Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Plants (Basel) ; 13(20)2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39458840

RESUMO

Stored maize is frequently attacked by different pests, such as insects and microorganisms. The aim of the present study was to evaluate the bioactivities of sulcatone (6-methyl-5-hepten-2-one) against the maize weevil Sitophilus zeamais and the phytopathogenic fungi Fusarium verticillioides, Aspergillus flavus, and A. parasiticus. Sulcatone showed a strong repellent effect with a maximum value of -92.1 ± 3.2% at 40 µM in two-choice olfactometer bioassays and an LC95 value of 17.2 µL/L air (95% 16.5-18.1) in a fumigant toxicity experiment. The antifungal effect of sulcatone was evaluated through the fumigant method, reporting MIC values of 3.5, 3.8, and 3.9 mM for F. verticillioides, A. parasiticus, and A. flavus, respectively. Additionally, a silo-bag experiment containing all pests was conducted to evaluate the potential use of sulcatone in a real storage system. Sulcatone caused 71.69 ± 1.57% weevil mortality in silo-bags and proved to be effective as a fungicidal and antimycotoxigenic agent since both ergosterol and fumonisin B1 content were significantly reduced by 60% in silo-bags containing sulcatone. This study demonstrated that sulcatone has the potential to be used for the control of both insects and fungi of stored maize, without affecting the germination of grains.

2.
Microorganisms ; 12(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39065080

RESUMO

Phytoplasma-associated diseases are mainly insect-transmitted and are present worldwide. Considering that disease detection is a relevant environmental factor that may elucidate the presence of these diseases, a review reporting the geographic distribution of phytoplasma taxa in geographically consistent areas helps manage diseases appropriately and reduce their spreading. This work summarizes the data available about the identification of the phytoplasma associated with several diverse diseases in South America in the last decades. The insect vectors and putative vectors together with the plant host range of these phytoplasmas are also summarized. Overall, 16 'Candidatus Phytoplasma' species were detected, and those most frequently detected in agricultural-relevant crops such as corn, alfalfa, grapevine, and other horticultural species are 'Ca. P. pruni', 'Ca. P. asteris', and 'Ca. P. fraxini'.

3.
Sci Rep ; 14(1): 16248, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009624

RESUMO

Psyllid species, including the potato psyllid (PoP) Bactericera cockerelli (Sulc) (Triozidae) serve as host and vector of "Candidatus Liberibacter spp." ("Ca. Liberibacter"), which also infects diverse plant hosts, including citrus and tomato. Psyllid transmission of "Ca. Liberibacter" is circulative and propagative. The time of "Ca. Liberibacter" acquisition and therefore vector life stage most competent for bacterial transmission varies by pathosystems. Here, the potato psyllid-"Ca. Liberibacter solanacearum" (CLso) pathosystem was investigated to dissect CLso-prophage interactions in the tomato plant and PoP-psyllid host by real-time quantitative reverse transcriptase amplification of CLso genes/loci with predicted involvement in host infection and psyllid-CLso transmission. Genes/loci analyzed were associated with (1) CLso-adhesion, -invasion, -pathogenicity, and -motility, (2) prophage-adhesion and pathogenicity, and (3) CLso-lysogenic cycle. Relative gene expression was quantified by qRT-PCR amplification from total RNA isolated from CLso-infected 1st-2nd and 4th-5th nymphs and teneral adults and CLso-infected tomato plants in which CLso infection is thought to occur without SC1-SC2 replication. Gene/loci expression was host-dependent and varied with the psyllid developmental stage. Loci previously associated with repressor-anti-repressor regulation in the "Ca Liberibacter asiaticus"-prophage pathosystem, which maintains the lysogenic cycle in Asian citrus psyllid Diaphorina citri, were expressed in CLso-infected psyllids but not in CLso-infected tomato plants.


Assuntos
Hemípteros , Doenças das Plantas , Prófagos , Solanum lycopersicum , Animais , Hemípteros/microbiologia , Prófagos/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Solanum tuberosum/parasitologia , Insetos Vetores/microbiologia , Rhizobiaceae/genética , Regulação Bacteriana da Expressão Gênica , Estágios do Ciclo de Vida/genética
4.
mSphere ; 9(7): e0033624, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38920390

RESUMO

Hematophagous Stomoxys (stable) fly populations in dairy barns are sustained by a constant availability of cattle hosts and manure, which serve as major reservoirs of both zoonotic and opportunistic bacterial pathogens. However, the composition of the Stomoxys fly microbiota, the mechanisms by which flies acquire their microbiome, and the ability of potentially pathogenic bacteria to colonize and persist in fly hosts remain to be investigated. Here, we longitudinally collected fly and manure samples from two connected dairy facilities. High throughput 16S rRNA gene amplicon sequencing was then used to characterize and compare bacterial communities present on or within flies and in manure collected from the same facility, while culture-dependent methods were used to verify the viability of clinically relevant bacteria. Bacterial alpha diversity was overall higher in manure samples as compared to fly samples, with manure-associated bacterial communities being dominated by members of the Bacteroidales, Eubacteriales, and Oscillospirales. In contrast, flies harbored relatively low-complexity communities dominated by members of the Enterobacterales, Staphylococcales, and Lactobacillales. Clinically relevant bacterial strains, including Escherichia spp. and other taxa associated with mastitic cows housed in the same facilities, were detected in paired fly and manure samples but exhibited dramatically elevated abundances in fly samples as compared to manure samples. Viable colonies of Escherichia, Klebsiella, and Staphylococcus spp. were also readily isolated from fly samples, confirming that flies harbor culturable mastitis-associated bacteria. This study identifies biting flies as bona fide carriers of opportunistically pathogenic bacterial taxa on dairy farms. IMPORTANCE: Disease prevention on dairy farms has significant implications for cattle health, food security, and zoonosis. Of particular importance is the control of bovine mastitis, which can be caused by diverse bacteria, including Klebsiella, Escherichia coli, Streptococcus, and Staphylococcus spp. Despite being one of the most significant and costly cattle diseases worldwide, the epidemiology of bovine mastitis is not well understood. This study provides parallel culture-independent and culture-dependent evidence to support the carriage of opportunistically pathogenic bacteria by Stomoxys flies on dairy farms. We further show that the fly microbiota is enriched in clinically relevant taxa-the vast majority of which can be traced to the manure habitats in which flies breed. Altogether, our results identify biting flies as underrecognized carriers of bacterial taxa associated with environmental bovine mastitis and other opportunistic infections in vertebrates and offer important insights into mechanisms of microbial acquisition by these and other medically important insects.


Assuntos
Bactérias , Esterco , Mastite Bovina , Microbiota , RNA Ribossômico 16S , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos , Feminino , Esterco/microbiologia , RNA Ribossômico 16S/genética , Mastite Bovina/microbiologia , Microbiota/genética , Dípteros/microbiologia , Muscidae/microbiologia
5.
Insects ; 15(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38786902

RESUMO

Two species of black flies (Simuliidae) in Thailand, Simulium chumpornense Takaoka and Kuvangkadilok, 2000, and S. khelangense Takaoka, Srisuka & Saeung, 2022, are potent vectors of avian blood protozoa of the genera Leucocytozoon and Trypanosoma and are pests of domestic avian species. Although the adults are abundant throughout Thailand, information on their breeding habitats is limited, and the immature stages of S. khelangense are unknown. We collected the larvae and pupae of S. khelangense from the Mekong River, the first-ever record of Simuliidae from this large continental river. Mitochondrial cytochrome c oxidase I and internal transcribed spacer 2 were used to associate the larvae and pupae with known adults. Both genetic markers strongly supported their identity as S. khelangense. The larvae and pupa of S. khelangense are described. The pupal gill filaments, larval abdominal protuberances, and setae distinguish this species from other members of the S. varicorne species group. The immature stages of S. chumpornense inhabit a wide variety of flowing waters, from small streams (3 m wide) to enormous continental rivers (400 m wide); thus, S. chumpornense is a habitat generalist. In contrast, S. khelangense was found only in the large Mekong River and is, therefore, a habitat specialist. Both species can exploit their principal habitats and produce abundant adult populations.

6.
Insect Mol Biol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676396

RESUMO

The western flower thrips, Frankliniella occidentalis, poses a significant challenge in global agriculture as a notorious pest and a vector of economically significant orthotospoviruses. However, the limited availability of genetic tools for F. occidentalis hampers the advancement of functional genomics and the development of innovative pest control strategies. In this study, we present a robust methodology for generating heritable mutations in F. occidentalis using the CRISPR/Cas9 genome editing system. Two eye-colour genes, white (Fo-w) and cinnabar (Fo-cn), frequently used to assess Cas9 function in insects were identified in the F. occidentalis genome and targeted for knockout through embryonic microinjection of Cas9 complexed with Fo-w or Fo-cn specific guide RNAs. Homozygous Fo-w and Fo-cn knockout lines were established by crossing mutant females and males. The Fo-w knockout line revealed an age-dependent modification of eye-colour phenotype. Specifically, while young larvae exhibit orange-coloured eyes, the colour transitions to bright red as they age. Unexpectedly, loss of Fo-w function also altered body colour, with Fo-w mutants having a lighter coloured body than wild type, suggesting a dual role for Fo-w in thrips. In contrast, individuals from the Fo-cn knockout line consistently displayed bright red eyes throughout all life stages. Molecular analyses validated precise editing of both target genes. This study offers a powerful tool to investigate thrips gene function and paves the way for the development of genetic technologies for population suppression and/or population replacement as a means of mitigating virus transmission by this vector.

7.
Hum Vaccin Immunother ; 20(1): 2337985, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38602074

RESUMO

Insect vector-borne diseases (VBDs) pose significant global health challenges, particularly in tropical and subtropical regions. The WHO has launched the "Global Vector Control Response (GVCR) 2017-2030" to address these diseases, emphasizing a comprehensive approach to vector control. This systematic review investigates the potential of malaria and dengue vaccines in controlling mosquito-borne VBDs, aiming to alleviate disease burdens and enhance public health. Following PRISMA 2020 guidelines, the review incorporated 39 new studies out of 934 identified records. It encompasses various studies assessing malaria and dengue vaccines, emphasizing the significance of vaccination as a preventive measure. The findings indicate variations in vaccine efficacy, duration of protection, and safety considerations for each disease, influencing public health strategies. The review underscores the urgent need for vaccines to combat the increasing burden of VBDs like malaria and dengue, advocating for ongoing research and investment in vaccine development.


Assuntos
Vacinas contra Dengue , Dengue , Malária , Doenças Transmitidas por Mosquitos , Animais , Dengue/prevenção & controle , Malária/prevenção & controle , Saúde Pública , Humanos
8.
Microbiol Spectr ; 12(5): e0010624, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534170

RESUMO

Plant-pathogenic bacteria cause numerous diseases in host plants and can result in serious damage. Timely and accurate diagnostic techniques are, therefore, crucial. While advances in molecular techniques have led to diagnostic systems able to distinguish known plant pathogens at the species or strain level, systems covering larger categories are mostly lacking. In this study, a specific and universal LAMP-based diagnostic system was developed for phytoplasmas, a large group of insect-borne plant-pathogenic bacteria that cause significant agricultural losses worldwide. Targeting the 23S rRNA gene of phytoplasma, the newly designed primer set CaPU23S-4 detected 31 'Candidatus Phytoplasma' tested within 30 min. This primer set also showed high specificity, without false-positive results for other bacteria (including close relatives of phytoplasmas) or healthy plants. The detection sensitivity was ~10,000 times higher than that of PCR methods for phytoplasma detection. A simple, rapid method of DNA extraction, by boiling phytoplasma-infected tissues, was developed as well. When used together with the universal LAMP assay, it enabled the prompt and accurate detection of phytoplasmas from plants and insects. The results demonstrate the potential of the 23S rRNA gene as a versatile target for the LAMP-based universal detection of bacteria at the genus level and provide a novel avenue for exploring this gene as molecular marker for phytoplasma presence detection.IMPORTANCEPhytoplasmas are associated with economically important diseases in crops worldwide, including lethal yellowing of coconut palm, "flavescence dorée" and "bois noir" of grapevine, X-disease in stone fruits, and white leaf and grassy shoot in sugarcane. Numerous LAMP-based diagnostic assays, mostly targeting the 16S rRNA gene, have been reported for phytoplasmas. However, these assays can only detect a limited number of 'Candidatus Phytoplasma' species, whereas the genus includes at least 50 of these species. In this study, a universal, specific, and rapid diagnostic system was developed that can detect all provisionally classified phytoplasmas within 1 h by combining the LAMP technique targeting the 23S rRNA gene with a simple method for DNA extraction. This diagnostic system will facilitate the on-site detection of phytoplasmas and may aid in the discovery of new phytoplasma-associated diseases and putative insect vectors, irrespective of the availability of infrastructure and experimental resources.


Assuntos
DNA Bacteriano , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Phytoplasma , Doenças das Plantas , RNA Ribossômico 23S , Phytoplasma/genética , Phytoplasma/classificação , Phytoplasma/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Ribossômico 23S/genética , Doenças das Plantas/microbiologia , DNA Bacteriano/genética , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade , Primers do DNA/genética , Animais , Plantas/microbiologia
9.
Pest Manag Sci ; 80(8): 4013-4023, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38554028

RESUMO

BACKGROUND: Citrus huanglongbing (HLB) is a devastating disease caused by Candidatus Liberibacter asiaticus (CLas) that affects the citrus industry. In nature, CLas relies primarily on Diaphorina citri Kuwayama as its vector for dissemination. After D. citri ingests CLas-infected citrus, the pathogen infiltrates the insect's body, where it thrives, reproduces, and exerts regulatory control over the growth and metabolism of D. citri. Previous studies have shown that CLas alters the composition of proteins in the saliva of D. citri, but the functions of these proteins remain largely unknown. RESULTS: In this study, we detected two proteins (DcitSGP1 and DcitSGP3) with high expression levels in CLas-infected D. citri. Quantitative PCR and Western blotting analysis showed that the two proteins were highly expressed in the salivary glands and delivered into the host plant during feeding. Silencing the two genes significantly decreased the survival rate for D. citri, reduced phloem nutrition sucking and promoted jasmonic acid (JA) defenses in citrus. By contrast, after overexpressing the two genes in citrus, the expression levels of JA pathway-associated genes decreased. CONCLUSION: Our results suggest that CLas can indirectly suppress the defenses of citrus and support feeding by D. citri via increasing the levels of effectors in the insect's saliva. This discovery facilitates further research into the interaction between insect vectors and pathogens. © 2024 Society of Chemical Industry.


Assuntos
Citrus , Ciclopentanos , Hemípteros , Oxilipinas , Rhizobiaceae , Hemípteros/microbiologia , Hemípteros/fisiologia , Hemípteros/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Animais , Citrus/microbiologia , Rhizobiaceae/fisiologia , Doenças das Plantas/microbiologia , Liberibacter/metabolismo , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia
10.
Microorganisms ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543619

RESUMO

This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.

11.
Viruses ; 16(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38400002

RESUMO

In Chile, edible herbs are mainly grown by small farmers. This type of horticultural crop typically requires intensive management because it is highly susceptible to insects, some of which transmit viruses that severely affect crop yield and quality. In 2019, in coriander plants tested negative for all previously reported viruses, RNA-Seq analysis of one symptomatic plant revealed a plethora of viruses, including one virus known to infect coriander, five viruses never reported in coriander, and a new cytorhabdovirus with a 14,180 nucleotide RNA genome for which the species name Cytorhabdovirus coriandrum was proposed. Since all the detected viruses were aphid-borne, aphids and weeds commonly growing around the coriander field were screened for viruses. The results showed the occurrence of the same seven viruses and the alfalfa mosaic virus, another aphid-borne virus, in aphids and weeds. Together, our findings document the presence of multiple viruses in coriander and the potential role of weeds as virus reservoirs for aphid acquisition.


Assuntos
Afídeos , Coriandrum , Vírus de Plantas , Vírus , Animais , Chile/epidemiologia , Plantas , Doenças das Plantas , Vírus de Plantas/genética
12.
Proc Natl Acad Sci U S A ; 121(3): e2315341121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190519

RESUMO

Wing dimorphism of insect vectors is a determining factor for viral long-distance dispersal and large-area epidemics. Although plant viruses affect the wing plasticity of insect vectors, the potential underlying molecular mechanisms have seldom been investigated. Here, we found that a planthopper-vectored rice virus, rice stripe virus (RSV), specifically induces a long-winged morph in male insects. The analysis of field populations demonstrated that the long-winged ratios of male insects are closely associated with RSV infection regardless of viral titers. A planthopper-specific and testis-highly expressed gene, Encounter, was fortuitously found to play a key role in the RSV-induced long-winged morph. Encounter resembles malate dehydrogenase in the sequence, but it does not have corresponding enzymatic activity. Encounter is upregulated to affect male wing dimorphism at early larval stages. Encounter is closely connected with the insulin/insulin-like growth factor signaling pathway as a downstream factor of Akt, of which the transcriptional level is activated in response to RSV infection, resulting in the elevated expression of Encounter. In addition, an RSV-derived small interfering RNA directly targets Encounter to enhance its expression. Our study reveals an unreported mechanism underlying the direct regulation by a plant virus of wing dimorphism in its insect vectors, providing the potential way for interrupting viral dispersal.


Assuntos
Epidemias , Vírus de Plantas , Infecções por Vírus Respiratório Sincicial , Tenuivirus , Masculino , Animais , Vírus de Plantas/genética , Tenuivirus/genética , Insetos Vetores , Peptídeos Semelhantes à Insulina
13.
Insects ; 15(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276823

RESUMO

Understanding the factors associated with the species diversity and distribution of insect vectors is critically important for disease epidemiology. Black flies (Diptera: Simuliidae) are significant hematophagous insects, as many species are pests and vectors that transmit pathogens to humans and other animals. Ecological factors associated with black fly species distribution have been extensively examined for the immature stages but are far less well explored for the adult stage. In this study, we collected a total of 7706 adult black fly specimens from various locations in forests, villages and animal shelters in Thailand. The integration of morphology and DNA barcoding revealed 16 black fly taxa, including Simulium yvonneae, a species first found in Vietnam, which is a new record for Thailand. The most abundant species was the Simulium asakoae complex (n = 5739, 74%), followed by S. chumpornense Takaoka and Kuvangkadilok (n = 1232, 16%). The Simulium asakoae complex was dominant in forest (3786 of 4456; 85%) and village (1774 of 2077; 85%) habitats, while S. chumpornense predominated (857 of 1175; 73%) in animal shelter areas. The Simulium asakoae complex and S. nigrogilvum Summers, which are significant pests and vectors in Thailand, occurred at a wide range of elevations, although the latter species was found mainly in high (>1000 m) mountain areas. Simulium chumpornense, S. nodosum Puri and the S. siamense Takaoka and Suzuki complex occurred predominately in low (<800 m)-elevation areas. Simulium furvum Takaoka and Srisuka; S. phurueaense Tangkawanit, Wongpakam and Pramual; and S. nr. phurueaense were only found in high (>1000 m) mountain areas. A host blood meal analysis revealed that the S. asakoae; S. chamlongi Takaoka and Suzuki; S. nigrogilvum; S. chumpornense; and the S. striatum species group were biting humans. This is the first report of the latter two species biting humans. We also found that S. chumpornense was biting turkeys, and S. chamlongi was biting chickens, which are new host blood sources recorded for these species. In addition, we found that the S. feuerborni Edwards complex was biting water buffalo, which is the first report on the biting habits of this species.

14.
Neotrop Entomol ; 53(2): 455-459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194154

RESUMO

Bermudagrass (Cynodon dactylon (L.) Pers., Poaceae) is one of the most important pasture grasses used in milk production systems in southern Brazil, with an increasing expansion of cultivated areas in recent years. Here, we report the first occurrence of the planthopper Metadelphax propinqua (Fieber) (Hemiptera: Delphacidae) feeding on bermudagrass in Brazil. Population outbreaks of this species were observed in January/February 2023 in a commercial hay production farm in the municipality of Chapecó, Santa Catarina State, southern Brazil. Metadelphax propinqua was found in association with three cultivars of C. dactylon (Tifton 85, Jiggs, and Vaquero). The infested plants showed leaf chlorosis and a reduced plant growth rate due to sap sucking and toxin injection as well as honeydew deposition on the leaves, which led to the development of sooty mold. In addition, this delphacid species has been reported as a vector of important pathogens to bermudagrass species and other row crops. Thus, M. propinqua is a potential pest of bermudagrass in Brazil and should be monitored to assess its establishment and behavior in Brazilian pasturelands.


Assuntos
Cynodon , Hemípteros , Animais , Brasil , Poaceae , Produtos Agrícolas
15.
Virology ; 589: 109949, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041992

RESUMO

In this century, a disease caused by southern rice black-streaked dwarf virus (SRBSDV) has resulted in significant loss in rice production in Asia. Aside from infecting rice plants, SRBSDV is transmitted by white-backed planthopper (WBPH) in a persistent propagative manner. Recent studies showed that SRBSDV can dynamically modulate the host cells throughout the infection progress. However, the expression dynamics of the SRBSDV genes during infection remain unclear. Here we established an absolute real-time quantitative PCR method to assess the dynamic of the SRBSDV genes expression in rice plants and planthoppers. Apart from displaying the expression levels of viral genes, we discovered that the expression level of viral genes in insects significantly surpasses that in plant cells. In addition, we identified two nonstructural proteins with unknown functions that exhibit the highest expression levels in plant and insect cells, respectively, which provide possible targets for restraining the disease outbreaks.


Assuntos
Hemípteros , Oryza , Reoviridae , Animais , Insetos Vetores , Doenças das Plantas , Insetos , Reoviridae/genética , Reoviridae/metabolismo , Expressão Gênica
16.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109489

RESUMO

Leaf scald is a destructive sugarcane disease caused by the bacterium Xanthomonas albilineans (Ashby) Dowson. This pathogen presents the gene cluster SPI-1 T3SS, a conserved feature in pathogens vectored by animals. In this study, the competence of Mahanarva fimbriolata (Stål), a spittlebug commonly found in sugarcane fields in Brazil, was evaluated for the transmission of X. albilineans. Artificial probing assays were conducted to investigate the ability of M. fimbriolata adults to acquire X. albilineans from artificial diets containing the pathogen with subsequent inoculation of X. albilineans into pathogen-free diets. Plant probing assays with M. fimbriolata adults were conducted to evaluate the acquisition of X. albilineans from diseased source plants and subsequent inoculation of healthy recipient sugarcane plants. The presence of X. albilineans DNA in saliva/diet mixtures of the artificial probing assays and both insects and plants of the plant probing assays were checked using TaqMan assays. The artificial probing assays showed that M. fimbriolata adults were able to acquire and inoculate X. albilineans in diets. Plant probing assays confirmed the competence of M. fimbriolata to transmit X. albilineans to sugarcane. Over the entire experiment, 42% of the insects had acquired the pathogen and successful inoculation of the pathogen occurred in 18% of the recipient-susceptible sugarcane plants at 72 or 96 h of inoculation access period. Assays evidenced the vector competence of M. fimbriolata for transmission of X. albilineans, opening new pathways for investigating the biology and the economic impacts of the interaction between X. albilineans and M. fimbriolata.


Assuntos
Hemípteros , Saccharum , Xanthomonas , Animais , Saccharum/microbiologia , Xanthomonas/genética , Brasil , Folhas de Planta , Insetos Vetores
17.
Plants (Basel) ; 12(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960034

RESUMO

The transmission of plant viruses from infected to healthy host plants is a process in which insects play a major role, using various transmission strategies. Environmental factors have an impact on the transmission of viruses and the subsequent development of infections or diseases. When viruses are successful, plant virus diseases can reach epidemic proportions. Many plants across different regions are vulnerable to viral infections transmitted by the whitefly vector. Begomoviruses, which are transmitted by whiteflies, represent a significant threat to agriculture worldwide. The review highlights the mechanisms of virus acquisition and transmission by whiteflies and explores the factors influencing these interactions. Understanding the impacts of these changes is crucial for managing the spread of pests and mitigating damage to crops. It underscores the need for continued research to elucidate the mechanisms driving plant-insect-virus interactions and to identify new approaches for sustainable pest management.

18.
Front Microbiol ; 14: 1257724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840712

RESUMO

Tomato spotted wilt orthotospovirus (TSWV) is one of the most successful pandemic agricultural pathogens transmitted by several species of thrips in a persistent propagative manner. Current management strategies for TSWV heavily rely on growing single-gene resistant cultivars of tomato ("Sw-5b" gene) and pepper ("Tsw" gene) deployed worldwide. However, the emergence of resistance-breaking strains (RB) in recent years has compounded the threat of TSWV to agricultural production worldwide. Despite this, an extensive study on the thrips transmission biology of RB strains is currently lacking. It is also unclear whether mutualistic TSWV-thrips interactions vary across different novel strains with disparate geographical origins. To address both critical questions, we studied whether and how four novel RB strains of TSWV (two sympatric and two allopatric), along with a non-RB strain, impact western flower thrips (WFT) fitness and whether this leads to differences in TSWV incidence, symptom severity (virulence), and virus accumulation in two differentially resistant tomato cultivars. Our findings show that all RB strains increased WFT fitness by prolonging the adult period and increasing fecundity compared to non-RB and non-viruliferous controls, regardless of the geographical origin of strains or the TSWV titers in individual thrips, which were substantially low in allopatric strains. TSWV accumulation in thrips varied at different developmental stages and was unrelated to the infected tissues from which thrips acquired the virus. However, it was significantly positively correlated to that in WFT-inoculated susceptible plants, but not the resistant ones. The TSW incidences were high in tomato plants infected with all RB strains, ranging from 80% to 90% and 100% in resistant and susceptible plants, respectively. However, TSW incidence in the non-RB-infected susceptible tomato plants was 80%. Our findings provide new insights into how novel strains of TSWV, by selectively offering substantial fitness benefits to vectors, modulate transmission and gain a potential epidemiological advantage over non-RB strains. This study presents the first direct evidence of how vector-imposed selection pressure, besides the one imposed by resistant cultivars, may contribute to the worldwide emergence of RB strains.

19.
Parasitology ; 150(9): 781-785, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37554107

RESUMO

The assumed definitive host of the heartworm Acanthocheilonema spirocauda (Onchocerdidae; Filarioidea) is the harbour seal (Phoca vitulina). This filaroid nematode parasitizing in cardiac ventricles and blood vessel lumina of harbour seals (P. vitulina) has a low prevalence and seldom causes severe health impacts. The seal louse (Echinophthirius horridus) is the assumed intermediate host for transmission of A. spirocauda filariae between seals, comprising a unique parasite assembly conveyed from the terrestrial ancestors of pinnipeds. Although grey seals (Halichoerus grypus) are infected by seal lice, heartworm infection was not verified. Analysing a longterm dataset compiled over decades (1996­2021) of health monitoring seals along the German coasts comprising post mortem investigations and archived parasites, 2 cases of A. spirocauda infected male grey seals were detected. Tentative morphological identification was confirmed with molecular tools by sequencing a section of mtDNA COI and comparing nucleotide data with available heartworm sequence. This is the first record of heartworm individuals collected from the heart of grey seals at necropsy. It remains puzzling why heartworm infection occur much less frequently in grey than in harbour seals, although both species use the same habitat, share mixed haul-outs and consume similar prey species. If transmission occurs directly via seal louse vectors on haul-outs, increasing seal populations in the North- and Baltic Sea could have density dependent effects on prevalence of heartworm and seal louse infections. It remains to be shown how species-specificity of filarial nematodes as well as immune system traits of grey seals influence infection patterns of A. spirocauda.


Assuntos
Acanthocheilonema , Dirofilaria immitis , Filarioidea , Nematoides , Phoca , Animais , Masculino , Phoca/parasitologia , Mar do Norte
20.
Pathogens ; 12(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37623990

RESUMO

Triatoma infestans (Klug) is an insect recognized as not only an important vector of South American trypanosomiasis (Chagas disease) but also a model of specific cellular morphofunctional organization and epigenetic characteristics. The purpose of the present review is to highlight certain cellular processes that are particularly unveiled in T. infestans, such as the following: (1) somatic polyploidy involving nuclear and cell fusions that generate giant nuclei; (2) diversification of nuclear phenotypes in the Malpighian tubules during insect development; (3) heterochromatin compartmentalization into large bodies with specific spatial distribution and presumed mobility in the cell nuclei; (4) chromatin remodeling and co-occurrence of necrosis and apoptosis in the Malpighian tubules under stress conditions; (5) epigenetic markers; and (6) response of heterochromatin to valproic acid, an epidrug that inhibits histone deacetylases and induces DNA demethylation in other cell systems. These cellular processes and epigenetic characteristics emphasize the role of T. infestans as an attractive model for cellular research. A limitation of these studies is the availability of insect supply by accredited insectaries. For studies that require the injection of drugs, the operator's dexterity to perform insect manipulation is necessary, especially if young nymphs are used. For studies involving in vitro cultivation of insect organs, the culture medium should be carefully selected to avoid inconsistent results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA