Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Cortex ; 179: 77-90, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39153389

RESUMO

Brain-behavior relationships are complex. For instance, one might know a brain region's function(s) but still be unable to accurately predict deficit type or severity after damage to that region. Here, I discuss the case of damage to the angular gyrus (AG) that can cause left-right confusion, finger agnosia, attention deficit, and lexical agraphia, as well as impairment in sentence processing, episodic memory, number processing, and gesture imitation. Some of these symptoms are grouped under AG syndrome or Gerstmann's syndrome, though its exact underlying neuronal systems remain elusive. This review applies recent frameworks of brain-behavior modes and principles from modern lesion-symptom mapping to explain symptomatology after AG damage. It highlights four major issues for future studies: (1) functionally heterogeneous symptoms after AG damage need to be considered in terms of the degree of damage to (i) different subdivisions of the AG, (ii) different AG connectivity profiles that disconnect AG from distant regions, and (iii) lesion extent into neighboring regions damaged by the same infarct. (2) To explain why similar symptoms can also be observed after damage to other regions, AG damage needs to be studied in terms of the networks of regions that AG functions with, and other independent networks that might subsume the same functions. (3) To explain inter-patient variability on AG symptomatology, the degree of recovery-related brain reorganisation needs to account for time post-stroke, demographics, therapy input, and pre-stroke differences in functional anatomy. (4) A better integration of the results from lesion and functional neuroimaging investigations of AG function is required, with only the latter so far considering AG function in terms of a hub within the default mode network. Overall, this review discusses why it is so difficult to fully characterize the AG syndrome from lesion data, and how this might be addressed with modern lesion-symptom mapping.

2.
J Neurophysiol ; 132(2): 544-569, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985936

RESUMO

Wide-range thermoreceptive neurons (WRT-EN) in monkey cortical area 7b that encoded innocuous and nocuous cutaneous thermal and threatening visuosensory stimulation with high fidelity were studied to identify their multisensory integrative response properties. Emphasis was given to characterizing the spatial and temporal effects of threatening visuosensory input on the thermal stimulus-response properties of these multisensory nociceptive neurons. Threatening visuosensory stimulation was most efficacious in modulating thermal evoked responses when presented as a downward ("looming"), spatially congruent, approaching and closely proximal target in relation to the somatosensory receptive field. Both temporal alignment and misalignment of spatially aligned threatening visual and thermal stimulation significantly increased mean discharge frequencies above those evoked by thermal stimulation alone, particularly at near noxious (43°C) and mildly noxious (45°C) temperatures. The enhanced multisensory discharge frequencies were equivalent to the discharge frequency evoked by overtly noxious thermal stimulation alone at 47°C (monkey pain tolerance threshold). A significant increase in behavioral mean escape frequency with shorter escape latency was evoked by multisensory stimulation at near noxious temperature (43°C), which was equivalent to that evoked by noxious stimulation alone (47°C). The remarkable concordance of elevating both neural discharge and escape frequency from a nonnociceptive and prepain level by near noxious thermal stimulation to a nociceptive and pain level by multisensory visual and near noxious thermal stimulation and integration is an elegantly designed defensive neural mechanism that in effect lowers both nociceptive response and pain thresholds to preemptively engage nocifensive behavior and, consequently, avert impending and actual injurious noxious thermal stimulation.NEW & NOTEWORTHY Multisensory nociceptive neurons in cortical area 7b are engaged in integration of threatening visuosensory and a wide range of innocuous and nocuous somatosensory (thermoreceptive) inputs. The enhancement of neuronal activity and escape behavior in monkey by multisensory integration is consistent and supportive of human psychophysical studies. The spatial features of visuosensory stimulation in peripersonal space in relation to somatic stimulation in personal space are critical to multisensory integration, nociception, nocifensive behavior, and pain.


Assuntos
Macaca mulatta , Nociceptores , Animais , Nociceptores/fisiologia , Masculino , Nociceptividade/fisiologia , Temperatura Alta , Percepção Visual/fisiologia , Limiar da Dor/fisiologia , Estimulação Luminosa , Reação de Fuga/fisiologia , Termorreceptores/fisiologia
3.
J Pers Med ; 14(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929883

RESUMO

Fibromyalgia and osteoarthritis are among the most prevalent rheumatic conditions worldwide. Nonpharmacological interventions have gained scientific endorsements as the preferred initial treatments before resorting to pharmacological modalities. Repetitive transcranial magnetic stimulation (rTMS) is among the most widely researched neuromodulation techniques, though it has not yet been officially recommended for fibromyalgia. This review aims to summarize the current evidence supporting rTMS for treating various fibromyalgia symptoms. Recent findings: High-frequency rTMS directed at the primary motor cortex (M1) has the strongest support in the literature for reducing pain intensity, with new research examining its long-term effectiveness. Nonetheless, some individuals may not respond to M1-targeted rTMS, and symptoms beyond pain can be prominent. Ongoing research aims to improve the efficacy of rTMS by exploring new brain targets, using innovative stimulation parameters, incorporating neuronavigation, and better identifying patients likely to benefit from this treatment. Summary: Noninvasive brain stimulation with rTMS over M1 is a well-tolerated treatment that can improve chronic pain and overall quality of life in fibromyalgia patients. However, the data are highly heterogeneous, with a limited level of evidence, posing a significant challenge to the inclusion of rTMS in official treatment guidelines. Research is ongoing to enhance its effectiveness, with future perspectives exploring its impact by targeting additional areas of the brain such as the medial prefrontal cortex, anterior cingulate cortex, and inferior parietal lobe, as well as selecting the right patients who could benefit from this treatment.

4.
Cortex ; 171: 383-396, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101274

RESUMO

From sensory input to motor action, encoded sensory features flow sequentially along cortical networks for decision-making. Despite numerous studies probing the decision-making process, the subprocess that compares encoded sensory features before making a decision has not been fully elucidated in humans. In this study, we investigated sensory feature comparison by presenting two different tasks (a discrimination task, in which participants made decisions by comparing two sequential tactile stimuli; and a detection task, in which participants responded to the second tactile stimulus in two sequential stimuli) to epilepsy patients while recording electrocorticography (ECoG). By comparing tactile-specific gamma band (30-200 Hz) power between the two tasks, the decision-making process was divided into three subprocesses-categorization, comparison, and decision-consistent with a previous study (Heekeren et al., 2004). These subprocesses occurred sequentially in the dorsolateral prefrontal cortex, premotor cortex, secondary somatosensory cortex, and parietal lobe. Gamma power showed two different patterns of correlation with response time. In the inferior parietal lobule (IPL), there was a negative correlation. This means that as gamma power increased, response time decreased. In the secondary somatosensory cortex (S2), there was a positive correlation. Here, as gamma power increased, response time also increased. These results indicate that the IPL and S2 encode tactile feature comparison differently. Our connectivity analysis showed that the S2 transmitted tactile information to the IPL. Our findings suggest that multiple areas in the parietal lobe encode sensory feature comparison differently before making a decision.


Assuntos
Córtex Motor , Percepção do Tato , Humanos , Tato/fisiologia , Encéfalo , Percepção do Tato/fisiologia , Tempo de Reação/fisiologia , Córtex Motor/fisiologia , Mapeamento Encefálico/métodos , Córtex Somatossensorial/fisiologia
5.
Brain Imaging Behav ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078981

RESUMO

Alcohol dependence is a disorder with a high recurrence rate that leads to a considerable public health burden. The risk of relapse appears to be related to a complex interplay of multiple factors. Herein, we aimed to explore the potential neural predictors of relapse in Chinese male patients with alcohol dependence. This study enrolled 58 male patients with alcohol dependence who had undergone acute detoxification. General demographic information and clinical features were collected. Magnetic resonance imaging data were used to measure cortical thickness across 34 regions of the brain. Patients were followed up at six months, and 51 patients completed the follow-up visit. These patients were divided into a relapser and an abstainer group. A binary logistic regression analysis was performed to investigate the potential risk factors of relapse. Compared to abstainers, relapsers showed higher inattention and non-planning impulsivity on the 11th version of the Barratt Impulsive Scale. The cortical thicknesses of the inferior-parietal lobules were significantly higher in abstainers compared with those in relapsers. Furthermore, binary logistic regression analysis showed that the thickness of the inferior parietal lobule predicted relapse, and lower non-planning impulse was a protective factor against relapse. Relapsers show poorer impulse control than abstainers, and structural magnetic resonance imaging revealed a decreased thickness of the inferior parietal lobule in relapsers. Our results indicate the thickness of the inferior parietal lobule as a potential relapse predictor in male patients with alcohol dependence.

6.
J Psychiatr Res ; 166: 17-24, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660405

RESUMO

Previous studies reported that the inferior parietal lobule (IPL) had lower activation during visuospatial attention in children with attention-deficit/hyperactivity disorder (ADHD), while the functional connectivity (FC) between the IPL and other brain regions and how cognitive demand might modulate IPL's FC remain unclear. We performed a functional magnetic resonance imaging experiment recruiting two task conditions with relatively low and high cognitive demand of visuospatial attention. Forty-four children with ADHD and 36 age- and sex-matched healthy controls were included. IPL's regional activation and FC intensities were compared between groups and correlated with clinical measurements. We found that the IPL had significantly reduced activation in children with ADHD compared to healthy controls and this abnormal activation was not modulated by the cognitive demand of visuospatial attention. Importantly, further analysis revealed that the functional connectivity between IPL and inferior frontal gyrus was modulated by the cognitive demand of visuospatial attention in children with ADHD. These results revealed a modulatory effect of cognitive demand of visuospatial attention on IPL's functional connectivity but not IPL's activation in children with ADHD. More generally, these results highlight the functional reorganization of the brain activity as a possible compensatory strategy in response to the symptoms of ADHD.

7.
Cortex ; 167: 335-350, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598647

RESUMO

The ability to select between potential actions is central to the complex process of tool use. After left hemisphere stroke, individuals with limb apraxia make more hand action errors when gesturing the use of tools with conflicting hand actions for grasping-to-move and use (e.g., screwdriver) relative to tools that are grasped-to-move and used with the same hand action (e.g., hammer). Prior research indicates that this grasp-use interference effect is driven by abnormalities in the competitive action selection process. The goal of this project was to determine whether common mechanisms and neural substrates support the competitive selection of task-appropriate responses in both tool and non-tool domains. If so, the grasp-use interference effect in a tool use gesturing task should be correlated with response interference effects in the classic Eriksen flanker and Simon tasks, and at least partly overlapping neural regions should subserve the 3 tasks. Sixty-four left hemisphere stroke survivors (33 with apraxia) participated in the tool- and non-tool interference tasks and underwent T1 anatomical MRI. There were robust grasp-use interference effects (grasp-use conflict test) and response interference effects (Eriksen flanker and Simon tasks), but these effects were not correlated. Lesion-symptom mapping analyses showed that lesions to the left inferior parietal lobule, ventral premotor cortex, and insula were associated with grasp-use interference. Lesions to the left inferior parietal lobule, postcentral gyrus, insula, caudate, and putamen were associated with response interference in the Eriksen flanker task. Lesions to the left caudate and putamen were also associated with response interference in the Simon task. Our results suggest that the selection of hand posture for tool use is mediated by distinct cognitive mechanisms and partly distinct neuroanatomic substrates from those mapping a stimulus to an appropriate motor response in non-tool domains.


Assuntos
Apraxias , Acidente Vascular Cerebral , Humanos , Desempenho Psicomotor/fisiologia , Neuroanatomia , Mapeamento Encefálico , Lateralidade Funcional , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/psicologia , Imageamento por Ressonância Magnética , Apraxias/diagnóstico por imagem , Apraxias/psicologia
8.
Front Aging Neurosci ; 15: 1193283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547741

RESUMO

Background: Bilingualism is associated with higher gray matter volume (GMV) as a form of brain reserve in brain regions such as the inferior frontal gyrus (IFG) and the inferior parietal lobule (IPL). A recent cross-sectional study reported the age-related GMV decline in the left IFG and IPL to be steeper for bilinguals than for monolinguals. The present study aimed at supporting this finding for the first time with longitudinal data. Methods: In the current study, 200 participants aged 19 to 79 years (87 monolinguals, 113 sequential bilinguals, mostly native German speakers with variable second language background) were included. Trajectories of GMV decline in the bilateral IFG and IPL were analyzed in mono- and bilinguals over two time points (mean time interval: 3.6 years). For four regions of interest (left/right IFG and left/right IPL), mixed Analyses of Covariance were conducted to assess (i) GMV changes over time, (ii) GMV differences for language groups (monolinguals/bilinguals), and (iii) the interaction between time point and language group. Corresponding analyses were conducted for the two factors of GMV, surface area (SA) and cortical thickness (CT). Results: There was higher GMV in bilinguals compared to monolinguals in the IPL, but not IFG. While the left and right IFG and the right IPL displayed a similar GMV change in mono- and bilinguals, GMV decline within the left IPL was significantly steeper in bilinguals. There was greater SA in bilinguals in the bilateral IPL and a steeper CT decline in bilinguals within in the left IPL. Conclusion: The cross-sectional observations of a steeper GMV decline in bilinguals could be confirmed for the left IPL. Additionally, the higher GMV in bilinguals in the bilateral IPL may indicate that bilingualism contributes to brain reserve especially in posterior brain regions. SA appeared to contribute to bilinguals' higher GMV in the bilateral IPL, while CT seemed to account for the steeper structural decline in bilinguals in the left IPL. The present findings demonstrate the importance of time as an additional factor when assessing the neuroprotective effects of bilingualism on structural features of the human brain.

9.
BMC Psychiatry ; 23(1): 526, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479996

RESUMO

BACKGROUND: Cognitive impairment is the main factor in the poor prognosis of schizophrenia, but its mechanism remains unclear. The inferior parietal lobule (IPL) is related to various clinical symptoms and cognitive impairment in schizophrenia. We aimed to explore the relationship between IPL-related functions and cognitive impairment in schizophrenia. METHODS: 136 schizophrenia patients and 146 demographically matched healthy controls were enrolled for a cross-sectional study. High-spatial-resolution structural and resting-state functional images were acquired to demonstrate the alternations of brain structure and function. At the same time, the digit span and digit symbol coding tasks of the Chinese Wechsler Adult Intelligence Test Revised (WAIS-RC) were utilized in assessing the subjects' cognitive function. Patients were divided into cognitive impairment and normal cognitive groups according to their cognitive score and then compared whether there were differences between the three groups in fractional amplitude of low-frequency fluctuation (fALFF). In addition, we did a correlation analysis between cognitive function and the fALFF for the left IPL of patients and healthy controls. Based on the Allen Human Brain Atlas, we obtained genes expressed in the left IPL, which were then intersected with the transcriptome-wide association study results and differentially expressed genes in schizophrenia. RESULTS: Grouping of patients by the backward digit span task and the digit symbol coding task showed differences in fALFF values between healthy controls and cognitive impairment patients (P < 0.05). We found a negative correlation between the backward digit span task score and fALFF of the left IPL in healthy controls (r = - 0.388, P = 0.003), which was not seen in patients (r = 0.203, P = 0.020). In addition, none of the other analyses were statistically significant (P > 0.017). In addition, we found that diacylglycerol kinase ζ (DGKζ) is differentially expressed in the left IPL and associated with schizophrenia. CONCLUSION: Our study demonstrates that the left IPL plays a vital role in cognitive impairment in schizophrenia. DGKζ may act as an essential regulator in the left IPL of schizophrenia patients with cognitive impairment.


Assuntos
Disfunção Cognitiva , Esquizofrenia , Adulto , Humanos , Disfunção Cognitiva/complicações , Estudos Transversais , Diacilglicerol Quinase , Lobo Parietal , Esquizofrenia/complicações
10.
Cereb Cortex ; 33(17): 9908-9916, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37429833

RESUMO

Individuals with anxiety and depression symptoms are vulnerable to sleep disturbances. The current study aimed to explore the shared neuro-mechanisms underlying the effect of anxiety and depression symptoms on sleep quality. We recruited a cohort of 92 healthy adults who underwent functional magnetic resonance imaging scanning. We measured anxiety and depression symptoms using the Zung Self-rating Anxiety/Depression Scales and sleep quality using the Pittsburgh Sleep Quality Index. Independent component analysis was used to explore the functional connectivity (FC) of brain networks. Whole-brain linear regression analysis showed that poor sleep quality was associated with increased FC in the left inferior parietal lobule (IPL) within the anterior default mode network. Next, we extracted the covariance of anxiety and depression symptoms using principal component analysis to represent participants' emotional features. Mediation analysis revealed that the intra-network FC of the left IPL mediated the association between the covariance of anxiety and depression symptoms and sleep quality. To conclude, the FC of the left IPL may be a potential neural substrate in the association between the covariance of anxiety and depression symptoms and poor sleep quality, and may serve as a potential intervention target for the treatment of sleep disturbance in the future.

11.
Soc Cogn Affect Neurosci ; 18(1)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37261927

RESUMO

The default mode network (DMN) is a network of brain regions active during rest and self-referential thinking. Individuals with major depressive disorder (MDD) show increased or decreased DMN activity relative to controls. DMN activity has been linked to a tendency to ruminate in MDD. It is unclear if individuals who are at risk for, but who have no current or past history of depression, also show differential DMN activity associated with rumination. We investigated whether females with high levels of neuroticism with no current or lifetime mood or anxiety disorders (n = 25) show increased DMN activation, specifically when processing negative self-referential information, compared with females with average levels of neuroticism (n = 28). Participants heard criticism and praise during functional magnetic resonance imaging (MRI) scans in a 3T Siemens Prisma scanner. The at-risk group showed greater activation in two DMN regions, the medial prefrontal cortex and the inferior parietal lobule (IPL), after hearing criticism, but not praise (relative to females with average levels of neuroticism). Criticism-specific activation in the IPL was significantly correlated with rumination. Individuals at risk for depression may, therefore, have an underlying neurocognitive vulnerability to use a brain network typically involved in thinking about oneself to preferentially ruminate about negative, rather than positive, information.


Assuntos
Transtorno Depressivo Maior , Feminino , Humanos , Depressão/diagnóstico por imagem , Rede de Modo Padrão , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos
12.
Psychophysiology ; 60(9): e14314, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37114838

RESUMO

Sports-related concussions (SRCs) are associated with neuromuscular control deficits in athletes following return to play. However, the connection between SRC and potentially disrupted neural regulation of lower extremity motor control has not been investigated. The purpose of this study was to investigate brain activity and connectivity during a functional magnetic resonance imaging (fMRI) lower extremity motor control task (bilateral leg press) in female adolescent athletes with a history of SRC. Nineteen female adolescent athletes with a history of SRC and nineteen uninjured (without a history of SRC) age- and sport-matched control athletes participated in this study. Athletes with a history of SRC exhibited less neural activity in the left inferior parietal lobule/supramarginal gyrus (IPL) during the bilateral leg press compared to matched controls. Based upon signal change detected in the brain activity analysis, a 6 mm region of interest (seed) was defined to perform secondary connectivity analyses using psychophysiological interaction (PPI) analyses. During the motor control task, the left IPL (seed) was significantly connected to the right posterior cingulate gyrus/precuneus cortex and right IPL for athletes with a history of SRC. The left IPL was significantly connected to the left primary motor cortex (M1) and primary somatosensory cortex (S1), right inferior temporal gyrus, and right S1 for matched controls. Altered neural activity in brain regions important for sensorimotor integration and motor attention, combined with unique connectivity to regions responsible for attentional, cognitive, and proprioceptive processing, indicate compensatory neural mechanisms may underlie the lingering neuromuscular control deficits associated with SRC.


Assuntos
Concussão Encefálica , Mapeamento Encefálico , Humanos , Feminino , Adolescente , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Lobo Parietal
13.
Cereb Cortex ; 33(12): 7500-7505, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36918999

RESUMO

Recent work has shown that the occipital place area (OPA)-a scene-selective region in adult humans-supports "visually guided navigation" (i.e. moving about the local visual environment and avoiding boundaries/obstacles). But what is the precise role of OPA in visually guided navigation? Considering humans move about their local environments beginning with crawling followed by walking, 1 possibility is that OPA is involved in both modes of locomotion. Another possibility is that OPA is specialized for walking only, since walking and crawling are different kinds of locomotion. To test these possibilities, we measured the responses in OPA to first-person perspective videos from both "walking" and "crawling" perspectives as well as for 2 conditions by which humans do not navigate ("flying" and "scrambled"). We found that OPA responded more to walking videos than to any of the others, including crawling, and did not respond more to crawling videos than to flying or scrambled ones. These results (i) reveal that OPA represents visual information only from a walking (not crawling) perspective, (ii) suggest crawling is processed by a different neural system, and (iii) raise questions for how OPA develops; namely, OPA may have never supported crawling, which is consistent with the hypothesis that OPA undergoes protracted development.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Adulto , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Lobo Occipital/fisiologia , Córtex Cerebral/fisiologia
14.
Neuroimage ; 270: 119989, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858331

RESUMO

Additional neural substance for reading in a second language has been reported by prior studies. However, to date, there has been little investigation into whether and how the brain's adaptation to a second language is induced by specific linguistic tasks or is a general effect during reading in a new language. To address this issue, our study investigated Chinese children learning English as a second language by combining cross-sectional and longitudinal Functional Magnetic Resonance Imaging (fMRI) studies. We compared brain activation across four reading tasks, orthographic tasks and phonological tasks in Chinese (the first language, L1) and English (the second language, L2). By comparing the activation pattern across languages, we observed greater activation in the left inferior parietal lobule (LIPL) in English compared to Chinese, suggesting a functional preference of the LIPL to L2. In addition, greater correlation between LIPL-related FC and L2 was mainly observed in the phonological task, indicating that LIPL could be associated with phonological processing. Moreover, a proportion of the children were enrolled in an 8-week phonological-based reading-training program. We observed significant functional plasticity of the LIPL elicited by this training program only in the English phonological task and not in the orthographic task, further substantiating that the additional requirements of the LIPL in L2 are mainly associated with phonological processing. The findings provide new insights into understanding the functional contribution of the LIPL to reading in a second language.


Assuntos
Multilinguismo , Leitura , Criança , Humanos , Mapeamento Encefálico , Estudos Transversais , Encéfalo/fisiologia , Idioma , Lobo Parietal/diagnóstico por imagem , Imageamento por Ressonância Magnética
15.
Res Sq ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945425

RESUMO

Background: Alcohol dependence (AD) is a disorder with a high recurrence rate that leads to a considerable public health burden. The risk of relapse appears to be related to a complex interplay of multiple factors. Herein, we aimed to explore the potential neural predictors of relapse in Chinese male patients with AD. Methods: This study enrolled 58 male patients with AD who had undergone acute detoxification. General demographic information and clinical features were collected. Magnetic resonance imaging (MRI) data were used to measure cortical thickness across 34 regions of the brain. Patients were followed up at 6 months, and 51 patients completed the follow-up visit. These patients were divided into a relapser and an abstainer group. A binary logistic regression analysis was performed to investigate the potential risk factors of relapse. Results: Compared to abstainers, relapsers showed higher inattention and non-planning impulsivity on the 11th version of the Barratt Impulsive Scale. The cortical thicknesses of the inferior-parietal lobule were significantly greater in abstainers compared with those in relapsers. Furthermore, binary logistic regression analysis showed that the thickness of the inferior parietal lobule predicted relapse. Conclusions: Relapsers show poorer impulse control than abstainers, and MRI imaging shows a decreased thickness of the inferior parietal lobule in relapsers. Our results indicate the thickness of the inferior parietal lobule as a potential relapse predictor in male patients with AD.

16.
Brain Sci ; 13(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36979227

RESUMO

The four-stage model comprises the expectation, incongruity, resolution, and elaboration stages of humor processing. In previous studies, most researchers used two-element jokes (setup and punch line) as stimuli, based on experimental methods, to explore the humor process. By contrast, the present study used a humor corpus with the novelty of three-element verbal jokes to perform direct separation from the material and clarify the humor processes. In this study, we used three-element verbal jokes and nonjokes, and we conducted a repeated-measures analysis of variance with a 3 × 2 two-way within-subject design. In humor processing, the posterior insula and middle frontal gyrus were mainly activated in the expectation; the middle temporal gyrus and the medial frontal gyrus in the incongruity; the inferior frontal gyri, superior frontal gyrus, and inferior parietal lobule in the resolution; and the ventromedial prefrontal cortex, amygdala, anterior insula, nucleus accumbens, and midbrain in the elaboration. The contributions of this study lie in its use of a humor corpus with the novelty of self-compiled three-element jokes, which not only successfully verified the models established in previous studies but added the expectation to the model; thus, this study separated the expectation and incongruity processes, making humor processing more complete.

17.
Neuroimage ; 268: 119869, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639004

RESUMO

Altered brain connectivity between regions of the reading network has been associated with reading difficulties. However, it remains unclear whether connectivity differences between children with dyslexia (DYS) and those with typical reading skills (TR) are specific to reading impairments or to reading experience. In this functional MRI study, 132 children (M = 10.06 y, SD = 1.46) performed a phonological lexical decision task. We aimed to disentangle (1) disorder-specific from (2) experience-related differences in effective connectivity and to (3) characterize the development of DYS and TR. We applied dynamic causal modeling to age-matched (ndys = 25, nTR = 35) and reading-level-matched (ndys = 25, nTR = 22) groups. Developmental effects were assessed in beginning and advanced readers (TR: nbeg = 48, nadv = 35, DYS: nbeg = 24, nadv = 25). We show that altered feedback connectivity between the inferior parietal lobule and the visual word form area (VWFA) during print processing can be specifically attributed to reading impairments, because these alterations were found in DYS compared to both the age-matched and reading-level-matched TR. In contrast, feedforward connectivity from the VWFA to parietal and frontal regions characterized experience in TR and increased with age and reading skill. These directed connectivity findings pinpoint disorder-specific and experience-dependent alterations in the brain's reading network.


Assuntos
Mapeamento Encefálico , Dislexia , Humanos , Criança , Encéfalo , Dislexia/diagnóstico por imagem , Lobo Parietal , Linguística , Imageamento por Ressonância Magnética
18.
Brain Behav ; 13(2): e2895, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36706040

RESUMO

INTRODUCTION: Children with developmental language disorder (DLD) exhibit cognitive deficits that interfere with their ability to learn language. Little is known about the functional neuroanatomical differences between children developing typically (TD) and children with DLD. METHODS: Using functional near-infrared spectroscopy, we recorded oxygenated hemoglobin (O2 hb) concentration values associated with neural activity in children with and without DLD during an auditory N-back task that included 0-back, 1-back, and 2-back conditions. Analyses focused on the left dorsolateral prefrontal cortex (DLPFC) and left inferior parietal lobule (IPL). Multilevel models were constructed with accuracy, response time, and O2 hb as outcome measures, with 0-back outcomes as fixed effects to control for sustained attention. RESULTS: Children with DLD were significantly less accurate than their TD peers at both the 1-back and 2-back tasks, and they demonstrated slower response times during 2-back. In addition, children in the TD group demonstrated significantly greater sensitivity to increased task difficulty, showing increased O2 hb to the IPL during 1-back and to the DLPFC during the 2-back, whereas the DLD group did not. A secondary analysis revealed that higher O2 hb in the DLPFC predicted better task accuracy across groups. CONCLUSION: When task difficulty increased, children with DLD failed to recruit the DLPFC for monitoring information and the IPL for processing information. Reduced memory capacity and reduced engagement likely contribute to the language learning difficulties of children with DLD.


Assuntos
Transtornos do Desenvolvimento da Linguagem , Memória de Curto Prazo , Humanos , Criança , Memória de Curto Prazo/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Transtornos do Desenvolvimento da Linguagem/diagnóstico por imagem , Transtornos do Desenvolvimento da Linguagem/psicologia , Aprendizagem , Idioma
19.
J Neurosurg ; 138(5): 1433-1442, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057115

RESUMO

OBJECTIVE: Reading proficiency is an important skill for personal and socio-professional daily life. Neurocognitive models underlie a dual-route organization for word reading, in which information is processed by both a dorsal phonological "assembled phonology route" and a ventral lexical-semantic "addressed phonology route." Because proficient reading should not be reduced to the ability to read words one after another, the current study was designed to shed light on the neural bases specifically underpinning text reading and the relative contributions of each route to this skill. METHODS: Twenty-two patients with left-sided, diffuse, low-grade glioma who underwent operations while awake were included. They were divided into 3 groups on the basis of tumor location: the inferior parietal lobule (IPL) group (n = 6), inferior temporal gyrus (Tinf) group (n = 6), and fronto-insular (control) group (n = 10). Spoken language and reading abilities were tested in all patients the day before surgery, during surgery, and 3 months after surgery, and cognitive functioning was evaluated before and 3 months after surgery. Text-reading scores obtained before and 3 months after surgery were compared within each group and between groups, correlations between reading scores and both spoken language and cognitive scores were calculated, postoperative cortical-subcortical resection location was estimated, and multiple regression analysis was conducted to examine the relationship between reading proficiency and lesion location. RESULTS: The results indicated that only the patients in the IPL group showed a significant decrease in text-reading scores between periods, which was not associated with lower scores in naming or verbal fluency; patients in the Tinf group showed a slight nonsignificant decrease in text reading between periods, which was associated with a clear decrease in naming and semantic verbal fluency; and patients in the control group showed no differences between preoperative and postoperative reading and spoken language scores. The results of the analysis of these behavioral results and anatomical data (resection cavities and white matter damage) suggest critical roles for the left inferior parietal lobule and underlying white matter connectivity, especially the posterior segment of the arcuate fasciculus, in proficient text reading. CONCLUSIONS: Text-reading proficiency may depend on not only the integrity of both processing routes but also their capacity for interaction, with critical roles for the left inferior parietal lobule and posterior arcuate fasciculus. These findings have fundamental as well as clinical implications.


Assuntos
Glioma , Substância Branca , Humanos , Substância Branca/patologia , Lobo Parietal/cirurgia , Glioma/cirurgia , Lobo Temporal/patologia , Mapeamento Encefálico/métodos , Vias Neurais/patologia
20.
Int J Clin Health Psychol ; 23(1): 100342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36299490

RESUMO

Background/Objective: Anxiety disorders are highly prevalent and negatively impact daily functioning and quality of life. Transcranial direct current stimulation (tDCS) targeting the dorsolateral prefrontal cortex (dlPFC), especially in the right hemisphere impacts extinction learning; however, the underlying neural mechanisms are elusive. Therefore, we aimed to investigate the effects of cathodal tDCS stimulation to the right dlPFC on neural activity and connectivity patterns during delayed fear extinction in healthy participants. Methods: We conducted a two-day fear conditioning and extinction procedure. On the first day, we collected fear-related self-reports, clinical questionnaires, and skin conductance responses during fear acquisition. On the second day, participants in the tDCS group (n = 16) received 20-min offline tDCS before fMRI and then completed the fear extinction session during fMRI. Participants in the control group (n = 18) skipped tDCS and directly underwent fMRI to complete the fear extinction procedure. Whole-brain searchlight classification and resting-state functional connectivity analyses were performed. Results: Whole-brain searchlight classification during fear extinction showed higher classification accuracy of threat and safe cues in the left anterior dorsal and ventral insulae and hippocampus in the tDCS group than in the control group. Functional connectivity derived from the insula with the dlPFC, ventromedial prefrontal cortex, and inferior parietal lobule was increased after tDCS. Conclusion: tDCS over the right dlPFC may function as a primer for information exchange among distally connected areas, thereby increasing stimulus discrimination. The current study did not include a sham group, and one participant of the control group was not randomized. Therefore, to address potential allocation bias, findings should be confirmed in the future with a fully randomized and sham controlled study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA