Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.611
Filtrar
1.
Front Plant Sci ; 15: 1408833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091312

RESUMO

Several plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In this study, we investigated the role of PAA during interactions between the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 (PtoDC3000) and the model plant host, Arabidopsis thaliana. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) of PtoDC3000 converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we further demonstrated the biochemical versatility of AldA by conducting substrate screening and steady-state kinetic analyses, and showed that AldA can use both IAAld and phenylacetaldehyde as substrates to produce IAA and PAA, respectively. Quantification of auxin in infected plant tissue showed that AldA-dependent synthesis of either IAA or PAA by PtoDC3000 does not contribute significantly to the increase in auxin levels in infected A. thaliana leaves. Using available arogenate dehydratase (adt) mutant lines of A. thaliana compromised for PAA synthesis, we observed that a reduction in PAA-Asp and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results provide evidence that PAA/IAA homeostasis in A. thaliana influences the outcome of plant-microbial interactions.

2.
Plant Physiol Biochem ; 215: 108970, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39094479

RESUMO

The LED Blue Light (LBL) (450 nm) effect on hormones levels and on jasmonates (JAs) metabolism in oranges was investigated. The quantum flux (2 days, 60 µmol m-2. s-1) was chosen for its efficacy in reducing postharvest rot caused by this crop's main postharvest phytopathogenic fungus (Penicillium digitatum). The analysis of abscisic (ABA), salicylic (SA) and indole-3-acetic (IAA) acids, and of JAs-related metabolites, revealed that LBL modifies all studied metabolites and had major effects on JAs levels, mainly on jasmonic acid (JA) and its precursor cis-(+)-12-oxo-phytodienoic acid (OPDA). This agrees with the up-regulation of the genes participating in their synthesis. Results highlight the relevance of CsLOX1 and CsLOX5, and the contribution of CsAOC3, in the LBL-induced OPDA biosynthesis, whereas CsOPR2, CsACX1 and CsACX3 would play a part in the synthesis of JA from OPDA. Data also suggest that the applied LBL quantum flux favors fruit JA perception by increasing the expression of the coronatine insensitive 1 (COI1) receptor; and signaling by down-regulating abundant CsJAZ negative regulators. Differences in OPDA and JA between the LBL-treated oranges and their control fruit left in the dark disappeared after shifting the LBL-treated oranges to darkness for 3 more days. However, the LBL and darkness combination slightly increased IAA and SA contents.

3.
Angew Chem Int Ed Engl ; : e202409430, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088419

RESUMO

The cytochrome P450 homolog, TxtE, efficiently catalyzes the direct and regioselective aromatic nitration of the indolyl moiety of L-tryptophan to 4-nitro-L-tryptophan, using nitric oxide and dioxygen as co-substrates. Pathways for such direct and selective nitration of heteroaromatic motifs present platforms for engineering new nitration biocatalysts for pharmacologically beneficial targets, among a medley of other pivotal industrial applications. Precise mechanistic details concerning this pathway are only weakly understood, albeit a heme iron(III)-peroxynitrite active species has been postulated. To shed light on this unique reaction landscape, we investigated the indole nitration pathway of a series of biomimetic ferric heme superoxide mimics, [(Por)FeIII(O2-•)], in the presence of NO. Therein, our model systems gave rise to three distinct nitroindole products, including 4-nitroindole, the product analogous to that obtained with TxtE. Moreover, 15N and 18O isotope labeling studies, along with meticulously designed control experiments lend credence to a heme peroxynitrite active nitrating agent, drawing close similarities to the tryptophan nitration mechanism of TxtE. All organic and inorganic reaction components have been fully characterized using spectroscopic methods. Theoretical investigation into several mechanistic possibilities deem a unique indolyl radical based reaction pathway as the most energetically favorable, products of which, are in excellent agreement with experimental findings.

4.
Chemistry ; : e202402524, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060220

RESUMO

This study presents a Ni-photoredox method for indole N-arylation, broadening the range of substrates to include indoles with unprotected C3-positions and base-sensitive groups. Through detailed mechanistic inquiries, a Ni(I/III) mechanism was uncovered, distinct from those commonly proposed for Ni-catalyzed amine, thiol, and alcohol arylation, as well as from the Ni(0/II/III) cycle identified for amide arylation under almost identical conditions. The key finding is the formation of a Ni(I) intermediate bearing the indole nucleophile as a ligand prior to oxidative addition, which is rare for Ni-photoredox carbon-heteroatom coupling and has a profound impact on the reaction kinetics and scope. The pre-coordination of indole renders a more electron-rich Ni(I) intermediate, which broadens the scope by enabling fast reactivity even with challenging electron-rich aryl bromide substrates. Thus, this work highlights the often-overlooked influence of X-type ligands on Ni oxidative addition rates and illustrates yet another mechanistic divergence in Ni-photoredox C-heteroatom couplings.

5.
J Agric Food Chem ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047266

RESUMO

Oxathiapiprolin (OXA), which targets the oxysterol-binding protein (OSBP), is an outstanding piperidinyl thiazole isoxazoline (PTI) fungicide that can be used to control oomycetes diseases. In this study, starting from the structure of OXA, a series of novel OSBP inhibitors were designed and synthesized by introducing an indole moiety to replace the pyrazole in OXA. Finally, compound b24 was found to exhibit the highest control effect (82%) against cucumber downy mildew (CDM) in the greenhouse at a very low dosage of 0.069 mg/L, which was comparable to that of OXA (88%). Furthermore, it showed better activity against potato late blight (PLB) than other derivatives of indole. The computational results showed that the R-conformation of b24 should be the dominant conformation binding to PcOSBP. The results of the present work indicate that the 3-fluorine-indole ring is a favorable fragment to increasing the electronic energy when binding with PcOSBP. Furthermore, compound b24 could be used as a lead compound for the discovery of new OSBP inhibitors.

6.
J Exp Bot ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058275

RESUMO

Boron dimerizes RG-II in the plant cell wall and is crucial for plant cell elongation. However, studying RG-II dimerization in plants is challenging because of the severe phenotypes or lethality of RG-II mutants. Boron deprivation abrogates both RG-II dimerization and plant growth, but whether or how these phenotypes are functionally linked has remained unclear. Boric acid analogues can serve as experimental tools to interfere with RG-II cross-linking. Here, we investigated RG-II dimerization and developmental phenotypes in Arabidopsis thaliana seedlings treated with a boric acid analogue, phenylboronic acid (PBA), to test whether the observed developmental phenotypes are attributable to alteration of RG-II dimerization or to other putative functions of boron in plants. We found that PBA treatment altered root development in seedlings while RG-II dimerization and distribution were not affected. Surprisingly, under low boron conditions, PBA treatment i) had no effect on root size but still prevented lateral root development and ii) restored RG-II dimerization. PBA treatment also disrupted auxin levels, potentially explaining the absence of lateral roots in seedlings treated with this analogue. We conclude that PBA interacts both with RG-II and other cellular targets such as auxin signaling components, and that the phenotypes caused by PBA arise from interference with multiple functions of boron.

7.
J Pharm Biomed Anal ; 249: 116345, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986348

RESUMO

Ophiocordyceps xuefengensis (O. xuefengensis), the sister taxon of Ophiocordyceps sinensis (O. sinensis), is consumed as a "tonic food" due to its health benefits. However, little is known regarding the chemistry and bioactivity of O. xuefengensis. In this study, we characterized 80 indole-based alkaloids in the ethyl acetate fraction of O. xuefengensis by high performance liquid chromatography-quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS), of which 54 indole-based alkaloids were identified as possibly new compounds. Furthermore, 29 of these compounds were established as potential anti-cancer compounds by ligand fishing combined with HPLC-Q-TOF-MS/MS. Moreover, molecular docking identified the NH- and OH- groups of these compounds as the key active groups. The present study has expanded the knowledge on the characteristic indole-based alkaloids and anti-cancer activity of O. xuefengensis.

8.
Arch Pharm (Weinheim) ; : e2400440, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986447

RESUMO

Acinetobacter baumannii with the capability to "escape" almost all currently available antibacterials is eroding the safety of basic medical interventions and is an increasing cause of mortality globally, prompting a substantial requirement for new classes of antibacterial agents. Indoles participate in the regulation of persistent bacterial formation, biofilm formation, plasmid stability, and drug resistance. In particular, indole hybrids demonstrated promising antibacterial activity against both drug-sensitive and drug-resistant A. baumannii pathogens, representing a fertile source for the discovery of novel therapeutic agents for clinical deployment in controlling A. baumannii infections. This mini-review outlines the current innovations of indole hybrids with antibacterial activity against A. baumannii pathogens, covering articles published from 2020 to the present, to open new avenues for exploring novel anti-A. baumannii candidates.

9.
World J Gastrointest Oncol ; 16(6): 2697-2715, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994159

RESUMO

BACKGROUND: Colorectal cancer (CRC) has a high incidence and mortality. Recent studies have shown that indole derivatives involved in gut microbiota metabolism can impact the tumorigenesis, progression, and metastasis of CRC. AIM: To investigate the effect of indole-3-acetaldehyde (IAAD) on CRC. METHODS: The effect of IAAD was evaluated in a syngeneic mouse model of CRC and CRC cell lines (HCT116 and DLD-1). Cell proliferation was assessed by Ki-67 fluorescence staining and cytotoxicity tests. Cell apoptosis was analysed by flow cytometry after staining with Annexin V-fluorescein isothiocyanate and propidium iodide. Invasiveness was investigated using the transwell assay. Western blotting and real-time fluorescence quantitative polymerase chain reaction were performed to evaluate the expression of epithelial-mesenchymal transition related genes and aryl hydrocarbon receptor (AhR) downstream genes. The PharmMapper, SEA, and SWISS databases were used to screen for potential target proteins of IAAD, and the core proteins were identified through the String database. RESULTS: IAAD reduced tumorigenesis in a syngeneic mouse model. In CRC cell lines HCT116 and DLD1, IAAD exhibited cytotoxicity starting at 24 h of treatment, while it reduced Ki67 expression in the nucleus. The results of flow cytometry showed that IAAD induced apoptosis in HCT116 cells but had no effect on DLD1 cells, which may be related to the activation of AhR. IAAD can also increase the invasiveness and epithelial-mesenchymal transition of HCT116 and DLD1 cells. At low concentrations (< 12.5 µmol/L), IAAD only exhibited cytotoxic effects without promoting cell invasion. In addition, predictions based on online databases, protein-protein interaction analysis, and molecular docking showed that IAAD can bind to matrix metalloproteinase-9 (MMP9), angiotensin converting enzyme (ACE), poly(ADP-ribose) polymerase-1 (PARP1), matrix metalloproteinase-2 (MMP2), and myeloperoxidase (MPO). CONCLUSION: Indole-3-aldehyde can induce cell apoptosis and inhibit cell proliferation to prevent the occurrence of CRC; however, at high concentrations (≥ 25 µmol/L), it can also promote epithelial-mesenchymal transition and invasion in CRC cells. IAAD activates AhR and directly binds MMP9, ACE, PARP1, MMP2, and MPO, which partly reveals why it has a bidirectional effect.

10.
Metab Eng ; 85: 14-25, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971492

RESUMO

Indigo is widely used in textile industries for denim garments dyeing and is mainly produced by chemical synthesis which, however, raises environmental sustainability issues. Bio-indigo may be produced by fermentation of metabolically engineering bacteria, but current methods are economically incompetent due to low titer and the need for an inducer. To address these problems, we first characterized several synthetic promoters in E. coli and demonstrated the feasibility of inducer-free indigo production from tryptophan using the inducer-free promoter. We next coupled the tryptophan-to-indigo and glucose-to-tryptophan pathways to generate a de novo glucose-to-indigo pathway. By rational design and combinatorial screening, we identified the optimal promoter-gene combinations, which underscored the importance of promoter choice and expression levels of pathway genes. We thus created a new E. coli strain that exploited an indole pathway to enhance the indigo titer to 123 mg/L. We further assessed a panel of heterologous tryptophan synthase homologs and identified a plant indole lyase (TaIGL), which along with modified pathway design, improved the indigo titer to 235 mg/L while reducing the tryptophan byproduct accumulation. The optimal E. coli strain expressed 8 genes essential for rewiring carbon flux from glucose to indole and then to indigo: mFMO, ppsA, tktA, trpD, trpC, TaIGL and feedback-resistant aroG and trpE. Fed-batch fermentation in a 3-L bioreactor with glucose feeding further increased the indigo titer (≈965 mg/L) and total quantity (≈2183 mg) at 72 h. This new synthetic glucose-to-indigo pathway enables high-titer indigo production without the need of inducer and holds promise for bio-indigo production.

11.
Molecules ; 29(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38999179

RESUMO

Heterocyclic aryl selenides have recently attracted considerable research interest owing to their applications in biological and pharmaceutical fields. Herein, we describe a simple and general synthesis of 3-selanylindoles via a novel regioselective C-H selenation of indoles using a bismuth reagent as a catalyst. The reactions of indoles with diselenides in the presence of 10 mol% BiI3 at 100 °C in DMF afforded the corresponding 3-selanylindoles in moderate-to-excellent yields. The reaction proceeded efficiently under aerobic conditions by adding only a catalytic amount of BiI3, which was non-hygroscopic and less toxic, and both selanyl groups of the diselenide were transferred to the desired products.

12.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000077

RESUMO

Alkoxyalkylation and hydroxyalkylation methods utilizing oxo-compound derivatives such as aldehydes, acetals or acetylenes and various alcohols or water are widely used tools in preparative organic chemistry to synthesize bioactive compounds, biosensors, supramolecular compounds and petrochemicals. The syntheses of such molecules of broad relevance are facilitated by acid, base or heterogenous catalysis. However, degradation of the N-analogous Mannich bases are reported to yield alkoxyalkyl derivatives via the retro-Mannich reaction. The mutual derivative of all mentioned species are quinone methides, which are reported to form under both alkoxy- and aminoalkylative conditions and via the degradation of the Mannich-products. The aim of this review is to summarize the alkoxyalkylation (most commonly alkoxymethylation) of electron-rich arenes sorted by the methods of alkoxyalkylation (direct or via retro-Mannich reaction) and the substrate arenes, such as phenolic and derived carbocycles, heterocycles and the widely examined indole derivatives.


Assuntos
Elétrons , Alquilação , Álcoois/química , Catálise , Hidrocarbonetos Aromáticos/química
13.
Future Med Chem ; : 1-17, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041719

RESUMO

Aim: Developing potent medicinal alternates for tuberculosis (TB) is highly desirable due to the advent of drug-resistant lethal TB strains. Methods & results: Novel indole-isoniazid integrates have been synthesized with promising antimycobacterial action against the H37Rv strain, and the nitro analogs 4e and 4j show the highest efficacy with a minimum inhibitory concentration of 1.25 µg/ml. The molecular docking studies against InhA support the experimental findings. Indole conjugates display remarkable radical quenching efficiency, and compounds 4e and 4j demonstrate maximum IC50 values of 50.19 and 52.45 µg/ml, respectively. Pharmacokinetic analysis anticipated appreciable druggability for the title compounds. Conclusion: The notable bioaction of the indole-isoniazid templates projects them as potential lead in developing anti-TB medications with synergetic antioxidant action.


[Box: see text].

14.
J Agric Food Chem ; 72(28): 15725-15739, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38973111

RESUMO

Indole-3-lactic acid (ILA) has exhibited antimicrobial properties. However, its role in inhibiting Helicobacter pylori infection remains elusive. This study investigated the inhibitory effect of ILA produced by Lacticaseibacillus paracasei on H. pylori, which was further confirmed by cell and animal experiments. 5 mg/mL ILA was sufficient to directly inhibit the growth of H. pylori in vitro, with a urease inhibitory activity reaching 60.94 ± 1.03%, and the cell morphology and structure were destroyed. ILA inhibited 56.5% adhesion of H. pylori to GES-1 and significantly reduced the number of apoptotic cells. Furthermore, ILA suppresses H. pylori colonization by approximately 38% to 63%, reduced inflammation and oxidative stress in H. pylori-infected mice, and enhanced the enrichment and variety of gut microbiota, notably fostering the growth of beneficial bacteria such as Lactobacillus and Bifidobacterium strains. The results support that ILA derived from Lactobacillus can be applicated as a novel prebiotic in anti-H. pylori functional foods.


Assuntos
Células Epiteliais , Mucosa Gástrica , Infecções por Helicobacter , Helicobacter pylori , Indóis , Lacticaseibacillus paracasei , Helicobacter pylori/efeitos dos fármacos , Animais , Camundongos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Humanos , Mucosa Gástrica/microbiologia , Mucosa Gástrica/efeitos dos fármacos , Indóis/farmacologia , Indóis/química , Lacticaseibacillus paracasei/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Inflamação/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Aderência Bacteriana/efeitos dos fármacos
15.
Angew Chem Int Ed Engl ; : e202409139, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994548

RESUMO

Reported herein is the first total synthesis of the poly-pseudoindoxyl natural product baphicacanthcusine A. The synthesis leverages the oxidative rearrangement of indoles to pseudoindoxyls to install vicinal pseudoindoxyl heterocycles in a diastereoselective manner. Key steps include an acid-mediated cyclization/indole transposition, two diastereoselective oxidative ring contractions, and a site-selective C--H oxygenation. The synthesis of the oxidation precursors was guided by recognition of an element of hidden symmetry. This work provides a foundation for the chemical synthesis of other poly-pseudoindoxyl alkaloids.

16.
Environ Pollut ; 358: 124522, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986759

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a type of organic pollution that can accumulate in crops and hazard human health. This study used phenanthrene (PHE) as a model PAH and employed hydroponic experiments to illustrate the role of indole-3-acetic acid (IAA) in the regulation of PHE accumulation in wheat roots. At optimal concentrations, wheat roots treated with PHE + IAA showed a 46.9% increase in PHE concentration, whereas treatment with PHE + P-chlorophenoxyisobutyric acid resulted in a 38.77% reduction. Transcriptome analysis identified TaSAUR80-5A as the crucial gene for IAA-enhancing PHE uptake. IAA increases plasma membrane H+-ATPase activity, promoting active transport of PHE via the PHE/H+ cotransport mechanism. These results provide not only the theoretical basis necessary to better understand the function of IAA in PAHs uptake and transport by staple crops, but also a strategy for controlling PAHs accumulation in staple crops and enhancing phytoremediation of PAH-contaminated environments.

17.
Eur J Med Chem ; 275: 116617, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959729

RESUMO

Agents that cause apoptotic cell death by interfering with tubulin dynamics, such as vinblastine and paclitaxel, are an important class of chemotherapeutics. Unfortunately, these compounds are substrates for multidrug resistance (MDR) pumps, allowing cancer cells to gain resistance to these chemotherapeutics. The indolesulfonamide family of tubulin inhibitors are not excluded by MDR pumps and have a promising activity profile, although their high lipophilicity is a pharmacokinetic limitation for their clinical use. Here we present a new family of N-indolyl-3,4,5-trimethoxybenzenesulfonamide derivatives with modifications on the indole system at positions 1 and 3 and on the sulfonamide nitrogen. We synthesized and screened against HeLa cells 34 novel indolic benzenesulfonamides. The most potent derivatives (1.7-109 nM) were tested against a broad panel of cancer cell lines, which revealed that substituted benzenesulfonamides analogs had highest potency. Importantly, these compounds were only moderately toxic to non-tumorigenic cells, suggesting the presence of a therapeutic index. Consistent with known clinical anti-tubulin agents, these compounds arrested the cell cycle at G2/M phase. Mechanistically, they induced apoptosis via caspase 3/7 activation, which occurred during M arrest. The substituents on the sulfonamide nitrogen appeared to determine different mechanistic results and cell fates. These results suggest that the compounds act differently depending on the bridge substituents, thus making them very interesting as mechanistic probes as well as potential drugs for further development.


Assuntos
Antineoplásicos , Apoptose , Benzenossulfonamidas , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Sulfonamidas , Humanos , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Estrutura Molecular , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Relação Dose-Resposta a Droga , Nitrogênio/química , Linhagem Celular Tumoral , Células HeLa , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/síntese química
18.
Int J Biol Macromol ; 276(Pt 1): 133489, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964679

RESUMO

Indole-based bis-acylhydrazone compounds can inhibit the activity of α-glucosidase and control the concentration of blood glucose. In this paper, the characteristics of three indole-based bis-acylhydrazone compounds with different inhibitory activities of α-glucosidase as well as the interaction with α-glucosidase were studied by experiments and computational simulation techniques. Enzyme kinetic and spectral experiments showed that the indole-based bis-acylhydrazone compounds were able to inhibit enzyme activity through mixed inhibition dominated by competitive inhibition, and during the binding reaction, indole-based bis-acylhydrazone compounds can quench the intrinsic fluorescence of α-glucosidase through static quenching and an aggregation of the indole-based bis-acylhydrazone with α-glucosidase produces a stable complex with a molar ratio of 1:1, and the combination of indole-based bis-acylhydrazone compounds could lead to slight change in the conformation of α-glucosidase. The theoretical simulation demonstrated that the stability of the complex systems was positively correlated with the inhibitory activity of indole-based bis-acylhydrazone compounds, and the indole-based bis-acylhydrazone compounds occupied the active site in the multi-ligand system, resulting in a significant decrease in the binding ability of starch to active amino acids. These results suggested that indole-based bis-acylhydrazone compound was expected to be a new type of α-glucosidase inhibitor.

19.
Parasit Vectors ; 17(1): 284, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956725

RESUMO

BACKGROUND: Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS: Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS: Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION: Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.


Assuntos
Lesões Encefálicas , Microbioma Gastrointestinal , Camundongos Knockout , Toxoplasma , Animais , Camundongos , Toxoplasma/imunologia , Lesões Encefálicas/imunologia , Probióticos/administração & dosagem , Encéfalo/imunologia , Lactobacillus , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Toxoplasmose/imunologia , RNA Ribossômico 16S/genética , Masculino , Intestinos/imunologia
20.
Mol Divers ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046564

RESUMO

A series of indole derivatives containing quinoline structures were designed and synthesized. The synthesized compounds were characterized by NMR and HRMS. And W14 was performed by single crystal X-ray diffraction experiments. The antiviral activity studies showed that some of the target compounds possessed significant activity against tobacco mosaic virus (TMV). In particular, W20 had significant activity. The results of in vivo anti-TMV activity assay showed that W20 possessed the best curative and protective activities with EC50 values of 84.4 and 65.7 µg/mL, which were better than ningnanmycin (NNM) 205.1 and 162.0 µg/mL, respectively. The results of Microscale thermophoresis (MST) showed that W20 had a strong binding affinity for the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (Kd) of 0.00519 µmol/L, which was superior to that of NNM (1. 65320 µmol/L). The molecular docking studies were in accordance with the experimental results. In addition, the determination of malondialdehyde (MDA) content in tobacco leaves showed that W20 improved the disease resistance of tobacco. Overall, this study shows that indole derivatives containing quinoline can be used as new antiviral agents for plant viruses for further research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA