera which has already been clinically validated. METHODS: Images were captured by two portable retinal devices: AirDoc and Eyer. The included patients had their fundus images obtained in a screening program conducted in Blumenau, Santa Catarina. Two retina specialists independently assessed image's quality. A comparison was performed between both devices regarding image quality and the presence of artifacts. RESULTS: The analysis included 129 patients (mean age of 61 years), with 29 (43.28%) male and an average disease duration of 11.1 ± 8 years. In Ardoc, 21 (16.28%) images were classified as poor quality, with 88 (68%) presenting artifacts; in Eyer, 4 (3.1%) images were classified as poor quality, with 94 (72.87%) presenting artifacts. CONCLUSIONS: Although both Eyer and AirDoc devices show potential as screening tools, the AirDoc images displayed higher rates of ungradable and low-quality images, that may directly affect the DR and DME grading. We must acknowledge the limitations of our study, including the relatively small sample size. Therefore, the interpretations of our analyses should be approached with caution, and further investigations with larger patient cohorts are warranted to validate our findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA