Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000775

RESUMO

The aim of this study is to analyze the ballistic impact behavior of a panel made of Twaron CT736 fabric with a 9 mm Full Metal Jacket (FMJ) projectile. Three shots are fired at different velocities at this panel. The ballistic impact test procedure was carried out in accordance with NIJ 010106. The NIJ-010106 standard is a document that specifies the minimum performance requirements that protection systems must meet to ensure performance. The 9 mm FMJ projectile is, according to NIJ 010106, in threat level II, but the impact velocity is in threat level IIIA. Analysis of macro-photographs of the impact of the Twaron CT736 laminated fabric panel with a 9 mm FMJ projectile involves a detailed examination of the images to gather information about the material performance and failure mechanisms at the macro- or even meso-level (fabric/layer, thread). In this paper, we analyze numerically and experimentally a panel consisting of 32 layers, made of a single material, on impact with a 9 mm FMJ projectile. The experimental results show that following impact of the panel with three projectiles, with velocities between 414 m/s and 428 m/s, partial penetration occurs, with a different number of layers destroyed, i.e., 15 layers in the case of the projectile velocity of 414 m/s, 20 layers of material in the case of the panel velocity of 422 m/s and 22 layers destroyed in the case of the projectile velocity of 428 m/s. Validation of the simulated model is achieved by two important criteria: the number of broken layers and the qualitative appearance. Four numerical models were simulated, of which three models validated the impact results of the three projectiles that impacted the panel. Partial penetration occurs in all four models, breaking the panel in the impact area, with only one exception, i.e., the number of layers destroyed, in which case the simulation did not validate the validation criterion. The performance of Twaron CT736 fabric is also given by the indentation depth values by two methods: according to NIJ 0101.06 and by 3D scanning. The NIJ 010106 standard specifies that a panel provides protection when the indentation depth values are less than 0.44 mm.

2.
Adv Sci (Weinh) ; : e2405285, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048327

RESUMO

The high-speed impact-resistanct materials are of great significance while their development is hindered by the intrinsic tradeoff between mechanical strength and energy dissipation capability. Herein, the new chemical system of molecular granular material (MGM) is developed for the design of impact-resistant materials from the supramolecular complexation of sub-nm molecular clusters (MCs) and hyper-branched polyelectrolytes. Their hierarchical aggregation provides the origin of the decoupling of mechanical strengths and structural relaxation dynamics. The MCs' intrinsic fast dynamics afford excellent high-speed impact-resistance, up to 5600 s-1 impact in a typical split-Hopkinson pressure bar test while only tiny boundary cracks can be observed even under 7200 s-1 impact. The high loadings of MCs and their hierarchical aggregates provide high-density sacrificial bonding for the effective dissipation of the impact energy, enabling the protection of fragile devices from the direct impact of over 200 m s-1 bullet. Moreover, the MGMs can be conveniently processed into protective coatings or films with promising recyclability due to the supramolecular interaction feature. The research not only reveals the unique relaxation dynamics and mechanical properties of MGMs in comparison with polymers and colloids, but also develops new chemical systems for the fabrication of high-speed impact-resistant materials.

3.
Adv Mater ; : e2405183, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973222

RESUMO

Biological materials relying on hierarchically ordered architectures inspire the emergence of advanced composites with mutually exclusive mechanical properties, but the efficient topology optimization and large-scale manufacturing remain challenging. Herein, this work proposes a scalable bottom-up approach to fabricate a novel nacre-like cement-resin composite with gradient brick-and-mortar (BM) structure, and demonstrates a machine learning-assisted method to optimize the gradient structure. The fabricated gradient composite exhibits an extraordinary combination of high flexural strength, toughness, and impact resistance. Particularly, the toughness and impact resistance of such composite attractively surpass the cement counterparts by factors of approximately 700 and 600 times, and even outperform natural rocks, fiber-reinforced cement-based materials and even some alloys. The strengthening and toughening mechanisms are clarified as the regional-matrix densifying and crack-tip shielding effects caused by the gradient BM structure. The developed gradient composite not only endows a promising structural material for protective applications in harsh scenarios, but also paves a new way for biomimetic metamaterials designing.

4.
Small ; : e2404907, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051519

RESUMO

Colorless, transparent, and mechanically robust aramid polymers are synthesized from two diamine monomers with strong electron-withdrawing groups, using low-temperature solution condensation with diacid chloride. The aramids dissolved very well in the liquid acrylamide monomers. When N,N-dimethylacrylamide (DMA) is used as a reactive diluent, films with the desired features are produced from the hybrid aramid-DMA resins via ultraviolet (UV) curing. The hybrid films are colorless and transparent in the visible region and showed an increase in the glass transition temperature, tensile strength, and elastic modulus in proportion to the aramid content. Laminated glass is manufactured using the hybrid resin as an interlayer, which exhibits very strong adhesion between the two sheets of glass, is not easily broken by an external impact, and do not scatter fragments. Moreover, the laminated glass do not distort images and functioned very effectively in UV blocking, soundproofing, and suppressing changes in the ambient temperature. Heat treatment further improves the light transmittance and impact resistance of the laminated glass. Laminated glass specimens with various fluorescence colors are also manufactured. Aramid-reinforced films prepared using N,N-diethylacrylamide as a reactive diluent underwent thermally induced phase separation in a wet state, providing smart glass with a privacy protection function.

5.
Acta Biomater ; 184: 264-272, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908419

RESUMO

The equine hoof wall has outstanding impact resistance, which enables high-velocity gallop over hard terrain with minimum damage. To better understand its viscoelastic behavior, complex moduli were determined using two complementary techniques: conventional (∼5 mm length scale) and nano (∼1 µm length scale) dynamic mechanical analysis (DMA). The evolution of their magnitudes was measured for two hydration conditions: fully hydrated and ambient. The storage modulus of the ambient hoof wall was approximately 400 MPa in macro-scale experiments, decreasing to ∼250 MPa with hydration. In contrast, the loss tangent decreased for both hydrated (∼0.1-0.07) and ambient (∼0.04-0.01) conditions, over the frequency range of 1-10 Hz. Nano-DMA indentation tests conducted up to 200 Hz showed little frequency dependence beyond 10 Hz. The loss tangent of tubular regions showed more hydration sensitivity than in intertubular regions, but no significant difference in storage modulus was observed. Loss tangent and effective stiffness were higher in indentations for both hydration levels. This behavior is attributed to the hoof wall's hierarchical structure, which has porosity, functionally graded aspects, and material interfaces that are not captured at the scale of indentation. The hoof wall's viscoelasticity characterized in this work has implications for the design of bioinspired impact-resistant materials and structures. STATEMENT OF SIGNIFICANCE: The outer wall of horse hooves evolved to withstand heavy impacts during gallop. While previous studies have measured the properties of the hoof wall in slowly changing conditions, we wanted to quantify its behavior using experiments that replicate the quickly changing forces of impact. Since the hoof wall's structure is complex and contributes to its overall performance, smaller scale experiments were also performed. The behavior of the hoof wall was within the range of other biological materials and polymers. When hydrated, it becomes softer and can dissipate more energy. This work improves our understanding of the hoof's function and allows for more accurate simulations that can account for different impact speeds.


Assuntos
Elasticidade , Casco e Garras , Viscosidade , Animais , Cavalos/anatomia & histologia , Módulo de Elasticidade , Casco e Garras/fisiologia
6.
Polymers (Basel) ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38932043

RESUMO

The impact resistance of layered polymer structures using polyvinyl butyral (PVB) in combination with Kevlar® fabric and ultra-high molecular weight polyethylene (UHMWPE) were fabricated and tested. Methods of wet impregnation and hot-press impregnation and consolidation of fabric with PVB and UHMWPE were used to manufacture multilayer constructs. All sandwich constructs were fixed to the surface of ballistic clay and subject to a free drop-weight test with a conical impactor having a small contact area. All tests were made at the same impact energy of 9.3 J and velocity of 2.85 m/s. The change in the resistance force was recorded using a piezoelectric force sensor at the time intervals of 40 µs. Using experimental force-time history, the change in the impactor's velocity, the depth of impactor penetration, the energy transformation at various stages of impactor interaction with the sample, and other parameters were obtained. Three indicators were considered as the main criteria for the effectiveness of a sample's resistance to impact: (1) minimum deformation, bulging, of the panel backside at the moment of impact, (2) minimum absorption of impact energy per areal density, and (3) minimal or, better yet, no destruction of structural integrity. Under the tested conditions, the rigid Kevlar-PVB-Kevlar sandwich at the frontside and relatively soft but flexible UHMWPE-Kevlar-UHMWPE layers in the middle helped to localize and absorb impact energy, while the backside Kevlar-PVB-Kevlar sandwich minimized local bulging providing the best overall performance. The front layer damage area was very shallow and less than two impactor tip diameters. The backside bulging was also less than in any other tested configurations.

7.
Adv Sci (Weinh) ; 11(28): e2402940, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38767181

RESUMO

Structural materials such as ceramics, metals, and carbon fiber-reinforced plastics (CFRP) are frequently threatened by large compressive and impact forces. Energy absorption layers, i.e., polyurethane and silicone foams with excellent damping properties, are applied on the surfaces of different substrates to absorb energy. However, the amount of energy dissipation and penetration resistance are limited in commercial polyurethane foams. Herein, a distinctive nacre-like architecture design strategy is proposed by integrating hard porous ceramic frameworks and flexible polyurethane buffers to improve energy absorption and impact resistance. Experimental investigations reveal the bioinspired designs exhibit optimized hardness, strength, and modulus compared to that of polyurethane. Due to the multiscale energy dissipation mechanisms, the resulting normalized absorbed energy (≈8.557 MJ m-3) is ≈20 times higher than polyurethane foams under 50% quasi-static compression. The bioinspired composites provide superior protection for structural materials (CFRP, glass, and steel), surpassing polyurethane films under impact loadings. It is shown CFRP coated with the designed materials can withstand more than ten impact loadings (in energy of 10 J) without obvious damage, which otherwise delaminates after a single impact. This biomimetic design strategy holds the potential to offer valuable insights for the development of lightweight, energy-absorbent, and impact-resistant materials.

8.
Polymers (Basel) ; 16(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732761

RESUMO

This paper presents a comprehensive review of natural fiber-reinforced composites (NFRCs) for lower-limb prosthetic designs. It covers the characteristics, types, and properties of natural fiber-reinforced composites as well as their advantages and drawbacks in prosthetic designs. This review also discusses successful prosthetic designs that incorporate NFRCs and the factors that make them effective. Additionally, this study explores the use of computational biomechanical models to evaluate the effectiveness of prosthetic devices and the key factors that are considered. Overall, this document provides a valuable resource for anyone interested in using NFRCs for lower-limb prosthetic designs.

9.
Adv Colloid Interface Sci ; 327: 103157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626554

RESUMO

Shear thickening fluids (STFs) are a unique type of fluids that can quickly transform into a solid-like state when subjected to forces (rate dependent). These fluids are created by dispersing micro and nanoparticles within a medium. When the force is removed, they return to their original liquid state. Shear thickening fluids can absorb a significant amount of impact energy, making them useful for reducing vibrations and serving as a damper. This study provides a comprehensive and brief overview of existing literature on shear thickening fluids, including their properties, classification, and the rheological mechanisms behind the shear thickening behaviour. It also examines the use of these fluids in various applications, such as improving resistance to stabs and spikes, protecting against low- and high-velocity impacts, and as a new medium for energy dissipation in industries such as battery safety, vibration control and adaptive structures. Lastly, this work reviews the promising combination of STFs with cork. Given the sustainability of cork and its energy absorption capacity, cork-STF composites are a promising solution for various impact-absorbing applications. Overall, the paper underscores the versatility and potential of STFs, and advocates for further research and exploration.

10.
Polymers (Basel) ; 16(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611251

RESUMO

Polyureas have been widely applied in many fields, such as coatings, fibers, foams and dielectric materials. Traditionally, polyureas are prepared from isocyanates, which are highly toxic and harmful to humans and the environment. Synthesis of polyureas via non-isocyanate routes is green, environmentally friendly and sustainable. However, the application of non-isocyanate polyureas is quite restrained due to their brittleness as the result of the lack of a soft segment in their molecular blocks. To address this issue, we have prepared polyester polyureas via an isocyanate-free route and introduced polyester-based soft segments to improve their toughness and endow high impact resistance to the polyureas. In this paper, the soft segments of polyureas were synthesized by the esterification and polycondensation of dodecanedioic acid and 1,4-butanediol. Hard segments of polyureas were synthesized by melt polycondensation of urea and 1,10-diaminodecane without a catalyst or high pressure. A series of polyester polyureas were synthesized by the polycondensation of the soft and hard segments. These synthesized polyester-type polyureas exhibit excellent mechanical and thermal properties. Therefore, they have high potential to substitute traditional polyureas.

11.
Materials (Basel) ; 17(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612196

RESUMO

To improve the shock resistance of personal protective equipment and reduce casualties due to shock wave accidents, this study prepared four types of carbon fiber/polymethacrylimide (PMI) foam sandwich panels with different face/back layer thicknesses and core layer densities and subjected them to quasi-static compression, low-speed impact, high-speed impact, and non-destructive tests. The mechanical properties and energy absorption capacities of the impact-resistant panels, featuring ceramic/ultra-high molecular-weight polyethylene (UHMWPE) and carbon fiber/PMI foam structures, were evaluated and compared, and the feasibility of using the latter as a raw material for personal impact-resistant equipment was also evaluated. For the PMI sandwich panel with a constant total thickness, increasing the core layer density and face/back layer thickness enhanced the energy absorption capacity, and increased the peak stress of the face layer. Under a constant strain, the energy absorption value of all specimens increased with increasing impact speed. When a 10 kg hammer impacted the specimen surface at a speed of 1.5 m/s, the foam sandwich panels retained better integrity than the ceramic/UHMWPE panel. The results showed that the carbon fiber/PMI foam sandwich panels were suitable for applications that require the flexible movement of the wearer under shock waves, and provide an experimental basis for designing impact-resistant equipment with low weight, high strength, and high energy absorption capacities.

12.
Materials (Basel) ; 17(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541593

RESUMO

Conventional cushioning materials such as silicone sheets which have been recommended for resisting impact generally cause discomfort to the wearer from heat and perspiration. With the increasing need for personal protective equipment, textile-silicone composite structures are proposed in this study to reduce acute impact and moisture while enhancing thermal comfort. The influence of the composite structure and thickness on the mechanical and thermal properties of textile-silicone materials are systematically investigated. The results show that an additional knitted powernet fabric as a composite material can significantly improve the tensile properties of silicone rubber by up to 315%. However, only a slight improvement is found in the thermal conductivity (up to 16%), compression elasticity (up to 18%) and force reduction performance (up to 3.6%). As compared to inlaid spacer fabric, which has also been used for cushioning and preserving thermal comfort, the textile-silicone composites have higher tensile and compression elasticity, exhibit force reduction with the largest difference of 43% and are more thermally conductive, with increases more than 38%. The findings of this study introduced a cost-effective new silicone-textile composite for optimal impact protection and wear comfort for protective applications.

13.
J Hazard Mater ; 466: 133662, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309171

RESUMO

Discarding PET plastic (dPET) causes serious environmental pollution and enormous fossil resources waste. Processing techniques have mainly focused on the conversion of dPET into monomers, with minimal reports highlighting their transformation into high-value materials. This work intends to transform dPET into a high-performance material with potential alternative value in harsh production environments. The soft and hard segments of the thermoplastic polyester elastomeric (TPEE) molecular structure are reacted and cross-linked with dPET using a facile one-pot process, and two main polymers, (C8H4O4)n and ((C16H18O4)0.76·(C4H8O)0.24)n are generated after the reaction. Through chemical reactions between TPEE and dPET, new characteristic products and chemical bond-crossing structures are formed, while the resulting product particles or multiple TPEE particles are anchored by the high viscosity of dPET, which endows the material with superior tensile strength (34.21 MPa) and impact resistance. The glass transition temperature (Tg) of the material implies that neither the molecular chain nor the chain segments can move, while only the atoms or groups composing the molecule vibrate at their equilibrium positions. The development of this new treatment method may contribute to the reduction of environmental pollution and the improvement of the high-value conversion and utilization of dPET.

14.
J Environ Manage ; 353: 120199, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38316072

RESUMO

Nanofibers were prepared by electrospinning a mixture of polycaprolactone and silica, and modified to improve the hydrophilicity and stability of the material and to degrade nitrogenous wastewater by adsorbing heterotrophic nitrifying aerobic denitrifying (Ochrobactrum anthropic). The immobilized bacteria showed highly efficient simultaneous nitrification-denitrification ability, which could convert nearly 90 % of the initial nitrogen into gaseous nitrogen under aerobic conditions, and the average TN removal rate reached 5.59 mg/L/h. The average ammonia oxidation rate of bacteria immobilized by modified nanofibers was 7.36 mg/L/h, compared with 6.3 mg/L/h for free bacteria and only 4.23 mg/L/h for unmodified nanofiber-immobilized bacteria. Kinetic studies showed that modified nanofiber-immobilized bacteria complied with first-order degradation kinetics, and the effects of extreme pH, temperature, and salinity on immobilized bacteria were significantly reduced, while the degradation rate of free bacteria produced larger fluctuations. In addition, the immobilized bacterial nanofibers were reused five times, and the degradation rate remained stable at more than 80 %. At the same time, the degradation rate can still reach 50 % after 6 months of storage at 4 °C. It also demonstrated good nitrogen removal in practical wastewater treatment.


Assuntos
Nanofibras , Águas Residuárias , Desnitrificação , Nitritos/metabolismo , Nitrogênio/metabolismo , Cinética , Aerobiose , Nitrificação , Bactérias/metabolismo , Processos Heterotróficos
15.
Adv Mater ; 36(16): e2311817, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226720

RESUMO

Transparent bulk glass is highly demanded in devices and components of daily life to transmit light and protect against external temperature and mechanical hazards. However, the application of glass is impeded by its poor functional performance, especially in terms of thermal isolation and impact resistance. Here, a glass composite integrating the nacre-inspired structure and shear stiffening gel (SSG) material is proposed. Benefiting from the combination of these two elements, this nacre-inspired SSG/glass composite (NSG) exhibits superior thermal insulation and impact resistance while maintaining transparency simultaneously. Specifically, the low thermal conductivity of the SSG combined with the anisotropic heat transfer capability of the nacre-inspired structure enhances the out-of-plane thermal insulation of NSG. The deformations over large volumes in nacre-inspired facesheets promote the deformation region of the SSG core, synergistic effect of tablet sliding mechanism in nacre-inspired structure and strain-rate enhancement in SSG material cause the superior impact resistance of overall panels in a wide range of impact velocities. NSG demonstrates outstanding properties such as transparency, light weight, impact resistance, and thermal insulation, which are major concerns for the application in engineering fields. In conclusion, this bioinspired SSG/glass composite opens new avenues to achieve comprehensive performance improvements for transparent structural materials.

16.
Materials (Basel) ; 17(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276415

RESUMO

In the realm of engineering rotary excavation, the rigid and brittle nature of the Polycrystal Diamond Compact (PDC) layer poses challenges to the impact resistance of conical teeth. This hinders their widespread adoption and utilization. In this paper, the Abaqus simulation is used. By optimizing the parameters of the radius of the cone top arc, we analyzed the changing law of the parameters of large-diameter D30 series conical PDC teeth, such as the equivalent force, impact force, and energy absorption of the conical teeth during the impact process, and optimized the best structure of the conical PDC teeth. After being subjected to a high temperature and high pressure, we synthesized the specimen for impact testing and analyzed the PDC layer crack extension and fracture failure. The findings reveal the emergence of a stress ring below the compacted area of the conical tooth. As the radius of the cone top arc increases, so does the area of the stress ring. When R ≥ 10 mm, the maximum stress change is minimal, and at R = 10 mm, the stress change in its top unit is relatively smooth. Optimal impact resistance is achieved, withstanding a total impact work value of 7500 J. Extrusion cracks appear in the combined layer part of PDC layers I and II, but the crack source is easy to produce in the combined layer of PDC layer II and the alloy matrix and extends to both sides, and the right side extends to the surface of the conical tooth in a "dragon-claw". The failure morphology of the conical teeth includes ring shedding at the top of the PDC layer, the lateral spalling of the PDC layer, and the overall cracking of the conical teeth. Through this study, we aim to promote the popularization and application of large-diameter conical PDC teeth in the field of engineering rotary excavation.

17.
Adv Mater ; 36(7): e2306451, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37878793

RESUMO

All-natural materials derived from cellulose nanofibers (CNFs) are expected to be used to replace engineering plastics and have attracted much attention. However, the lack of crack extension resistance and 3D formability of nanofiber-based structural materials hinders their practical applications. Here, a multiscale interface engineering strategy is reported to construct high-performance cellulose-based materials. The sisal microfibers are surface treated to expose abundant active CNFs with positive charges, thereby enhancing their interfacial combination with the negatively charged CNFs. The robust multiscale dual network enables easy molding of multiscale cellulose-based structural materials into complex 3D special-shaped structures, resulting in nearly twofold and fivefold improvements in toughness and impact resistance compared with those of CNFs-based materials. Moreover, this multiscale interface engineering strategy endows cellulose-based structural materials with better comprehensive performance than petrochemical-based plastics and broadens cellulose's potential for lightweight applications as structural materials with lower environmental effects.

18.
Nano Lett ; 24(1): 187-194, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38088862

RESUMO

Realistically, green manufacturing of transparent superhydrophobic surfaces (SHSs) and high liquid impalement resistance for outdoor engineering are very necessary but pretty challenging. To address this, an almost all-waterborne system composed of synthesized partially open-cage fluorinated polyhedral oligomeric silsesquioxane bearing a pair of -OH (poc-FPOSS-2OH), silica sol, and resin precursor is engineered. The transparent SHSs facilely formed by this system are featured with the exclusive presence of wrapped silica nanoparticle (SiNP) dendritic networks at solid-gas interfaces. The wrapped SiNP dendritic networks have a small aggregation size and low distribution depth, making SHSs highly transparent. The Si-O polymeric wrappers render mechanical flexibility to SiNP dendritic networks and thus enable transparent SHSs to resist high-speed water jet impinging with a Weber number of ≥19 800 in conjunction with the extremely low-surface-energy poc-FPOSS-2OH, which is the highest liquid impalement resistance so far among waterborne SHSs, and can rival the state-of-the-art solventborne SHSs.

19.
Adv Mater ; 36(13): e2311214, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150638

RESUMO

With the continuous development of impact protection materials, lightweight, high-impact resistance, flexibility, and controllable toughness are required. Here, tough and impact-resistant poly(ionic liquid) (PIL)/poly(hydroxyethyl acrylate) (PHEA) double-network (DN) elastomers are constructed via multiple cross-linking of polymer networks and cation-π interactions of PIL chains. Benefiting from the strong noncovalent cohesion achieved by the cation-π interactions in PIL chains, the prepared PIL DN elastomers exhibit extraordinary compressive strength (95.24 ± 2.49 MPa) and toughness (55.98 ± 0.66 MJ m-3) under high-velocity impact load (5000 s-1). The synthesized PIL DN elastomer combines strength and flexibility to protect fragile items from impact. This strategy provides a new research idea in the field of the next generation of safety and protective materials.

20.
Materials (Basel) ; 16(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068199

RESUMO

Ultra-high-performance concrete (UHPC) is a cement-based material with excellent impact resistance. Compared with traditional concrete, it possesses ultra-high strength, ultra-high toughness, and ultra-high durability, making it an ideal material for designing structures with impact resistance. The research on the impact resistance performance of UHPC and its composite structures is of great significance for the structural design of protective engineering projects. However, currently, there is still insufficient research on the impact resistance performance of UHPC composite structures. To study the impact resistance performance, experiments were conducted on UHPC targets using high-speed projectiles. The results were compared with impact tests on granite targets. The results indicated that when subjected to projectile impact, the UHPC targets exhibited smaller surface craters compared with the granite targets, while the penetration depth was lower in the granite targets. Afterwards, the process of a projectile impacting the UHPC composite structure was numerically simulated using ANSYS 16.0/LS-DYNA finite element software. The numerical simulation results of penetration depth and crater diameter were in good agreement with the experimental results, which indicates the rationality of the numerical model. Based on this, further analysis was carried out on the influence of impact velocity, impact angle, and reinforcement ratio on the penetration depth of the composite structure. The results show that the larger the incident angle or the smaller the velocity of the projectile is, the easier it is to deflect the projectile. There is a linear relationship between penetration depth and reinforcement ratio; as the reinforcement ratio increases, the penetration depth decreases significantly. This research is of great significance in improving the safety and reliability of key projects and also contributes to the application and development of ultra-high-performance materials in the engineering field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA