Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Handb Clin Neurol ; 205: 145-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39341651

RESUMO

Cell and gene therapies (CGTs) are intended to address many different diseases, including widespread diseases with millions of patients. The success of CGTs thus depends on the practicability of scaling cell manufacturing to population. It is obvious that process integration and automation are key for the reproducibility, quality, cost-effectiveness, and scalability of cell manufacturing. Still, different manufacturing concepts can be considered depending on the characteristics of cell therapies such as the degree of ex vivo manipulation of cells, the intended treatment scheme for the underlying medical indication, the prevalence of the indication, and the cell dose per final drug product. Here, we explain the characteristics of cellular products and their implications from the perspective of a manufacturer. We outline and exemplify with a list of devices' different strategies and scaling options for CGT manufacturing considering technical and regulatory aspects in the early and late clinical development of cellular products. Finally, we address the need for appropriate in-process and quality controls and the regulatory requirements and options for improvements of a cellular product at different manufacturing stages.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Humanos , Terapia Genética/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos
2.
Mol Ther Nucleic Acids ; 35(2): 102223, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38948330

RESUMO

The development of messenger RNA (mRNA) vaccines and therapeutics necessitates the production of high-quality in vitro-transcribed mRNA drug substance with specific critical quality attributes (CQAs), which are closely tied to the uniformity of linear DNA template. The supercoiled plasmid DNA is the precursor to the linear DNA template, and the supercoiled DNA percentage is commonly regarded as a key in-process control (IPC) during the manufacturing of linear DNA template. In this study, we investigate the influence of supercoiled DNA percentage on key mRNA CQAs, including purity, capping efficiency, double-stranded RNA (dsRNA), and distribution of poly(A) tail. Our findings reveal a significant impact of supercoiled DNA percentage on mRNA purity and in vitro transcription yield. Notably, we observe that the impact on mRNA purity can be mitigated through oligo-dT chromatography, alleviating the tight range of DNA supercoiled percentage to some extent. Overall, this study provides valuable insights into IPC strategies for DNA template chemistry, manufacturing, and controls (CMC) and process development for mRNA drug substance.

3.
Eur J Pharm Biopharm ; 191: 276-289, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37714414

RESUMO

Transmission Raman spectroscopy (TRS) is a process analytical technology tool for nondestructive analysis of drug content in tablets. Although wet granulation is the most used tablet manufacturing method, most TRS studies have focused on tablets manufactured via direct compression. The effects of upstream process parameter variations, such as granulation, on the prediction performance of TRS quantitative models are unknown. We evaluated the effects of process parameter variations during granulation on the prediction performance of the TRS quantitative model. Tablets with a drug concentration of 1%w/w were used. We developed PLS calibration models for the drug concentration range of 70-130% label claims. Subsequently, we predicted the drug content of the tablets with different granulation parameters. The results of our study demonstrate that the variation in the predicted recovery due to the variation in granulation parameters was practically acceptable. The calibration model showed a good prediction performance for tablets manufactured at different granulation scales and thicknesses. Therefore, we conclude that TRS quantitative models are robust to variations in upstream processes, such as granulation and downstream variations in tableting parameters. These results suggest that TRS is a versatile non-destructive quantitative analysis method that can be applied in tablet manufacturing.


Assuntos
Química Farmacêutica , Análise Espectral Raman , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Análise Espectral Raman/métodos , Tecnologia Farmacêutica/métodos , Comprimidos/química
4.
PDA J Pharm Sci Technol ; 77(6): 498-513, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37580128

RESUMO

In this article, we demonstrate a rapid sterility testing method for non-filterable cell-based preparations and its in-process control media/buffers. The selected rapid sterility test (RST) in this work is based on the ScanRDI® system, which detects fluorescently labeled microorganisms with solid-phase cytometry. ScanRDI® has been chosen due to its sensitivity for detecting viable microorganisms down to one microbial cell with a shorter time to detection compared with the compendial sterility test (CST) method. The RST was validated for a CAR-T cell-therapy product with 4 days of time to detection (TTD) and evaluated for in-process control of media/buffers with real-time detection method success according to USP <1223>, Ph. Eur. 5.1.6, and PDA Technical Report No. 33. The validation parameters included limit of detection and equivalence in routine operations, specificity, robustness, ruggedness, and repeatability. For the validation, a combination of pharmacopoeial ATCC strains as well as in-house isolates were used. In addition, the evaluation study of this RST for in-process control of media/buffers was assessed by performing the limit of detection and equivalence with four representative microorganisms. Where applicable, results were statistically evaluated to demonstrate equivalence and no significant difference of the rapid method as compared with the CST method have been detected. All acceptance criteria have been met, and the solid-phase cytometry technology was successfully validated as an alternative sterility test for cell-based preparations and for its in-process control of media/buffer.


Assuntos
Infertilidade , Humanos , Meios de Cultura , Tecnologia
5.
3D Print Addit Manuf ; 10(3): 500-513, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37346190

RESUMO

Fused filament fabrication (FFF) is an additive manufacturing process where a thermoplastic polymeric material, provided in the form of a filament, is extruded to create layers. Achieving a consistent flow of the extruded material is key to ensure quality of the final part. Extrudate flow depends on many factors; among these, the rate at which the filament is fed into the extruder. In a conventional FFF machine, filament transport is achieved through the use of a drive gear. However, slippage between the gear and the filament may occur, leading to reduced transport and the consequent local decrease of extrudate flow rate, which in turn leads to a series of imperfections in the fabricated part due to underextrusion, including reduced density. In this work, we propose a closed-loop control system to ensure the correct filament transport to the extruder. The system works through the comparison between the nominal transport of the filament and the actual filament transport measured using an encoder. The measured value is used to correct the filament feed rate in real time, ensuring a material flow close to the nominal one, regardless of the other process parameters. In this work, an instrumented FFF machine prototype was used to investigate the performance of the approach. For validation, parts were realized using different process parameters, while enabling and disabling the closed-loop control system. Results showed that the relative filament transport error decreased from up to 9% to below 0.25% and a density increase up to ∼10% regardless of the process parameters, as well as the reduction of interlayer and intralayer voids, as highlighted through cross-sectional imaging of realized samples. A reduction of defects on realized parts was observed, especially at higher fabrication feed rates.

6.
Heliyon ; 9(5): e15753, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153380

RESUMO

Nowadays, among 3rd generation drug delivery systems, biodegradable polymeric based long-acting injectable depot has achieved tremendous success in clinical application. So far, there have been two dozen of commercial products of Poly (lactic-co-glycolic acid) microspheres available in the market. Recently, continuous manufacturing concept has been successfully applied on oral solid formulation from buzzword to reality. However, the polymeric injectable microspheres are still stayed at batch manufacturing phase due to the lack of understanding of knowledge matrix. In this study, micro-mixer as a plug-and-play emulsification modules, Raman spectroscopy and focused beam reflectance measurement as real-time monitoring modules are integrated into a novel semi-continuous manufacturing streamline to provides more efficient upscaling flexibility in microspheres production. In this end to end semi-continuous manufacturing process, amphiphilic block polymer monomethoxy-poly (ethylene glycol) modified PLGA (mPEG-PLGA) was used for encapsulating Gallic acid. Additionally, with guarantee of good robustness, the correlation relationship between critical process parameters, critical material attributes and critical quality attributes were investigated. The time-space evolution process and mechanism for formation of PEG-PLGA microsphere with particular morphology were elaborated. Altogether, this study firstly established semi-continuous manufacturing streamline for PLGA/PEG-PLGA microspheres, which would not only lower the cost of production, narrow process variability and smaller equipment/environmental footprint but also applied in-process control (IPC) and QbD principle on complicated production process of microspheres. Therefore, this study build confidence in the industrial development of PLGA/PEG-PLGA microspheres and establish best practice standards, which might be a quantum leap for developing PLGA microspheres in the future.

7.
MAbs ; 14(1): 2060724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35380922

RESUMO

As of early 2022, the coronavirus disease 2019 (COVID-19) pandemic remains a substantial global health concern. Different treatments for COVID-19, such as anti-COVID-19 neutralizing monoclonal antibodies (mAbs), have been developed under tight timelines. Not only mAb product and clinical development but also chemistry, manufacturing, and controls (CMC) process development at pandemic speed are required to address this highly unmet patient need. CMC development consists of early- and late-stage process development to ensure sufficient mAb manufacturing yield and consistent product quality for patient safety and efficacy. Here, we report a case study of late-stage cell culture process development at pandemic speed for mAb1 and mAb2 production as a combination therapy for a highly unmet patient treatment. We completed late-stage cell culture process characterization (PC) within approximately 4 months from the cell culture process definition to the initiation of the manufacturing process performance qualification (PPQ) campaign for mAb1 and mAb2, in comparison to a standard one-year PC timeline. Different strategies were presented in detail at different PC steps, i.e., pre-PC risk assessment, scale-down model development and qualification, formal PC experiments, and in-process control strategy development for a successful PPQ campaign that did not sacrifice quality. The strategies we present may be applied to accelerate late-stage process development for other biologics to reduce timelines.


Assuntos
COVID-19 , Pandemias , Animais , Células CHO , COVID-19/prevenção & controle , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Humanos
8.
J Pharm Biomed Anal ; 207: 114395, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34628292

RESUMO

For the robust analysis of N,N-Carbonyldiimidazole (CDI), its derivatization into a more stable compound may be needed. Herein, the reaction of CDI with N-benzylmethylamine followed by LC-UV quantitative analysis was explored. Reaction conditions as well as LC method feasibility were demonstrated by qualification of selectivity from other impurities and reagents, linearity across a range of 0.05-0.15%w/w, spike and recovery across a range of 0.05-0.15%w/w, reaction reproducibility with various samples, reagents and analytical chemists, and sample stability of over 24 h. Rapid and quantitative derivatization of residual CDI was achieved at 0.1% w/w relative to the synthetic product under consideration. A fit-for-purpose limit test using a RPLC-UV method as an in-process control for the reaction completion of product, at scale, was successfully implemented and executed.


Assuntos
Imidazóis , Indicadores e Reagentes , Reprodutibilidade dos Testes
9.
Bioengineering (Basel) ; 8(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200471

RESUMO

Refolding is known as the bottleneck in inclusion body (IB) downstream processing in the pharmaceutical industry: high dilutions leading to large operating volumes, slow refolding kinetics and low refolding yields are only a few of the problems that impede industrial application. Solubilization prior to refolding is often carried out empirically and the effects of the solubilizate on the subsequent refolding step are rarely investigated. The results obtained in this study, however, indicate that the quality of the IB solubilizate has a severe effect on subsequent refolding. As the solubilizate contains chaotropic reagents in high molarities, it is commonly analyzed with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). SDS-PAGE, however, suffers from a long analysis time, making at-line analytical implementation difficult. In this study, we established an at-line reversed phase liquid chromatography method to investigate the time-dependent quality of the solubilizate. To verify the necessity of at-line solubilization monitoring, we varied the essential solubilization conditions for horseradish peroxidase IBs. The solubilization time was found to have a major influence on subsequent refolding, underlining the high need for an at-line analysis of solubilization. Furthermore, we used the developed reversed phase liquid chromatography method for an in-process control (IPC). In conclusion, the presented reversed phase liquid chromatography method allows a proper control of IB solubilization applicable for tailored refolding.

10.
J Pharm Biomed Anal ; 204: 114253, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271287

RESUMO

A simple and rapid on-line SFE/SFC/quadrupole TOF-MS method to simultaneously analyze active pharmaceutical ingredients and impurities from metered-dose inhalers (MDIs) was developed using ciclesonide MDI (CIC-MDI) as an example. CIC-MDI, as drug Alvesco®, has been approved for the treatment of bronchial asthma, and its major impurities are listed in the European Pharmacopoeia and in the supplementary package inserts of Alvesco® (called as "Pharmaceutical interview form" in Japan). In the developed method, CIC-MDI was manually sprayed only once on a glass disc prior to the SFE/SFC/quadrupole TOF-MS. In the SFE, CIC and its impurities and other impurities having various polarities and hydrophobicity, were extracted in 3.5 min and subsequently separated on a CHIRALPAK IE-3 column to be detected by quadrupole TOF-MS in 6.5 min. This method would be applicable to the analysis of other inhalable pharmaceutical products whose sample preparation requires complicated procedures, as well as to the analysis of general pharmaceutical products for profiling impurities.


Assuntos
Cromatografia com Fluido Supercrítico , Administração por Inalação , Espectrometria de Massas , Inaladores Dosimetrados , Pregnenodionas
11.
Int J Pharm ; 602: 120642, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933640

RESUMO

The potential of torque as in-process control (IPC) to monitor granule size in twin-screw wet granulation (TSG) was investigated. An experimental set-up allowing the collection of granules at four different locations (i.e., in the wetting zone, after the first and second kneading zone and at the end of the granulator) of the granulator screws was used to determine the change in granule size, granule temperature and the contribution of each compartment to the overall torque for varying screw speed, mass feed rate and liquid-to-solid ratio. The only observed correlation was between the granule size and torque increase after the first kneading zone because the torque increase was an indication of the degree in granule growth which was consistently observed with all applied granulation process parameters. No correlation was observed in the other locations as changes of torque were accompanied to either granule breakage and/or growth. Moreover, torque increase was correlated to higher granule temperature, suggesting that energy put into the granulator was partly used to heat up the material being processed and explains additionally the lack of correlation between granule size and torque. Therefore, this study showed that torque could not be used as IPC to monitor granule size during TSG.


Assuntos
Temperatura Alta , Tecnologia Farmacêutica , Composição de Medicamentos , Tamanho da Partícula , Temperatura , Torque , Molhabilidade
12.
Int J Pharm ; 602: 120620, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892059

RESUMO

Near Infrared (NIR) spectroscopy is commonly utilized for continuous manufacturing as Process Analytical Technology (PAT) tool. This paper focus on a continuous direct compression manufacturing process, in which an NIR PAT probe is integrated into the tablet press feed frame and into the tablet diversion control system to ensure continuous monitoring of the potency and homogeneity of the blend within the process line. The quantification of NIR spectra is achieved through Partial Least-Squares (PLS) modeling, calibrated with offline analyzed tablet cores at different potency levels. Because the NIR measurements are often sensitive to sample physical properties caused by raw materials or process conditions, etc., adopting a data-driven approach will require a large amount of representative data throughout the method lifecycle. During the early stages of process development, whenever new uncaptured source of variability in the model space are encountered, the chemometric predictions can deviate from the offline reference, requiring frequent model updates. These deviations can be reduced by integrating process and physico-chemical knowledge in the on-line potency estimation. This paper presents a novel hybrid method combining the online NIR PLS and a potency soft sensor estimation, enabling a robust potency prediction whilst minimizing maintenance downtimes and facilitating cross-site method transfer.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Tecnologia Farmacêutica , Análise dos Mínimos Quadrados , Comprimidos
13.
Anal Sci ; 37(8): 1171-1176, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33518587

RESUMO

The field of oncology has recently seen an exponential growth in antibody-drug conjugates (ADCs) as a biopharmaceutical class with seven ADCs being launched onto the market in the last ten years. Despite the increase in the industrial research and development of these compounds, their structural complexity and heterogeneity continue to present various challenges regarding their analysis including reaction monitoring. Robust and simple reaction monitoring analysis are in demand in the view of at-line in-process monitoring, and can instill control, confidence and reliability in the ADC manufacturing process. Aiming at providing chromatographic methods for conjugation monitoring, we evaluated herein the potential of utilizing reverse phase HPLC analysis, without sample pretreatment, for characterization of traditional cysteine-based ADCs. This analysis can be used for estimation of drug antibody ratio (DAR), which has shown the same trends and results as other well-established HPLC techniques. This methodology was also applied to three ADCs derived from three different antibodies. Additionally, we analyzed unpurified ADC samples existing in a complex reaction matrix and separated ADC species and payload compounds. This investigation was conducted using three different ADCs based on different payloads. The results described herein indicate the potential application of this RP-HPLC methodology in reaction monitoring studies.


Assuntos
Imunoconjugados , Anticorpos , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Imunoconjugados/análise , Reprodutibilidade dos Testes
14.
Anal Bioanal Chem ; 413(6): 1595-1603, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33558961

RESUMO

Industrial production of human milk oligosaccharides (HMOs) represents a recently growing interest since they serve as key ingredients in baby formulas and are also utilized as dietary supplements for all age groups. Despite their short oligosaccharide chain lengths, HMO analysis is challenging due to extensive positional and linkage variations. Capillary gel electrophoresis primarily separates analyte molecules based on their hydrodynamic volume to charge ratios, thus, offers excellent resolution for most of such otherwise difficult-to-separate isomers. In this work, two commercially available gel compositions were evaluated on the analysis of a mixture of ten synthetic HMOs. The relevant respective separation matrices were then applied to selected analytical in-process control examples. The conventionally used carbohydrate separation matrix was applied for the in-process analysis of bacteria-mediated production of 3-fucosyllactose, lacto-N-tetraose, and lacto-N-neotetraose. The other example showed the suitability of the method for the in vivo in-process control of a shake flask and fermentation approach of 2'-fucosyllactose production. In this latter instance, borate complexation was utilized to efficiently separate the 2'- and 3-fucosylated lactose positional isomers. In all instances, the analysis of the HMOs of interest required only a couple of minutes with high resolution and excellent migration time and peak area reproducibility (average RSD 0.26% and 3.56%, respectively), features representing high importance in food additive manufacturing in-process control.


Assuntos
Suplementos Nutricionais/análise , Eletroforese Capilar/métodos , Aditivos Alimentares/análise , Análise de Alimentos/métodos , Leite Humano/metabolismo , Oligossacarídeos/análise , Ácidos Bóricos/química , Carboidratos/química , Fermentação , Glicosilação , Humanos , Hidrodinâmica , Oligossacarídeos/química , Reprodutibilidade dos Testes
15.
AAPS PharmSciTech ; 21(7): 271, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33033946

RESUMO

To develop a comprehensive understanding of pharmaceutical drug substance manufacturing (DSM) processes, we conducted a data mining study to examine 50 new drug applications (NDAs) approved in 2010-2016. We analyzed the prevalence of several frequently deployed in-process control (IPC) techniques and postreaction workup procedures, as well as the operational conditions specified for reactions and workups. Our findings show that crystallization and high-performance liquid chromatography (HPLC) were the most commonly used workup steps and in-process controls, respectively, in drug substance manufacturing. On average, each NDA implemented 12.6 in-process controls and 11.3 workups. Operation time for reactions and workup procedures varied from a few minutes to multiple days, though 61% of these were between 1 and 10 h.


Assuntos
Preparações Farmacêuticas/síntese química , Cristalização , Mineração de Dados , Controle de Qualidade
16.
PDA J Pharm Sci Technol ; 74(6): 660-673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32675305

RESUMO

The pharmaceutical industry is currently being confronted with new and complex challenges regarding the aseptic filling of parenterals, especially monoclonal antibodies, particularly for fill volumes <200 µL, which have become increasingly important with the increasing and continued development of intravitreal drugs and highly concentrated formulations. Not only does low-volume filling pose challenges to aseptic manufacturing, but the development of suitable in-process control to ensure reliable and robust filling processes for low-volume conditions has also been difficult. In particular, fill volumes <200 µL exceed limits of accuracy and robustness for the well-established method of gravimetric fill-volume control. Therefore, the present study aimed to evaluate and test novel sensors, which may allow the accurate and precise 100% contact-free measurement of drug-product formulations, with respect to filling volumes. These sensors were designed to be less influenced by inevitable noise factors, such as unidirectional airflow and vibrations. We designed the study using five different sensor concepts, to screen and identify suitable alternatives to gravimetric fill-volume control. The examined sensor concepts were based on airflow, capacitive pressure, light obscuration. and capacitive measurements. Our results demonstrated that all of the tested sensor types worked in the desired low-volume range of 10-150 µL and showed remarkable results, in terms of accuracy and precision, when compared with a high-precision gravimetric balance. A sensor based on capacitance measurement was identified as the most promising candidate for future sensor implementation into an aseptic filling line. This sensor design proved to be superior in terms of both sensitivity and precision compared with the other tested sensors. We concluded that this technology may allow the pharmaceutical industry to overcome existing challenges with respect to the reliable measurement of aseptic fill volumes <200 µL. This technology has the potential to fundamentally change how the pharmaceutical industry verifies fill volumes by facilitating 100% in-process control, even at high machine speeds.


Assuntos
Composição de Medicamentos/instrumentação , Indústria Farmacêutica/instrumentação , Esterilização , Anticorpos Monoclonais/análise , Calibragem , Capacitância Elétrica , Desenho de Equipamento , Pressão , Reprodutibilidade dos Testes , Tecnologia Farmacêutica/métodos , Vibração
17.
Int J Pharm ; 568: 118559, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351177

RESUMO

Monitoring of the coating end-point of functional coatings during the coating application process is desirable. Since currently available PAT methods require expensive test equipment, there is a need for a rapid test that can easily be applied without major investment. BARDS is a novel technique that has the potential to economise the production process of these kinds of pellet and tablet formulations. The thickness of a controlled release coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract or other targeted functionalities such as taste masking or moisture protection. Correspondingly, the amount of drug per unit mass of pellets decreases with increasing thickness of the functional coating. In this study, the functional polymer loading of the coating process is investigated by testing pellets via BARDS technology (Broadband Acoustic Resonance Dissolution Spectroscopy). The technique offers a rapid approach (<200 s) to characterising functional coatings at-line during their manufacture. Measurements are based on reproducible changes in the compressibility of a solvent during dissolution which is monitored acoustically via associated changes in the frequency of induced acoustic resonances. In case of enteric coatings a steady state acoustic lag time is associated with the erosion of the enteric coatings in acidic dissolution test media. This lag time is indicative of the coating layer thickness, assuming that the quality of the film coating is high. BARDS represents a possible future surrogate test for IPC testing, as a PAT method and possibly also for conventional USP dissolution testing. BARDS data correlate directly with the thickness of the functional coating, its integrity and also with the drug loading as validated by UV-Vis spectroscopy.


Assuntos
Ácidos Polimetacrílicos/química , Análise Espectral/métodos , Acústica , Cafeína , Liberação Controlada de Fármacos , Saliva/química , Paladar
18.
Adv Mater ; 30(20): e1706570, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29633443

RESUMO

The additive manufacturing of highly ordered, micrometer-scale scaffolds is at the forefront of tissue engineering and regenerative medicine research. The fabrication of scaffolds for the regeneration of larger tissue volumes, in particular, remains a major challenge. A technology at the convergence of additive manufacturing and electrospinning-melt electrospinning writing (MEW)-is also limited in thickness/volume due to the accumulation of excess charge from the deposited material repelling and hence, distorting scaffold architectures. The underlying physical principles are studied that constrain MEW of thick, large volume scaffolds. Through computational modeling, numerical values variable working distances are established respectively, which maintain the electrostatic force at a constant level during the printing process. Based on the computational simulations, three voltage profiles are applied to determine the maximum height (exceeding 7 mm) of a highly ordered large volume scaffold. These thick MEW scaffolds have fully interconnected pores and allow cells to migrate and proliferate. To the best of the authors knowledge, this is the first study to report that z-axis adjustment and increasing the voltage during the MEW process allows for the fabrication of high-volume scaffolds with uniform morphologies and fiber diameters.

19.
Braz. J. Pharm. Sci. (Online) ; 54(2): e17499, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-1039034

RESUMO

ABSTRACT For the release of pharmaceutical products into the drug market; most of the pharmaceutical companies depend on acceptance criteria - that are set internally, regulatory and/or pharmacopeially. However, statistical process control monitoring is underestimated in most quality control in cases; although it is important not only for process stability and efficiency assessment but also for compliance with all appropriate pharmaceutical practices such as good manufacturing practice and good laboratory practice, known collectively as GXP. The current work aims to investigate two tablet inspection characteristics monitored during in-process control viz. tablet average weight and hardness. Both properties were assessed during the compression phase of the tablet and before the coating stage. Data gathering was performed by the Quality Assurance Team and processed by Commercial Statistical Software packages. Screening of collected results of 31 batches of an antibacterial tablet - based on Fluoroquinolone -showed that all the tested lots met the release specifications, although the process mean has been unstable which could be strongly evident in the variable control chart. Accordingly, the two inspected processes were not in the state of control and require strong actions to correct for the non-compliance to GXP. What is not controlled cannot be predicted in the future and thus the capability analysis would be of no value except to show the process capability retrospectively only. Setting the rules for the application of Statistical Process Control (SPC) should be mandated by Regulatory Agencies.


Assuntos
Comprimidos com Revestimento Entérico/análise , Comprimidos com Revestimento Entérico/normas , Preparações Farmacêuticas/normas , Interpretação Estatística de Dados , Fluoroquinolonas/normas , Composição de Medicamentos/métodos , Indústria Farmacêutica/classificação
20.
FEBS Open Bio ; 7(10): 1557-1574, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28979843

RESUMO

The interactions of therapeutic antibodies with fragment crystallizable γ (Fcγ) receptors and neonatal Fc receptors (FcRn) are measured in vitro as indicators of antibody functional performance. Antibodies are anchored to immune cells through the Fc tail, and these interactions are important for the efficacy and safety of therapeutic antibodies. High-throughput binding studies on each of the human Fcγ receptor classes (FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa, and FcγRIIIb) as well as FcRn have been developed and performed with human IgG after stress-induced modifications to identify potential impact in vivo. Interestingly, we found that asparagine deamidation (D-N) reduced the binding of IgG to the low-affinity Fcγ receptors (FcγRIIa, FcγRIIb, FcγRIIIa, and FcγRIIIb), while FcγRI and FcRn binding was not impacted. Deglycosylation completely inhibited binding to all Fcγ receptors, but showed no impact on binding to FcRn. On the other hand, afucosylation only impacted binding to FcγRIIIa and FcγRIIIb. Methionine oxidation at levels below 7%, multiple freeze/thaw cycles and short-term thermal/shake stress did not influence binding to any of the Fc receptors. The presence of high molecular weight species, or aggregates, disturbed measurements in these binding assays; up to 5% of aggregates in IgG samples changed the binding and kinetics to each of the Fc receptors. Overall, the screening assays described in this manuscript prove that rapid and multiplexed binding assays may be a valuable tool for lead optimization, process development, in-process controls, and biosimilarity assessment of IgGs during development and manufacturing of therapeutic IgGs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA