RESUMO
This paper presents an innovative approach for the Feature Extraction method using Self-Attention, incorporating various Feature Selection techniques known as the AtSiftNet method to enhance the classification performance of motor imaginary activities using electrophotography (EEG) signals. Initially, the EEG signals were sorted and then denoised using multiscale principal component analysis to obtain clean EEG signals. However, we also conducted a non-denoised experiment. Subsequently, the clean EEG signals underwent the Self-Attention feature extraction method to compute the features of each trial (i.e., 350×18). The best 1 or 15 features were then extracted through eight different feature selection techniques. Finally, five different machine learning and neural network classification models were employed to calculate the accuracy, sensitivity, and specificity of this approach. The BCI competition III dataset IV-a was utilized for all experiments, encompassing the datasets of five volunteers who participated in the competition. The experiment findings reveal that the average accuracy of classification is highest among ReliefF (i.e., 99.946%), Mutual Information (i.e., 98.902%), Independent Component Analysis (i.e., 99.62%), and Principal Component Analysis (i.e., 98.884%) for both 1 and 15 best-selected features from each trial. These accuracies were obtained for motor imagery using a Support Vector Machine (SVM) as a classifier. In addition, five-fold validation was performed in this paper to assess the fair performance estimation and robustness of the model. The average accuracy obtained through five-fold validation is 99.89%. The experiments' findings indicate that the suggested framework provides a resilient biomarker with minimal computational complexity, making it a suitable choice for advancing Motor Imagery Brain-Computer Interfaces (BCI).
Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Imaginação , Aprendizado de Máquina , Análise de Componente Principal , Eletroencefalografia/métodos , Humanos , Imaginação/fisiologia , Redes Neurais de Computação , Algoritmos , Processamento de Sinais Assistido por Computador , Máquina de Vetores de SuporteRESUMO
Brain function can be modeled as the dynamic interactions between functional sources at different spatial scales, and each spatial scale can contain its functional sources with unique information, thus using a single scale may provide an incomplete view of brain function. This paper introduces a novel approach, termed "telescopic independent component analysis (TICA)," designed to construct spatial functional hierarchies and estimate functional sources across multiple spatial scales using fMRI data. The method employs a recursive ICA strategy, leveraging information from a larger network to guide the extraction of information about smaller networks. We apply our model to the default mode network (DMN), visual network (VN), and right frontoparietal network (RFPN). We investigate further on DMN by evaluating the difference between healthy people and individuals with schizophrenia. We show that the TICA approach can detect the spatial hierarchy of DMN, VS, and RFPN. In addition, TICA revealed DMN-associated group differences between cohorts that may not be captured if we focus on a single-scale ICA. In sum, our proposed approach represents a promising new tool for studying functional sources.
RESUMO
Automation is revamping our preprocessing pipelines, and accelerating the delivery of personalized digital medicine. It improves efficiency, reduces costs, and allows clinicians to treat patients without significant delays. However, the influx of multimodal data highlights the need to protect sensitive information, such as clinical data, and safeguard data fidelity. One of the neuroimaging modalities that produces large amounts of time-series data is Electroencephalography (EEG). It captures the neural dynamics in a task or resting brain state with high temporal resolution. EEG electrodes placed on the scalp acquire electrical activity from the brain. These electrical potentials attenuate as they cross multiple layers of brain tissue and fluid yielding relatively weaker signals than noise-low signal-to-noise ratio. EEG signals are further distorted by internal physiological artifacts, such as eye movements (EOG) or heartbeat (ECG), and external noise, such as line noise (50 Hz). EOG artifacts, due to their proximity to the frontal brain regions, are particularly challenging to eliminate. Therefore, a widely used EOG rejection method, independent component analysis (ICA), demands manual inspection of the marked EOG components before they are rejected from the EEG data. We underscore the inaccuracy of automatized ICA rejection and provide an auxiliary algorithm-Second Layer Inspection for EOG (SLOG) in the clinical environment. SLOG based on spatial and temporal patterns of eye movements, re-examines the already marked EOG artifacts and confirms no EEG-related activity is mistakenly eliminated in this artifact rejection step. SLOG achieved a 99% precision rate on the simulated dataset while 85% precision on the real EEG dataset. One of the primary considerations for cloud-based applications is operational costs, including computing power. Algorithms like SLOG allow us to maintain data fidelity and precision without overloading the cloud platforms and maxing out our budgets.
Assuntos
Algoritmos , Artefatos , Encéfalo , Computação em Nuvem , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Eletroencefalografia/métodos , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Razão Sinal-Ruído , Movimentos Oculares/fisiologia , Eletroculografia/métodos , Confiabilidade dos DadosRESUMO
Background: Childhood maltreatment (CM) is increasingly recognized as a significant risk factor for major depressive disorder (MDD), yet the neural mechanisms underlying the connection between CM and depression are not fully understood. This study aims to deepen our understanding of this relationship through neuroimaging, exploring how CM correlates with depression. Methods: The study included 56 MDD patients (33 with CM experiences and 23 without) and 23 healthy controls. Participants were assessed for depression severity, CM experiences, and underwent resting-state functional MRI scans. Independent Component Analysis was used to examine differences in functional connectivity (FC) within the Default Mode Network (DMN) among the groups. Results: MDD patients with CM experiences exhibited significantly stronger functional connectivity in the left Superior Frontal Gyrus (SFG) and right Anterior Cingulate Cortex (ACC) within the DMN compared to both MDD patients without CM experiences and healthy controls. FC in these regions positively correlated with Childhood Trauma Questionnaire scores. Receiver Operating Characteristic (ROC) curve analysis underscored the diagnostic value of FC in the SFG and ACC for identifying MDD related to CM. Additionally, MDD patients with CM experiences showed markedly reduced FC in the left medial Prefrontal Cortex (mPFC) relative to MDD patients without CM experiences, correlating negatively with Childhood Trauma Questionnaire scores. Conclusion: Our findings suggest that increased FC in the ACC and SFG within the DMN is associated with CM in MDD patients. This enhanced connectivity in these brain regions is key to understanding the predisposition to depression related to CM.
RESUMO
Mental illnesses extract a high personal and societal cost, and thus explorations of the links between mental illness and functional connectivity in the brain are critical. Investigating major mental illnesses, believed to arise from disruptions in sophisticated neural connections, allows us to comprehend how these neural network disruptions may be linked to altered cognition, emotional regulation, and social interactions. Although neuroimaging has opened new avenues to explore neural alterations linked to mental illnesses, the field still requires precise and sensitive methodologies to inspect these neural substrates of various psychological disorders. In this study, we employ a hierarchical methodology to derive double functionally independent primitives (dFIPs) from resting state functional magnetic resonance neuroimaging data (rs-fMRI). These dFIPs encapsulate canonical overlapping patterns of functional network connectivity (FNC) within the brain. Our investigation focuses on the examination of how combinations of these dFIPs relate to different mental disorder diagnoses. The central aim is to unravel the complex patterns of FNC that correspond to the diverse manifestations of mental illnesses. To achieve this objective, we used a large brain imaging dataset from multiple sites, comprising 5805 total individuals diagnosed with schizophrenia (SCZ), autism spectrum disorder (ASD), bipolar disorder (BPD), major depressive disorder (MDD), and controls. The key revelations of our study unveil distinct patterns associated with each mental disorder through the combination of dFIPs. Notably, certain individual dFIPs exhibit disorder-specific characteristics, while others demonstrate commonalities across disorders. This approach offers a novel, data-driven synthesis of intricate neuroimaging data, thereby illuminating the functional changes intertwined with various mental illnesses. Our results show distinct signatures associated with psychiatric disorders, revealing unique connectivity patterns such as heightened cerebellar connectivity in SCZ and sensory domain hyperconnectivity in ASD, both contrasted with reduced cerebellar-subcortical connectivity. Utilizing the dFIP concept, we pinpoint specific functional connections that differentiate healthy controls from individuals with mental illness, underscoring its utility in identifying neurobiological markers. In summary, our findings delineate how dFIPs serve as unique fingerprints for different mental disorders.
RESUMO
Recent research in the field of cognitive motor action decoding focuses on data acquired from Functional Near-Infrared Spectroscopy (fNIRS) and its analysis. This research aims to classify two different motor activities, namely, mental drawing (MD) and spatial navigation (SN), using fNIRS data from non-motor baseline data and other motor activities. Accurate activity detection in non-stationary signals like fNIRS is challenging and requires complex feature descriptors. As a novel framework, a new feature generation by fusion of wavelet feature, Hilbert, symlet, and Hjorth parameters is proposed for improving the accuracy of the classification. This new fused feature has statistical descriptor elements, time-localization in the frequency domain, edge feature, texture features, and phase information to detect and locate the activity accurately. Three types of independent component analysis, including FastICA, Picard, and Infomax were implemented for preprocessing which removes noises and motion artifacts. Two independent binary classifiers are designed to handle the complexity of classification in which one is responsible for mental drawing (MD) detection and the other one is spatial navigation (SN). Four different types of algorithms including nearest neighbors (KNN), Linear Discriminant Analysis (LDA), light gradient-boosting machine (LGBM), and Extreme Gradient Boosting (XGBOOST) were implemented. It has been identified that the LGBM classifier gives high accuracies-98% for mental drawing and 97% for spatial navigation. Comparison with existing research proves that the proposed method gives the highest classification accuracies. Statistical validation of the proposed new feature generation by the Kruskal-Wallis H-test and Mann-Whitney U non-parametric test proves the reliability of the proposed mechanism.
RESUMO
The demand for precise positioning in noisy environments has propelled the development of research on array antenna radar systems. Although the orthogonal matching pursuit (OMP) algorithm demonstrates superior performance in signal reconstruction, its application efficacy in noisy settings faces challenges. Consequently, this paper introduces an innovative OMP algorithm, DTM_OMP_ICA (a dual-threshold mask OMP algorithm based on independent component analysis), which optimizes the OMP signal reconstruction framework by utilizing two different observation bases in conjunction with independent component analysis (ICA). By implementing a mean mask strategy, it effectively denoises signals received by array antennas in noisy environments. Simulation results reveal that compared to traditional OMP algorithms, the DTM_OMP_ICA algorithm shows significant advantages in noise suppression capability and algorithm stability. Under optimal conditions, this algorithm achieves a noise suppression rate of up to 96.8%, with its stability also reaching as high as 99%. Furthermore, DTM_OMP_ICA surpasses traditional denoising algorithms in practical denoising applications, proving its effectiveness in reconstructing array antenna signals in noisy settings. This presents an efficient method for accurately reconstructing array antenna signals against a noisy backdrop.
RESUMO
Dynamic functional network connectivity (dFNC) analysis is a widely used approach for studying brain function and offering insight into how brain networks evolve over time. Typically, dFNC studies utilized fixed spatial maps and evaluate transient changes in coupling among time courses estimated from independent component analysis (ICA). This manuscript presents a complementary approach that relaxes this assumption by spatially reordering the components dynamically at each timepoint to optimize for a smooth gradient in the FNC (i.e., a smooth gradient among ICA connectivity values). Several methods are presented to summarize dynamic FNC gradients (dFNGs) over time, starting with static FNC gradients (sFNGs), then exploring the reordering properties as well as the dynamics of the gradients themselves. We then apply this approach to a dataset of schizophrenia (SZ) patients and healthy controls (HC). Functional dysconnectivity between different brain regions has been reported in schizophrenia, yet the neural mechanisms behind it remain elusive. Using resting state fMRI and ICA on a dataset consisting of 151 schizophrenia patients and 160 age and gender-matched healthy controls, we extracted 53 intrinsic connectivity networks (ICNs) for each subject using a fully automated spatially constrained ICA approach. We develop several summaries of our functional network connectivity gradient analysis, both in a static sense, computed as the Pearson correlation coefficient between full time series, and a dynamic sense, computed using a sliding window approach followed by reordering based on the computed gradient, and evaluate group differences. Static connectivity analysis revealed significantly stronger connectivity between subcortical (SC), auditory (AUD) and visual (VIS) networks in patients, as well as hypoconnectivity in sensorimotor (SM) network relative to controls. sFNG analysis highlighted distinctive clustering patterns in patients and HCs along cognitive control (CC)/ default mode network (DMN), as well as SC/ AUD/ SM/ cerebellar (CB), and VIS gradients. Furthermore, we observed significant differences in the sFNGs between groups in SC and CB domains. dFNG analysis suggested that SZ patients spend significantly more time in a SC/ CB state based on the first gradient, while HCs favor the SM/DMN state. For the second gradient, however, patients exhibited significantly higher activity in CB domains, contrasting with HCs' DMN engagement. The gradient synchrony analysis conveyed more shifts between SM/ SC networks and transmodal CC/ DMN networks in patients. In addition, the dFNG coupling revealed distinct connectivity patterns between SC, SM and CB domains in SZ patients compared to HCs. To recap, our results advance our understanding of brain network modulation by examining smooth connectivity trajectories. This provides a more complete spatiotemporal summary of the data, contributing to the growing body of current literature regarding the functional dysconnectivity in schizophrenia patients. By employing dFNG, we highlight a new perspective to capture large scale fluctuations across the brain while maintaining the convenience of brain networks and low dimensional summary measures.
RESUMO
The SERS response of adenine is one of the most studied, due to its outstanding exaltation. However, the spectra obtained strongly differ according to the experimental conditions and still remain not well understood. To be able to search for the presence of this molecule in complex environments, it is essential to better understand the SERS response of adenine alone. After a brief presentation of the literature on the subject, we present results suggesting that the experimental spectra would result from the overlap of different spectroscopic signatures, that may probably be due to different non-covalent interactions or different electromagnetic fields experienced by adenine molecules. An independent component analysis is reported. Our results underline the difficulty to precisely analyze the experimental data, the need to continue this research and to constitute data banks that would allow comparing the spectra obtained in different laboratories according to the experimental conditions.
RESUMO
The concept of emotional intelligence (EI) refers to the ability to recognize and regulate emotions to appropriately guide cognition and behaviour. Unfortunately, studies on the neural bases of EI are scant, and no study so far has exhaustively investigated grey matter (GM) and white matter (WM) contributions to it. To fill this gap, we analysed trait measure of EI and structural MRI data from 128 healthy participants to shed new light on where and how EI is encoded in the brain. In addition, we explored the relationship between the neural substrates of trait EI and trait anxiety. A data fusion unsupervised machine learning approach (mCCA + jICA) was used to decompose the brain into covarying GM-WM networks and to assess their association with trait-EI. Results showed that high levels trait-EI are associated with decrease in GM-WM concentration in a network spanning from frontal to parietal and temporal regions, among which insula, cingulate, parahippocampal gyrus, cuneus and precuneus. Interestingly, we also found that the higher the GM-WM concentration in the same network, the higher the trait anxiety. These findings encouragingly highlight the neural substrates of trait EI and their relationship with anxiety. The network is discussed considering its overlaps with the Default Mode Network.
Assuntos
Rede de Modo Padrão , Substância Cinzenta , Humanos , Substância Cinzenta/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Inteligência Emocional/fisiologia , Imageamento por Ressonância Magnética/métodos , Ansiedade/diagnóstico por imagemRESUMO
Drug-resistant epilepsy (DRE) is often treated with surgery or neuromodulation. Specifically, responsive neurostimulation (RNS) is a widely used therapy that is programmed to detect abnormal brain activity and intervene with tailored stimulation. Despite the success of RNS, some patients require further interventions. However, having an RNS device in situ is a hindrance to the performance of neuroimaging techniques. Magnetoencephalography (MEG), a non-invasive neurophysiologic and functional imaging technique, aids epilepsy assessment and surgery planning. MEG performed post-RNS is complicated by signal distortions. This study proposes an independent component analysis (ICA)-based approach to enhance MEG signal quality, facilitating improved assessment for epilepsy patients with implanted RNS devices. Three epilepsy patients, two with RNS implants and one without, underwent MEG scans. Preprocessing included temporal signal space separation (tSSS) and an automated ICA-based approach with MNE-Python. Power spectral density (PSD) and signal-to-noise ratio (SNR) were analyzed, and MEG dipole analysis was conducted using single equivalent current dipole (SECD) modeling. The ICA-based noise removal preprocessing method substantially improved the signal-to-noise ratio (SNR) for MEG data from epilepsy patients with implanted RNS devices. Qualitative assessment confirmed enhanced signal readability and improved MEG dipole analysis. ICA-based processing markedly enhanced MEG data quality in RNS patients, emphasizing its clinical relevance.
RESUMO
The electroencephalogram (EEG) of the patient is used to identify their motor intention, which is then converted into a control signal through a brain-computer interface (BCI) based on motor imagery. Whenever gathering features from EEG signals, making a BCI is difficult in part because of the enormous dimensionality of the data. Three stages make up the suggested methodology: pre-processing, extraction of features, selection, and categorization. To remove unwanted artifacts, the EEG signals are filtered by a fifth-order Butterworth multichannel band-pass filter. This decreases execution time and memory use, both of which improve system performance. Then a novel multichannel optimized CSP-ICA feature extraction technique is used to separate and eliminate non-discriminative information from discriminative information in the EEG channels. Furthermore, CSP uses the concept of an Artificial Bee Colony (ABC) algorithm to automatically identify the simultaneous global ideal frequency band and time interval combination for the extraction and classification of common spatial pattern characteristics. Finally, a Tunable optimized feed-forward neural network (FFNN) classifier is utilized to extract and categorize the temporal and frequency domain features, which employs an FFNN classifier with Tunable-Q wavelet transform. The proposed framework, therefore optimizes signal processing, enabling enhanced EEG signal classification for BCI applications. The result shows that the models that use Tunable optimized FFNN produce higher classification accuracy of more than 20% when compared to the existing models.
RESUMO
Psychosis (including symptoms of delusions, hallucinations, and disorganized conduct/speech) is a main feature of schizophrenia and is frequently present in other major psychiatric illnesses. Studies in individuals with first-episode (FEP) and early psychosis (EP) have the potential to interpret aberrant connectivity associated with psychosis during a period with minimal influence from medication and other confounds. The current study uses a data-driven whole-brain approach to examine patterns of aberrant functional network connectivity (FNC) in a multi-site dataset comprising resting-state functional magnetic resonance images (rs-fMRI) from 117 individuals with FEP or EP and 130 individuals without a psychiatric disorder, as controls. Accounting for age, sex, race, head motion, and multiple imaging sites, differences in FNC were identified between psychosis and control participants in cortical (namely the inferior frontal gyrus, superior medial frontal gyrus, postcentral gyrus, supplementary motor area, posterior cingulate cortex, and superior and middle temporal gyri), subcortical (the caudate, thalamus, subthalamus, and hippocampus), and cerebellar regions. The prominent pattern of reduced cerebellar connectivity in psychosis is especially noteworthy, as most studies focus on cortical and subcortical regions, neglecting the cerebellum. The dysconnectivity reported here may indicate disruptions in cortical-subcortical-cerebellar circuitry involved in rudimentary cognitive functions which may serve as reliable correlates of psychosis.
Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos Psicóticos/patologia , Encéfalo , Esquizofrenia/diagnóstico , Cerebelo , Mapeamento Encefálico/métodosRESUMO
Eyeblinks and other large artifacts can create two major problems in event-related potential (ERP) research, namely confounds and increased noise. Here, we developed a method for assessing the effectiveness of artifact correction and rejection methods in minimizing these two problems. We then used this method to assess a common artifact minimization approach, in which independent component analysis (ICA) is used to correct ocular artifacts, and artifact rejection is used to reject trials with extreme values resulting from other sources (e.g., movement artifacts). This approach was applied to data from five common ERP components (P3b, N400, N170, mismatch negativity, and error-related negativity). Four common scoring methods (mean amplitude, peak amplitude, peak latency, and 50% area latency) were examined for each component. We found that eyeblinks differed systematically across experimental conditions for several of the components. We also found that artifact correction was reasonably effective at minimizing these confounds, although it did not usually eliminate them completely. In addition, we found that the rejection of trials with extreme voltage values was effective at reducing noise, with the benefits of eliminating these trials outweighing the reduced number of trials available for averaging. For researchers who are analyzing similar ERP components and participant populations, this combination of artifact correction and rejection approaches should minimize artifact-related confounds and lead to improved data quality. Researchers who are analyzing other components or participant populations can use the method developed in this study to determine which artifact minimization approaches are effective in their data.
Assuntos
Eletroencefalografia , Potenciais Evocados , Humanos , Masculino , Feminino , Eletroencefalografia/métodos , Artefatos , Piscadela , Processamento de Sinais Assistido por Computador , AlgoritmosRESUMO
BACKGROUND: Forecasting the efficacy of repetitive transcranial magnetic stimulation (rTMS) therapy can lead to substantial time and cost savings by preventing futile treatments. To achieve this objective, we've formulated a machine learning approach aimed at categorizing patients with major depressive disorder (MDD) into two groups: individuals who respond (R) positively to rTMS treatment and those who do not respond (NR). METHODS: Preceding the commencement of treatment, we obtained resting-state EEG data from 106 patients diagnosed with MDD, employing 32 electrodes for data collection. These patients then underwent a 7-week course of rTMS therapy, and 54 of them exhibited positive responses to the treatment. Employing Independent Component Analysis (ICA) on the EEG data, we successfully pinpointed relevant brain sources that could potentially serve as markers of neural activity within the dorsolateral prefrontal cortex (DLPFC). These identified sources were further scrutinized to estimate the sources of activity within the sensor domain. Then, we integrated supplementary physiological data and implemented specific criteria to yield more realistic estimations when compared to conventional EEG analysis. In the end, we selected components corresponding to the DLPFC region within the sensor domain. Features were derived from the time-series data of these relevant independent components. To identify the most significant features, we used Reinforcement Learning (RL). In categorizing patients into two groups - R and NR to rTMS treatment - we utilized three distinct classification algorithms including K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Multilayer Perceptron (MLP). We assessed the performance of these classifiers through a ten-fold cross-validation method. Additionally, we conducted a statistical test to evaluate the discriminative capacity of these features between responders and non-responders, opening the door for further exploration in this field. RESULTS: We identified EEG features that can anticipate the response to rTMS treatment. The most robust discriminators included EEG beta power, the sum of bispectrum diagonal elements in the delta and beta frequency bands. When these features were combined into a single vector, the classification of responders and non-responders achieved impressive performance, with an accuracy of 95.28 %, specificity at 94.23 %, sensitivity reaching 96.29 %, and precision standing at 94.54 %, all achieved using SVM. CONCLUSIONS: The results of this study suggest that the proposed approach, utilizing power, non-linear, and bispectral features extracted from relevant independent component time-series, has the capability to forecast the treatment outcome of rTMS for MDD patients based solely on a single pre-treatment EEG recording session. The achieved findings demonstrate the superior performance of our method compared to previous techniques.
Assuntos
Transtorno Depressivo Maior , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Transtorno Depressivo Maior/terapia , Eletroencefalografia/métodos , Depressão , Córtex Pré-Frontal/fisiologiaRESUMO
Functional magnetic resonance imaging (fMRI) studies often estimate brain intrinsic connectivity networks (ICNs) from temporal relationships between hemodynamic signals using approaches such as independent component analysis (ICA). While ICNs are thought to represent functional sources that play important roles in various psychological phenomena, current approaches have been tailored to identify ICNs that mainly reflect linear statistical relationships. However, the elements comprising neural systems often exhibit remarkably complex nonlinear interactions that may be involved in cognitive operations and altered in psychiatric conditions such as schizophrenia. Consequently, there is a need to develop methods capable of effectively capturing ICNs from measures that are sensitive to nonlinear relationships. Here, we advance a novel approach to estimate ICNs from explicitly nonlinear whole-brain functional connectivity (ENL-wFC) by transforming resting-state fMRI (rsfMRI) data into the connectivity domain, allowing us to capture unique information from distance correlation patterns that would be missed by linear whole-brain functional connectivity (LIN-wFC) analysis. Our findings provide evidence that ICNs commonly extracted from linear (LIN) relationships are also reflected in explicitly nonlinear (ENL) connectivity patterns. ENL ICN estimates exhibit higher reliability and stability, highlighting our approach's ability to effectively quantify ICNs from rsfMRI data. Additionally, we observed a consistent spatial gradient pattern between LIN and ENL ICNs with higher ENL weight in core ICN regions, suggesting that ICN function may be subserved by nonlinear processes concentrated within network centers. We also found that a uniquely identified ENL ICN distinguished individuals with schizophrenia from healthy controls while a uniquely identified LIN ICN did not, emphasizing the valuable complementary information that can be gained by incorporating measures that are sensitive to nonlinearity in future analyses. Moreover, the ENL estimates of ICNs associated with auditory, linguistic, sensorimotor, and self-referential processes exhibit heightened sensitivity towards differentiating between individuals with schizophrenia and controls compared to LIN counterparts, demonstrating the translational value of our approach and of the ENL estimates of ICNs that are frequently reported as disrupted in schizophrenia. In summary, our findings underscore the tremendous potential of connectivity domain ICA and nonlinear information in resolving complex brain phenomena and revolutionizing the landscape of clinical FC analysis.
RESUMO
Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi-spatial-scale canonical intrinsic connectivity network (ICN) templates via the use of multi-model-order independent component analysis (ICA). We also study the feasibility of estimating subject-specific ICNs via spatially constrained ICA. The results show that the subject-level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large-scale ICNs require less data to achieve specific levels of (within- and between-subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within-subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.
Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagemRESUMO
An efficient processing approach is essential for increasing identification accuracy since the electroencephalogram (EEG) signals produced by the Brain-Computer Interface (BCI) apparatus are nonlinear, nonstationary, and time-varying. The interpretation of scalp EEG recordings can be hampered by nonbrain contributions to electroencephalographic (EEG) signals, referred to as artifacts. Common disturbances in the capture of EEG signals include electrooculogram (EOG), electrocardiogram (ECG), electromyogram (EMG) and other artifacts, which have a significant impact on the extraction of meaningful information. This study suggests integrating the Singular Spectrum Analysis (SSA) and Independent Component Analysis (ICA) methods to preprocess the EEG data. The key objective of our research was to employ Higher-Order Linear-Moment-based SSA (HOL-SSA) to decompose EEG signals into multivariate components, followed by extracting source signals using Online Recursive ICA (ORICA). This approach effectively improves artifact rejection. Experimental results using the motor imagery High-Gamma Dataset validate our method's ability to identify and remove artifacts such as EOG, ECG, and EMG from EEG data, while preserving essential brain activity.
RESUMO
Eyeblinks and other large artifacts can create two major problems in event-related potential (ERP) research, namely confounds and increased noise. Here, we developed a method for assessing the effectiveness of artifact correction and rejection methods at minimizing these two problems. We then used this method to assess a common artifact minimization approach, in which independent component analysis (ICA) is used to correct ocular artifacts, and artifact rejection is used to reject trials with extreme values resulting from other sources (e.g., movement artifacts). This approach was applied to data from five common ERP components (P3b, N400, N170, mismatch negativity, and error-related negativity). Four common scoring methods (mean amplitude, peak amplitude, peak latency, and 50% area latency) were examined for each component. We found that eyeblinks differed systematically across experimental conditions for several of the components. We also found that artifact correction was reasonably effective at minimizing these confounds, although it did not usually eliminate them completely. In addition, we found that the rejection of trials with extreme voltage values was effective at reducing noise, with the benefits of eliminating these trials outweighing the reduced number of trials available for averaging. For researchers who are analyzing similar ERP components and participant populations, this combination of artifact correction and rejection approaches should minimize artifact-related confounds and lead to improved data quality. Researchers who are analyzing other components or participant populations can use the method developed in this study to determine which artifact minimization approaches are effective in their data.
RESUMO
Functional ultrasound (fUS) imaging is a method for visualizing deep brain activity based on cerebral blood volume changes coupled with neural activity, while functional MRI (fMRI) relies on the blood-oxygenation-level-dependent signal coupled with neural activity. Low-frequency fluctuations (LFF) of fMRI signals during resting-state can be measured by resting-state fMRI (rsfMRI), which allows functional imaging of the whole brain, and the distributions of resting-state network (RSN) can then be estimated from these fluctuations using independent component analysis (ICA). This procedure provides an important method for studying cognitive and psychophysiological diseases affecting specific brain networks. The distributions of RSNs in the brain-wide area has been reported primarily by rsfMRI. RSNs using rsfMRI are generally computed from the time-course of fMRI signals for more than 5 min. However, a recent dynamic functional connectivity study revealed that RSNs are still not perfectly stable even after 10 min. Importantly, fUS has a higher temporal resolution and stronger correlation with neural activity compared with fMRI. Therefore, we hypothesized that fUS applied during the resting-state for a shorter than 5 min would provide similar RSNs compared to fMRI. High temporal resolution rsfUS data were acquired at 10 Hz in awake mice. The quality of the default mode network (DMN), a well-known RSN, was evaluated using signal-noise separation (SNS) applied to different measurement durations of rsfUS. The results showed that the SNS did not change when the measurement duration was increased to more than 210 s. Next, we measured short-duration rsfUS multi-slice measurements in the brain-wide area. The results showed that rsfUS with the short duration succeeded in detecting RSNs distributed in the brain-wide area consistent with RSNs detected by 11.7-T MRI under awake conditions (medial prefrontal cortex and cingulate cortex in the anterior DMN, retrosplenial cortex and visual cortex in the posterior DMN, somatosensory and motor cortexes in the lateral cortical network, thalamus, dorsal hippocampus, and medial cerebellum), confirming the reliability of the RSNs detected by rsfUS. However, bilateral RSNs located in the secondary somatosensory cortex, ventral hippocampus, auditory cortex, and lateral cerebellum extracted from rsfUS were different from the unilateral RSNs extracted from rsfMRI. These findings indicate the potential of rsfUS as a method for analyzing functional brain networks and should encourage future research to elucidate functional brain networks and their relationships with disease model mice.