Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Small Sci ; 4(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39185268

RESUMO

Surface Enhanced Resonance Raman (SERS) is a powerful optical technique, which can help enhance the sensitivity of Raman spectroscopy aided by noble metal nanoparticles (NPs). However, current SERS-NPs are often suboptimal, which can aggregate under physiological conditions with much reduced SERS enhancement. Herein, a robust one-pot method has been developed to synthesize SERS-NPs with more uniform core diameters of 50 nm, which is applicable to both non-resonant and resonant Raman dyes. The resulting SERS-NPs are colloidally stable and bright, enabling NP detection with low-femtomolar sensitivity. An algorithm has been established, which can accurately unmix multiple types of SERS-NPs enabling potential multiplex detection. Furthermore, a new liposome-based approach has been developed to install a targeting carbohydrate ligand, i.e., hyaluronan, onto the SERS-NPs bestowing significantly enhanced binding affinity to its biological receptor CD44 overexpressed on tumor cell surface. The liposomal HA-SERS-NPs enabled visualization of spontaneously developed breast cancer in mice in real time guiding complete surgical removal of the tumor, highlighting the translational potential of these new glyco-SERS-NPs.

2.
ACS Appl Mater Interfaces ; 16(25): 32045-32057, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861701

RESUMO

Pioneering approaches for precise tumor removal involve fluorescence-guided surgery, while challenges persist, including the low fluorescence contrast observed at tumor boundaries and the potential for excessive damage to normal tissue at the edges. Lead/cadmium sulfide quantum dots (PbS@CdS QDs), boasting high quantum yields (QYs) and vivid fluorescence, have facilitated advancements in the second near-infrared window (NIR-II, 900-1700 nm). However, during fluorescent surgical navigation operations, hydrophilic coatings of these inorganic nanoparticles (NPs) guarantee biosafety; it also comes at the expense of losing a significant portion of QY and NIR-II fluorescence, causing heightened damage to normal tissues caused by cutting edges. Herein, we present hydrophilic core-shell PbS@CdS@PEG NPs with an exceptionally small diameter (∼8 nm) and a brilliant NIR-IIb (1500-1700 nm) emission at approximately 1600 nm. The mPEG-SH (MW: 2000) addresses the hydrophobicity and enhances the biosafety of PbS@CdS QDs. In vivo fluorescence-guided cervical tumor resection becomes achievable immediately upon injection of an aqueous solution of PbS@CdS@PEG NPs. Notably, this approach results in a significantly reduced thickness (100-500 µm) of damage to normal tissues at the margins of the resected tumors. With a high QY (∼30.2%) and robust resistance to photobleaching, NIR-IIb imaging is sustained throughout the imaging process.


Assuntos
Pontos Quânticos , Sulfetos , Pontos Quânticos/química , Animais , Humanos , Camundongos , Sulfetos/química , Feminino , Chumbo/química , Compostos de Cádmio/química , Cirurgia Assistida por Computador/métodos , Imagem Óptica , Fluorescência , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/cirurgia , Neoplasias do Colo do Útero/patologia , Camundongos Endogâmicos BALB C , Células HeLa
3.
Angew Chem Int Ed Engl ; 63(29): e202404142, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38715431

RESUMO

Fluorescent imaging and biosensing in the near-infrared-II (NIR-II) window holds great promise for non-invasive, radiation-free, and rapid-response clinical diagnosis. However, it's still challenging to develop bright NIR-II fluorophores. In this study, we report a new strategy to enhance the brightness of NIR-II aggregation-induced emission (AIE) fluorophores through intramolecular electrostatic locking. By introducing sulfur atoms into the side chains of the thiophene bridge in TSEH molecule, the molecular motion of the conjugated backbone can be locked through intramolecular interactions between the sulfur and nitrogen atoms. This leads to enhanced NIR-II fluorescent emission of TSEH in both solution and aggregation states. Notably, the encapsulated nanoparticles (NPs) of TSEH show enhanced brightness, which is 2.6-fold higher than TEH NPs with alkyl side chains. The in vivo experiments reveal the feasibility of TSEH NPs in vascular and tumor imaging with a high signal-to-background ratio and precise resection for tiny tumors. In addition, polystyrene nanospheres encapsulated with TSEH are utilized for antigen detection in lateral flow assays, showing a signal-to-noise ratio 1.9-fold higher than the TEH counterpart in detecting low-concentration antigens. This work highlights the potential for developing bright NIR-II fluorophores through intramolecular electrostatic locking and their potential applications in clinical diagnosis and biomedical research.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Imagem Óptica , Eletricidade Estática , Corantes Fluorescentes/química , Humanos , Nanopartículas/química , Tiofenos/química , Animais , Camundongos , Estrutura Molecular
4.
Eur Urol Oncol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729805

RESUMO

BACKGROUND: In a subset of patients with oligorecurrent prostate cancer (PCa), salvage surgery with prostate-specific membrane antigen (PSMA) radioguided surgery (PSMA-RGS) seems to be of value. OBJECTIVE: To evaluate whether a lower level of postoperative prostate-specific antigen (PSA; <0.1 ng/ml) is predictive of therapy-free survival (TFS) following salvage PSMA-RGS. DESIGN, SETTING, AND PARTICIPANTS: This cohort study evaluated patients with biochemical recurrence after radical prostatectomy and oligorecurrent PCa on PSMA positron emission tomography treated with PSMA-RGS in three tertiary care centers (2014-2022). INTERVENTION: PSMA-RGS. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Postsalvage surgery PSA response was categorized as <0.1, 0.1-<0.2, or >0.2 ng/ml. Kaplan-Meier and multivariable Cox regression models evaluated TFS according to PSA response. RESULTS AND LIMITATIONS: Among 553 patients assessed, 522 (94%) had metastatic soft tissue lesions removed during PSMA-RGS. At 2-16 wk after PSMA-RGS, 192, 62, and 190 patients achieved PSA levels of <0.1, 0.1-<0.2, and >0.2 ng/ml, respectively. At 2 yr of follow-up, TFS rate was 81.1% versus 56.1% versus 43.1% (p < 0.001) for patients with PSA <0.1 versus 0.1-<0.2 versus >0.2 ng/ml. In multivariable analyses, PSA levels of 0.1-0.2 ng/ml (hazard ratio [HR]: 1.9, confidence interval [CI]: 1.1-3.1) and ≥0.2 ng/ml (HR: 3.2, CI: 2.2-4.6, p < 0.001) independently predicted the need for additional therapy after PSMA-RGS. The main limitation is the lack of a control group. CONCLUSIONS: For patients after salvage PSMA-RGS, a lower biochemical response (PSA <0.1 ng/ml) seems to predict longer TFS. This insight may help in counseling patients postoperatively as well as guiding the timely selection of additional therapy. PATIENT SUMMARY: We studied what happened to prostate cancer patients in three European centers who had salvage surgery using a special method called prostate-specific membrane antigen-targeted radioguidance. We found that patients who had low prostate-specific antigen levels soon after surgery were less likely to need further treatment for a longer time.

5.
Eur J Nucl Med Mol Imaging ; 51(10): 2941-2952, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38581443

RESUMO

PURPOSE: The accuracy of surgery for patients with solid tumors can be greatly improved through fluorescence-guided surgery (FGS). However, existing FGS technologies have limitations due to their low penetration depth and sensitivity/selectivity, which are particularly prevalent in the relatively short imaging window (< 900 nm). A solution to these issues is near-infrared-II (NIR-II) FGS, which benefits from low autofluorescence and scattering under the long imaging window (> 900 nm). However, the inherent self-assembly of organic dyes has led to high accumulation in main organs, resulting in significant background signals and potential long-term toxicity. METHODS: We rationalize the donor structure of donor-acceptor-donor-based dyes to control the self-assembly process to form an ultra-small dye nanocluster, thus facilitating renal excretion and minimizing background signals. RESULTS: Our dye nanocluster can not only show clear vessel imaging, tumor and tumor sentinel lymph nodes definition, but also achieve high-performance NIR-II imaging-guided surgery of tumor-positive sentinel lymph nodes. CONCLUSION: In summary, our study demonstrates that the dye nanocluster-based NIR-II FGS has substantially improved outcomes for radical lymphadenectomy.


Assuntos
Cirurgia Assistida por Computador , Cirurgia Assistida por Computador/métodos , Animais , Camundongos , Imagem Óptica/métodos , Raios Infravermelhos , Humanos , Corantes Fluorescentes/química , Feminino , Linhagem Celular Tumoral , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Nanopartículas/química , Corantes
6.
ACS Sens ; 9(3): 1339-1348, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38382082

RESUMO

Accurately determining the metastatic status of sentinel lymph nodes (SLNs) through noninvasive imaging with high imaging resolution and sensitivity is crucial for cancer therapy. Herein, we report a dual-tracer-based NIR-II ratiometric fluorescence nanoplatform combining targeted and nontargeted moieties to determine the metastatic status of SLNs through the recording of ratio signals. Ratiometric fluorescence imaging revealed approximately 2-fold increases in signals in tumor-draining SLNs compared to inflamed and normal SLNs. Additionally, inflamed SLNs were diagnosed by combining the ratio value with the enlarged size outputted by NIR-II fluorescence imaging. The metastatic status diagnostic results obtained through NIR-II ratiometric fluorescence signals were further confirmed by standard H&E staining, indicating that the ratiometric fluorescence strategy could achieve distant metastases detection. Furthermore, the superior imaging quality of ratiometric probes enables visualization of the detailed change in the lymphatic network accompanying tumor growth. Compared to clinically available and state-of-the-art NIR contrast agents, our dual-tracer-based NIR-II ratiometric fluorescence probes provide significantly improved performance, allowing for the quick assessment of lymphatic function and guiding the removal of tumor-infiltrating SLNs during cancer surgery.


Assuntos
Linfonodo Sentinela , Humanos , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Linfonodo Sentinela/cirurgia , Corantes Fluorescentes , Metástase Linfática/patologia , Verde de Indocianina , Imagem Óptica
7.
Proc Natl Acad Sci U S A ; 121(5): e2318265121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261618

RESUMO

Surgical resections of solid tumors guided by visual inspection of tumor margins have been performed for over a century to treat cancer. Near-infrared (NIR) fluorescence labeling/imaging of tumor in the NIR-I (800 to 900 nm) range with systemically administrated fluorophore/tumor-targeting antibody conjugates have been introduced to improve tumor margin delineation, tumor removal accuracy, and patient survival. Here, we show Au25 molecular clusters functionalized with phosphorylcholine ligands (AuPC, ~2 nm in size) as a preclinical intratumorally injectable agent for NIR-II/SWIR (1,000 to 3,000 nm) fluorescence imaging-guided tumor resection. The AuPC clusters were found to be uniformly distributed in the 4T1 murine breast cancer tumor upon intratumor (i.t.) injection. The phosphocholine coating afforded highly stealth clusters, allowing a high percentage of AuPC to fill the tumor interstitial fluid space homogeneously. Intra-operative surgical navigation guided by imaging of the NIR-II fluorescence of AuPC allowed for complete and non-excessive tumor resection. The AuPC in tumors were also employed as a photothermal therapy (PTT) agent to uniformly heat up and eradicate tumors. Further, we performed in vivo NIR-IIb (1,500 to 1,700 nm) molecular imaging of the treated tumor using a quantum dot-Annexin V (QD-P3-Anx V) conjugate, revealing cancer cell apoptosis following PTT. The therapeutic functionalities of AuPC clusters combined with rapid renal excretion, high biocompatibility, and safety make them promising for clinical translation.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Animais , Camundongos , Feminino , Imagem Óptica , Anexina A5 , Apoptose , Ouro
8.
ACS Appl Mater Interfaces ; 15(27): 32226-32239, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37385963

RESUMO

The high mortality rate of ovarian cancer can be primarily attributed to late diagnosis and early lymph node (LN) metastasis. The anatomically deep-located ovaries own intricate anatomical structures and lymphatic drainages that compromise the resolution and sensitivity of near-infrared first-window (NIR-I) fluorescence imaging. Reported NIR-II imaging studies of ovarian cancer focused on late-stage metastasis detection via the intraperitoneal xenograft model. However, given the significant improvement in patient survival associated with early-stage cancer detection, locating tumors that are restricted within the ovary is equally crucial. We obtained the polymer nanoparticles with bright near-infrared-II fluorescence (NIR-II NPs) by nanoprecipitation of DSPE-PEG, one of the ingredients of FDA-approved nanoparticle products, and benzobisthiadiazole, an organic NIR-II dye. The one-step synthesis and safe component lay the groundwork for its clinical translation. Benefiting from the NIR-II emission (∼1060 nm), NIR-II NPs enabled a high signal-to-noise (S/N) ratio (13.4) visualization of early-stage orthotopic ovarian tumors with NIR-II fluorescence imaging for the first time. Imaging with orthotopic xenograft allows a more accurate mimic of human ovarian cancer origin, thereby addressing the dilemma of translating existing nanoprobe preclinical research by providing the nano-bio interactions with early local tumor environments. After PEGylation, the desirable-sized probe (∼80 nm) exhibited high lymphophilicity and relatively extended circulation. NIR-II NPs maintained their accurate detection of orthotopic tumors, tumor-regional LNs, and minuscule (<1 mm) disseminated peritoneal metastases simultaneously (with S/N ratios all above 5) in mice with advanced-stage cancer in real time ∼36 h after systematic delivery. With NIR-II fluorescence guidance, we achieved accurate surgical staging in tumor-bearing mice and complete tumor removal comparable to clinical practice, which provides preclinical data for translating NIR-II fluorescence image-guided surgery.


Assuntos
Neoplasias Ovarianas , Cirurgia Assistida por Computador , Humanos , Animais , Camundongos , Feminino , Linfonodos/diagnóstico por imagem , Metástase Linfática , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Imagem Óptica/métodos , Cirurgia Assistida por Computador/métodos , Corantes Fluorescentes/química
9.
ACS Nano ; 17(12): 11345-11361, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37272787

RESUMO

Breast-conserving surgery (BCS) is the standard of care for early breast cancer patients, while the high ratio of reoperation is still a challenge due to inaccurate margin assessments. In patients with locally advanced or advanced breast cancer, radiotherapy is an important treatment for local control or improvement of quality of life. However, enhancing sensitization to radiotherapy is an unmet medical need. To solve the above clinical predicaments, a glutathione (GSH) exhausting virus-like silicon dioxide nanoprobe with Gd coating and folic acid (FA) modification is designed. After loading ICG in the mesopores, the VGd@ICG-FA probe efficiently targets tumor cells with high resolution, due to its virus-like morphology and folate acid anchoring. Especially, the fabricated nanoprobe enables the identification of tiny cancers and navigates precise surgery under NIR-II fluorescence imaging. Moreover, after the nanoprobes enter into the cytoplasm of cancer cells, tetrasulfide linkages in the silica framework are broken under the triggering of high GSH concentrations. In turn, the broken framework exhausts GSH to disrupt intracellular reactive oxygen species (ROS) homeostasis, and Gd produces more ROS under radiotherapy, further activating ferroptosis, and resulting in the enhancement of radiotherapy in breast cancer. Therefore, our nanoprobe exhibits tremendous potential as a NIR-II fluorescence imaging agent with no systematic side effects for precise cancer surgery and nanotherapeutics for boosting radiation sensitivity in future clinical translation of breast cancer.


Assuntos
Neoplasias da Mama , Ferroptose , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Espécies Reativas de Oxigênio , Qualidade de Vida , Dióxido de Silício , Imagem Óptica , Glutationa
10.
Mol Imaging Biol ; 25(1): 240-264, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745354

RESUMO

The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo. The focus of this paper is preclinical animal studies with small-molecule optical probes. Near-infrared fluorescence imaging, bioluminescence imaging, chemiluminescence imaging, image-guided surgery, and Cerenkov luminescence imaging are discussed in this white paper.


Assuntos
Imagem Molecular , Imagem Óptica , Animais , Imagem Óptica/métodos , Corantes Fluorescentes
11.
Mater Today Bio ; 17: 100441, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36388462

RESUMO

Thyroid cancer, as one of the most common endocrine cancers, has seen a surge in incidence in recent years. This is most likely due to the lack of specificity and accuracy of its traditional diagnostic modalities, leading to the overdiagnosis of thyroid nodules. Although there are several treatment options available, they are limited to surgery and 131I radiation therapy that come with significant side effects and hence cannot meet the treatment needs of anaplastic thyroid carcinoma with very high malignancy. Optical imaging that utilizes optical absorption, refraction and scattering properties, not only observes the structure and function of cells, tissues, organs, or even the whole organism to assist in diagnosis, but can also be used to perform optical therapy to achieve targeted non-invasive and precise treatment of thyroid cancer. These applications of screening, diagnosis, and treatment, lend to optical imaging's promising potential within the realm of thyroid cancer surgical navigation. Over the past decade, research on optical imaging in the diagnosis and treatment of thyroid cancer has been growing year by year, but no comprehensive review on this topic has been published. Here, we review key advances in the application of optical imaging in the diagnosis and treatment of thyroid cancer and discuss the challenges and potential for clinical translation of this technology.

12.
Theranostics ; 12(16): 7191-7202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276643

RESUMO

Sentinel lymph node (SLN) biopsy is the key diagnostic procedure to determine tumor metastasis and treatment plan. Current SLN biopsy has considerable drawbacks in that SLNs (both malignant and normal) must be removed by navigation surgery, followed by a time-consuming pathological examination. The selective, non-invasive, and real-time diagnosis of metastatic status in SLNs is becoming essential. Methods: Here, we design two lanthanide-doped nanoparticles as a pair of NIR-II ratiometric fluorescence probes, one of which is conjugated with tumor-targeting moiety, while the other is conjugated with PEG as an internal reference. The NIR-II ratiometric fluorescence signal (I1060 nm/I1525 nm) from two well-separated channels were used to identify the tumor-draining SLNs. The precise navigation surgery of metastatic SLNs was performed and we further evaluated their surgery outcomes. Results: The NIR-II ratiometric fluorescence facilitates an ideal fluorescence-guided surgery with only resection of tumor-positive SLNs, thereby avoiding unnecessary removal of the normal SLNs. In addition, our system has a time-saving operation procedure and can be performed under the operation light without altering the appearance of surgical settings. Conclusion: The present study enables non-invasive and real-time detection metastatic status in SLNs with high sensitivity and selectivity. Our investigations will provide a new direction for SLN biopsy and substantially improve cancer surgery outcomes.


Assuntos
Elementos da Série dos Lantanídeos , Linfonodo Sentinela , Humanos , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/cirurgia , Linfonodo Sentinela/patologia , Metástase Linfática/diagnóstico , Metástase Linfática/patologia , Verde de Indocianina , Biópsia de Linfonodo Sentinela/métodos , Linfonodos/patologia
13.
Biosensors (Basel) ; 12(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36140113

RESUMO

Detecting residual nasopharyngeal carcinoma (rNPC) can be difficult because of the coexistence of occult tumours and post-chemoradiation changes, which poses a challenge for both radiologists and surgeons using current imaging methods. Currently, molecular imaging that precisely targets and visualises particular biomarkers in tumours may exceed the specificity and sensitivity of traditional imaging techniques, providing the potential to distinguish tumours from non-neoplastic lesions. Here, we synthesised a HER2/SR-BI-targeted tracer to efficiently position NPC and guide surgery in living mice. This bispecific tracer contained the following two parts: IRDye 800 CW, as an imaging reagent for both optical and optoacoustic imaging, and a fusion peptide (FY-35), as the targeting reagent. Both in vitro and in vivo tests demonstrated that the tracer had higher accumulation and longer retention (up to 48 h) in tumours than a single-targeted probe, and realised sensitive detection of tumours with a minimum size of 3.9 mm. By visualising the vascular network via a customised handheld optoacoustic scan, our intraoperative fluorescence molecular imaging system provides accurate guidance for intraoperative tumour resection. Integrating the advantages of both optical and optoacoustic scanning in an intraoperative image-guided system, this method holds promise for depicting rNPC and guiding salvage surgery.


Assuntos
Corantes Fluorescentes , Neoplasias Nasofaríngeas , Animais , Camundongos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/cirurgia , Imagem Óptica/métodos , Peptídeos
14.
ACS Nano ; 16(10): 16019-16037, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36130729

RESUMO

Developing effective lymph-node (LN) targeting and imaging probes is crucial for the early detection and diagnosis of tumor metastasis to improve patient survival. Most current clinical LN imaging probes are based on small organic dyes (e.g., indocyanine green) or radioactive 99mTc-complexes, which often suffer from limitations, such as rapid photobleaching, poor signal contrast, and potential biosafety issues. Moreover, these probes cannot easily incorporate therapeutic functions to realize beneficial theranostics without affecting their LN-targeting ability. Herein, we have developed dual-ligand-/multiligand-capped gold nanoclusters (GNCs) for specific targeting, near-infrared (NIR) fluorescence imaging, diagnosis, and treatment of LN cancer metastasis in in vivo mouse models. By optimizing the surface ligand coating, we have prepared Au25(SR1)n(SR2)18-n (where SR1 and SR2 are different functional thiol ligands)-type GNCs, which display highly effective LN targeting, excellent stability and biocompatibility, and optimal body-retention time. Moreover, they can provide continuous NIR fluorescence imaging of LNs for >3 h from a single dose, making them well-suited for fluorescence-guided surgery. Importantly, we have further incorporated methotrexate, a chemotherapeutic drug, into the GNCs without affecting their LN-targeting ability. Consequently, they can significantly improve the efficiency of methotrexate delivery to target LNs, achieving excellent therapeutic efficacy with up to 4-fold lower hepatotoxicity. Thus, the GNCs are highly effective and safe theranostic nanomedicines against cancer lymphatic metastasis.


Assuntos
Ouro , Verde de Indocianina , Animais , Camundongos , Metástase Linfática/diagnóstico por imagem , Ligantes , Metotrexato , Imagem Óptica/métodos , Corantes , Compostos de Sulfidrila
15.
ACS Appl Mater Interfaces ; 14(31): 35454-35465, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900924

RESUMO

Near-infrared window IIb (NIR-IIb, 1500-1700 nm) fluorescence imaging demonstrates attractive properties including low scattering, low absorption, and deep tissue penetration, and photothermal therapy (PTT) is also a promising modality for cancer treatment. However, until now, there is no report on theranostic systems based on small organic molecules combining fluorescence imaging in the NIR-IIb and PTT, highlighting the challenge and strong need for development of such agents. Herein, we report a novel small molecule NIR-IIb dye IT-TQF with a D-A-D structure, which exhibited high fluorescence intensity in the NIR-IIb window. To further translate IT-TQF into an effective theranostic agent, IT-TQF was encapsulated into DSPE-PEG2000 to construct IT-TQF NPs. The physical and photochemical properties of the nanoprobe were investigated in vitro, and the in vivo NIR-IIb imaging and PTT performance were evaluated in normal, subcutaneous, orthotopic, and metastatic tumor mice models. IT-TQF NP-based NIR-IIb imaging demonstrated high spatial resolution and high tissue penetration depth, and small normal blood vessels (55.3 µm) were successfully imaged in the NIR-IIb window. Subcutaneous, orthotopic, and metastatic tumors were all clearly delineated. A high tumor signal-to-background ratio (SBR) of 9.42 was achieved for orthotopic osteosarcoma models, and the erosions of bone tissue caused by tumor cells were precisely visualized. Moreover, NIR-II image-guided surgery was successfully performed to completely remove the orthotopic tumor. Importantly, IT-TQF NPs displayed high PTT efficacy (photothermal conversion efficiency: 47%) for effective treatment of tumor mice. In conclusion, IT-TQF NPs are a novel and promising phototheranostic agent in the NIR-IIb window, and the nanoprobe has high potential for a broad range of biomedical applications.


Assuntos
Nanopartículas , Terapia Fototérmica , Animais , Linhagem Celular Tumoral , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Imagem Óptica , Fototerapia/métodos , Nanomedicina Teranóstica/métodos
16.
Int J Nanomedicine ; 17: 1343-1360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345784

RESUMO

Purpose: Tumor-free surgical margin is crucial but challenging in breast-conserving surgery (BCS). Fluorescence imaging is a promising strategy for surgical navigation that can reliably assist the surgeon with visualization Of the tumor in real-time. Notably, finding an optimized fluorescent probe has been a challenging research topic. Herein, we developed a novel near-infrared (NIR) fluorescent probe based on tailored Hepatitis B Core virus-like protein (HBc VLP) and presented the preclinical imaging-guided surgery. Methods: The RGD-HBc160 VLP was synthesized by genetic engineering followed encapsulation of ICG via disassembly-reassembly. The applicability of the probe was tested for cell and tissue binding capacities through cell-based plate assays, xenograft mice model, and MMTV-PyVT mammary tumor transgenic mice. Subsequently, the efficacy of RGD-HBc160/ICG-guided surgery was evaluated in an infiltrative tumor-bearing mouse model. The protein-induced body's immune response was further assessed. Results: The prepared RGD-HBc160/ICG showed outstanding integrin αvß3 targeting ability in vitro and in vivo. After intravenous administration of probe, the fluorescence guidance facilitated more complete tumor resection and improved overall survival Of the infiltrative tumor-bearing mice. The probe also showed the excellent capability to differentiate between benign and malignant breast tissues in the mammary tumor transgenic mice. Interestingly, the ingenious tailoring of HBc VLP could not only endow its tumor-targeting ability towards integrin αvß3 but also significantly reduce the humoral and cellular immune response. Conclusion: The RGD-HBc160/ICG holds promise as an effective tool to delineate tumor margin. These results have translational potential to achieve margin-negative resection and improve the stratification of patients for a potentially curative.


Assuntos
Neoplasias da Mama , Antígenos do Núcleo do Vírus da Hepatite B , Cirurgia Assistida por Computador , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Feminino , Fluorescência , Humanos , Integrina alfaVbeta3/metabolismo , Camundongos
17.
J Nanobiotechnology ; 20(1): 24, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991595

RESUMO

Lymphatic system is identified the second vascular system after the blood circulation in mammalian species, however the research on lymphatic system has long been hampered by the lack of comprehensive imaging modality. Nanomaterials have shown the potential to enhance the quality of lymphatic imaging due to the unparalleled advantages such as the specific passive targeting and efficient co-delivery of cocktail to peripheral lymphatic system, ease molecular engineering for precise active targeting and prolonged retention in the lymphatic system of interest. Multimodal lymphatic imaging based on nanotechnology provides a complementary means to understand the kinetics of lymphoid tissues and quantify its function. In this review, we introduce the established approaches of lymphatic imaging used in clinic and summarize their strengths and weaknesses, and list the critical influence factors on lymphatic imaging. Meanwhile, the recent developments in the field of pre-clinical lymphatic imaging are discussed to shed new lights on the design of new imaging agents, the improvement of delivery methods and imaging-guided surgery strategies.


Assuntos
Sistema Linfático , Imagem Multimodal , Nanomedicina , Cirurgia Assistida por Computador , Animais , Humanos , Sistema Linfático/diagnóstico por imagem , Sistema Linfático/cirurgia , Camundongos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Ratos
18.
Eur J Nucl Med Mol Imaging ; 49(3): 847-860, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34505945

RESUMO

PURPOSE: Obtaining tumour-free margins is critical for avoiding re-excision and reducing local recurrence following breast-conserving surgery; however, it remains challenging. Imaging-guided surgery provides precise detection of residual lesions and assists surgical resection. Herein, we described water-soluble melanin nanoparticles (MNPs) conjugated with cyclic Arg-Gly-Asp (cRGD) peptides for breast cancer photoacoustic imaging (PAI) and surgical navigation. METHODS: The cRGD-MNPs were synthesised and characterized for morphology, photoacoustic characteristics and stability. Tumour targeting and toxicity of cRGD-MNPs were determined by using either breast cancer cells, MDA-MB-231 tumour-bearing mice or the FVB/N-Tg (MMTV-PyVT) 634Mul/J mice model. PAI was used to locate the tumour and guide surgical resection in MDA-MB-231 tumour-bearing mice. RESULTS: The cRGD-MNPs exhibited excellent in vitro and in vivo tumour targeting with low toxicity. Intravenous administration of cRGD-MNPs to MDA-MB-231 tumour-bearing mice showed an approximately 2.1-fold enhancement in photoacoustic (PA) intensity at 2 h, and the ratio of the PA intensity at the tumour site to that in the surrounding normal tissue was 3.2 ± 0.1, which was higher than that using MNPs (1.7 ± 0.3). Similarly, the PA signal in the spontaneous breast cancer increased ~ 2.5-fold at 2 h post-injection of cRGD-MNPs in MMTV-PyVT transgenic mice. Preoperative PAI assessed tumour volume and offered three-dimensional (3D) reconstruction images for accurate surgical planning. Surgical resection following real-time PAI showed high consistency with histopathological analysis. CONCLUSION: These results highlight that cRGD-MNP-mediated PAI provide a powerful tool for breast cancer imaging and precise tumour resection. cRGD-MNPs with fine PA properties have great potential for clinical translation.


Assuntos
Neoplasias da Mama , Nanopartículas , Técnicas Fotoacústicas , Cirurgia Assistida por Computador , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Feminino , Humanos , Melaninas/química , Camundongos , Nanopartículas/química , Oligopeptídeos , Técnicas Fotoacústicas/métodos , Cirurgia Assistida por Computador/métodos
19.
Small ; 18(5): e2104471, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837454

RESUMO

The surgical removal of lesions is among the most common and effective treatments for atherosclerosis. It is often the only curative treatment option, and the ability to visualize the full extent of atherosclerotic plaque during the operation has major implications for the therapeutic outcome. Fluorescence imaging is a promising approach for the inspection of atherosclerotic plaques during surgery. However, there is no systematic strategy for intraoperative fluorescent imaging in atherosclerosis. In this study, the in situ attachment of a lipid-activatable fluorescent probe (CN-N2)-soaked patch to the outer arterial surface is reported for rapid and precise localization of the atherosclerotic plaque in ApoE-deficient mouse during surgery. Stable imaging of the plaque is conducted within 5 min via rapid recognition of abnormally accumulated lipid droplets (LDs) in foam cells. Furthermore, the plaque/normal ratio (P/N) is significantly enhanced to facilitate surgical delineation of carotid atherosclerotic plaques. Visible fluorescence bioimaging using lipid-activatable probes can accurately delineate plaque sizes down to diameters of <0.5 mm, and the images can be swiftly captured within the stable plaque imaging time window. These findings on intraoperative fluorescent imaging of plaques via the in situ attachment of the CN-N2 patch hold promise for effective clinical applications.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Aterosclerose/cirurgia , Artérias Carótidas/patologia , Corantes Fluorescentes , Camundongos , Imagem Óptica , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Placa Aterosclerótica/cirurgia
20.
J Nanobiotechnology ; 19(1): 419, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903233

RESUMO

Accurate diagnosis and effective treatment of primary liver tumors are of great significance, and optical imaging has been widely employed in clinical imaging-guided surgery for liver tumors. The second near-infrared window (NIR-II) emissive AIEgen photosensitizers have attracted a lot of attention with higher-resolution bioimaging and deeper penetration. NIR-II aggregation-induced emission-based luminogen (AIEgen) photosensitizers have better phototherapeutic effects and accuracy of the image-guided surgery/phototherapy. Herein, an NIR-II AIEgen phototheranostic dot was proposed for NIR-II imaging-guided resection surgery and phototherapy for orthotopic hepatic tumors. Compared with indocyanine green (ICG), the AIEgen dots showed bright and sharp NIR-II emission at 1250 nm, which extended to 1600 nm with high photostability. Moreover, the AIEgen dots efficiently generated reactive oxygen species (ROS) for photodynamic therapy. Investigations of orthotopic liver tumors in vitro and in vivo demonstrated that AIEgen dots could be employed both for imaging-guided tumor surgery of early-stage tumors and for 'downstaging' intention to reduce the size. Moreover, the therapeutic strategy induced complete inhibition of orthotopic tumors without recurrence and with few side effects.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Fármacos Fotossensibilizantes , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cirurgia Assistida por Computador/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA