Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(7): 4725-4746, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38898668

RESUMO

We investigate the information processing capacities of kombucha-proteinoid proto-brains, focusing on the transducing properties through accommodation spiking, tonic bursting spiking, and optical and acoustic stimulation. We explore self-organization, adaptability, and emergent phenomena in this unconventional proto-architecture. By constructing kombucha-proteinoid networks exposed to diverse audio stimuli, we analyze nonlinear dynamics using time series analysis. Assessing information representation in the presence of extreme noise, we examine the system's resilience. Our results illustrate intricate pathways resulting from the interplay between the synthetic biological substrate and bio-inspired stimulation. The kombucha-proteinoid proto-brains consistently map complex stimuli to distinct activation levels, showcasing their adaptability and potential for information processing without the need for external shaping circuits.


Assuntos
Materiais Biocompatíveis , Materiais Biocompatíveis/química , Teste de Materiais , Tamanho da Partícula
2.
Proc Natl Acad Sci U S A ; 121(14): e2317340121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527196

RESUMO

By synthesizing the requisite functionalities of intelligence in an integrated material system, it may become possible to animate otherwise inanimate matter. A significant challenge in this vision is to continually sense, process, and memorize information in a decentralized way. Here, we introduce an approach that enables all such functionalities in a soft mechanical material system. By integrating nonvolatile memory with continuous processing, we develop a sequential logic-based material design framework. Soft, conductive networks interconnect with embedded electroactive actuators to enable self-adaptive behavior that facilitates autonomous toggling and counting. The design principles are scaled in processing complexity and memory capacity to develop a model 8-bit mechanical material that can solve linear algebraic equations based on analog mechanical inputs. The resulting material system operates continually to monitor the current mechanical configuration and to autonomously search for solutions within a desired error. The methods created in this work are a foundation for future synthetic general intelligence that can empower materials to autonomously react to diverse stimuli in their environment.

3.
Int J Biol Macromol ; 254(Pt 3): 128051, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956811

RESUMO

The adoption of environmentally friendly and efficient methods to control food spoilage and crop diseases has become a new worldwide trend. In the medical field, various enzyme-responsive controlled-release drug formulations have been developed for precision therapy. Recently, these materials and techniques have also begun to be applied in the fields of food preservation and agricultural protection. This review of contemporary research focuses on applications of enzyme-responsive controlled-release materials in the field of food preservation and crop protection. It covers a variety of composite controlled-release materials triggered by different types of enzymes and describes in detail their composition and structure, controlled-release mechanisms, and practical application effects. The enzyme-responsive materials have been employed to control foodborne pathogens, fungi, and pests. These enzyme-responsive controlled-release materials exhibit excellent capabilities for targeted drug delivery. Upon contact with microorganisms or pests, the polymer shell of the material is degraded by secreted enzymes from these organisms, thereby releasing drugs that kill or inhibit the organisms. In addition, multi-enzyme sensitive carriers have been created to improve the effectiveness and broad spectrum of the delivery system. The increasing trend towards the use of enzyme-responsive controlled-release materials has opened up countless possibilities in food and agriculture.


Assuntos
Proteção de Cultivos , Sistemas de Liberação de Medicamentos , Preparações de Ação Retardada/farmacologia , Agricultura/métodos , Conservação de Alimentos
4.
Adv Mater ; 35(51): e2306344, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37814374

RESUMO

Microelectronic morphogenesis is the creation and maintenance of complex functional structures by microelectronic information within shape-changing materials. Only recently has in-built information technology begun to be used to reshape materials and their functions in three dimensions to form smart microdevices and microrobots. Electronic information that controls morphology is inheritable like its biological counterpart, genetic information, and is set to open new vistas of technology leading to artificial organisms when coupled with modular design and self-assembly that can make reversible microscopic electrical connections. Three core capabilities of cells in organisms, self-maintenance (homeostatic metabolism utilizing free energy), self-containment (distinguishing self from nonself), and self-reproduction (cell division with inherited properties), once well out of reach for technology, are now within the grasp of information-directed materials. Construction-aware electronics can be used to proof-read and initiate game-changing error correction in microelectronic self-assembly. Furthermore, noncontact communication and electronically supported learning enable one to implement guided self-assembly and enhance functionality. Here, the fundamental breakthroughs that have opened the pathway to this prospective path are reviewed, the extent and way in which the core properties of life can be addressed are analyzed, and the potential and indeed necessity of such technology for sustainable high technology in society is discussed.

5.
Biosensors (Basel) ; 13(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36831971

RESUMO

A mask serves as a simple external barrier that protects humans from infectious particles from poor air conditions in the surrounding environment. As an important personal protective equipment (PPE) to protect our respiratory system, masks are able not only to filter pathogens and dust particles but also to sense, reflect or even respond to environmental conditions. This smartness is of particular interest among academia and industries due to its potential in disease detection, health monitoring and caring aspects. In this review, we provide an overlook of the current air filtration strategies used in masks, from structural designs to integrated functional modules that empower the mask's ability to sense and transfer physiological or environmental information to become smart. Specifically, we discussed recent developments in masks designed to detect macroscopic physiological signals from the wearer and mask-based disease diagnoses, such as COVID-19. Further, we propose the concept of next-generation smart masks and the requirements from material selection and function design perspectives that enable masks to interact and play crucial roles in health-caring wearables.


Assuntos
COVID-19 , Dispositivos de Proteção Respiratória , Dispositivos Eletrônicos Vestíveis , Humanos , Pandemias , Atenção à Saúde
6.
Front Bioeng Biotechnol ; 11: 1327441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260727

RESUMO

Soft robotics is an emerging field showing immense potential for biomedical applications. This review summarizes recent advancements in soft robotics for in vitro and in vivo medical contexts. Their inherent flexibility, adaptability, and biocompatibility enable diverse capabilities from surgical assistance to minimally invasive diagnosis and therapy. Intelligent stimuli-responsive materials and bioinspired designs are enhancing functionality while improving biocompatibility. Additive manufacturing techniques facilitate rapid prototyping and customization. Untethered chemical, biological, and wireless propulsion methods are overcoming previous constraints to access new sites. Meanwhile, advances in tracking modalities like computed tomography, fluorescence and ultrasound imaging enable precision localization and control enable in vivo applications. While still maturing, soft robotics promises more intelligent, less invasive technologies to improve patient care. Continuing research into biocompatibility, power supplies, biomimetics, and seamless localization will help translate soft robots into widespread clinical practice.

7.
Biomimetics (Basel) ; 7(2)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35735585

RESUMO

Biomimetics is the interdisciplinary cooperation of biology and technology that offers solutions to practical problems by analyzing biological systems and transferring their principles into applications. This review article focused on biomimetic innovations, including bio-inspired soft robots and swarm robots that could serve multiple functions, including the harvesting of fruits, pest control, and crop management. The research demonstrated commercially available biomimetic innovations, including robot bees by Arugga AI Farming and the Robotriks Traction Unit (RTU) precision farming equipment. Additionally, soft robotic systems have made it possible to mitigate the risk of surface bruises, rupture, the crushing destruction of plant tissue, and plastic deformation in the harvesting of fruits with a soft rind such as apples, cherries, pears, stone fruits, kiwifruit, mandarins, cucumbers, peaches, and pome. Even though the smart farming technologies, which were developed to mimic nature, could help prevent climate change and enhance the intensification of agriculture, there are concerns about long-term ecological impact, cost, and their inability to complement natural processes such as pollination. Despite the problems, the market for bio-inspired technologies with potential agricultural applications to modernize farming and solve the abovementioned challenges has increased exponentially. Future research and development should lead to low-cost FEA robotic grippers and FEA-tendon-driven grippers for crop harvesting. In brief, soft robots and swarm robotics have immense potential in agriculture.

8.
Adv Healthc Mater ; 11(12): e2102654, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35286021

RESUMO

Traditional skin care masks usually use a piece of paper to hold the aqueous essences, which are not environmentally friendly and not easy to use. While a paper-free mask is desired, it is faced with a dilemma of moisture holding and rapid release of encapsulated bioactive substances. Herein, a paper-free sprayable skin mask is designed from an intelligent material-a thermogel which undergoes sol-gel-suspension transitions upon heating-to solve this dilemma. A synthesized block copolymer of poly(ethylene glycol) and poly(lactide-co-glycolide) with appropriate ratios can be dissolved in water, and thus easily mixed with a biological substance. The mixture is sprayable. After spraying, a Janus film is formed in situ with a physical gel on the outside and a suspension on the inside facing skin. Thus, both moisture holding and rapid release are achieved. Such a thermogel composed of biodegradable amphiphilic block copolymers loaded with nicotinamide as a skin mask is verified to reduce pigmentation on a 3D pigmented reconstructed epidermis model and further in a clinical study. This work might be stimulating for investigations and applications of biodegradable and intelligent soft matter in the fields of drug delivery and regenerative medicine.


Assuntos
Hidrogéis , Polímeros , Sistemas de Liberação de Medicamentos , Polietilenoglicóis , Medicina Regenerativa
9.
Materials (Basel) ; 14(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34772127

RESUMO

This work focuses on shear thickening fluids (STFs) as ceramic-polymer composites with outstanding protective properties. The investigation aims to determine the influence of raw material parameters on the functional properties of STFs. The following analyses were used to characterize both the raw materials and the STFs: scanning electron microscopy, dynamic light scattering, matrix-assisted laser desorption/ionization time-of-flight, chemical sorption analysis, rheological analysis, and kinetic energy dissipation tests. It was confirmed that the morphology of the solid particles plays a key role in designing the rheological and protective properties of STFs. In the case of irregular silica, shear thickening properties can be obtained from a solid content of 12.5 vol.%. For spherical silica, the limit for achieving shear thickening behavior is 40 vol.%. The viscosity curve analysis allowed for the introduction of a new parameter defining the functional properties of STFs: the technological critical shear rate. The ability of STFs to dissipate kinetic energy was determined using a unique device that allows pure fluids to be tested without prior encapsulation. Because of this, it was possible to observe even slight differences in the protective properties between different STFs, which has not been possible so far. During tests with an energy of 50 J, the dissipation factor was over 96%.

10.
Polymers (Basel) ; 13(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925249

RESUMO

Intelligent materials, also known as smart materials, are capable of reacting to various external stimuli or environmental changes by rearranging their structure at a molecular level and adapting functionality accordingly. The initial concept of the intelligence of a material originated from the natural biological system, following the sensing-reacting-learning mechanism. The dynamic and adaptive nature, along with the immediate responsiveness, of the polymer- and fiber-based smart materials have increased their global demand in both academia and industry. In this manuscript, the most recent progress in smart materials with various features is reviewed with a focus on their applications in diverse fields. Moreover, their performance and working mechanisms, based on different physical, chemical and biological stimuli, such as temperature, electric and magnetic field, deformation, pH and enzymes, are summarized. Finally, the study is concluded by highlighting the existing challenges and future opportunities in the field of intelligent materials.

11.
Food Res Int ; 140: 109903, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648205

RESUMO

This study aims to develop and characterize biohybrids (BH) based on anthocyanins (ACNs) from jambolan (Syzygium cumini) and laponite® (Lap). ACNs from jambolan fruit were extracted using an acidified water solution at pH 1. ACNs were recovered from extract using Lap as adsorbent between 5 °C and 40 °C. There was no significant effect (p > 0.05) of the temperature on the adsorption process of ACNs. Thus, the process was classified as physical adsorption in heterogeneous sites where ACNs were stabilized by means of van der Waals force, π - π force, and hydrogen bonding on the Lap surface. After adsorption, the BH powder appeared to have an amorphous structure and red color. However, the color changed at pH ≥ 7. In addition, the obtained BH showed antioxidant properties and high stability when exposed to visible light irradiation. This research reports new information about the valorization and application of ACNs from jambolan for food industrial applications.


Assuntos
Syzygium , Adsorção , Antocianinas , Plaquetas , Frutas , Silicatos
12.
Macromol Rapid Commun ; 41(8): e1900543, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32078213

RESUMO

As one of the most promising intelligent materials, polymeric hydrogel actuators could produce reversible shape change upon external stimuli. Although complex shape deformation from 2D to 3D have been achieved, the realization of actuating behavior from 3D to 3D is still a significant challenge. Herein, an effective strategy to develop a novel bilayer hollow spherical hydrogel actuator is proposed. Through immersing a Ca2+ incorporated gelatin core into alginate solution, an ionic-strength-responsive alginate layer will be formed along the gelatin core via alginate-Ca2+ crosslinks, and then another thermo-responsive alginate-poly(2-(dimethylamino)ethyl methacrylate)(Alg-PDMAEMA) layer is introduced to achieve a bilayer hydrogel with ionic strength and temperature dual responsiveness. A hollow hydrogel capsule could be obtained if a spherical gelatin core is applied, and it could produce complex shape deformations from 3D to 3D upon the trigger of ionic strength and temperatures changes. The present work may offer new inspirations for the development of novel intelligent polymeric hydrogel actuators.


Assuntos
Hidrogéis/química , Bicamadas Lipídicas/química , Temperatura , Estrutura Molecular , Concentração Osmolar , Tamanho da Partícula , Porosidade , Propriedades de Superfície
13.
Adv Mater ; 32(20): e1905111, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31762134

RESUMO

Soft matter systems and materials are moving toward adaptive and interactive behavior, which holds outstanding promise to make the next generation of intelligent soft materials systems inspired from the dynamics and behavior of living systems. But what is an adaptive material? What is an interactive material? How should classical responsiveness or smart materials be delineated? At present, the literature lacks a comprehensive discussion on these topics, which is however of profound importance in order to identify landmark advances, keep a correct and noninflating terminology, and most importantly educate young scientists going into this direction. By comparing different levels of complex behavior in biological systems, this Viewpoint strives to give some definition of the various different materials systems characteristics. In particular, the importance of thinking in the direction of training and learning materials, and metabolic or behavioral materials is highlighted, as well as communication and information-processing systems. This Viewpoint aims to also serve as a switchboard to further connect the important fields of systems chemistry, synthetic biology, supramolecular chemistry and nano- and microfabrication/3D printing with advanced soft materials research. A convergence of these disciplines will be at the heart of empowering future adaptive and interactive materials systems with increasingly complex and emergent life-like behavior.


Assuntos
Teste de Materiais , Desenho de Fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-31631528

RESUMO

The self-assembly of viral building blocks bears exciting prospects for fabricating new types of bionanoparticles with multivalent protein shells. These enable a spatially controlled immobilization of functionalities at highest surface densities-an increasing demand worldwide for applications from vaccination to tissue engineering, biocatalysis, and sensing. Certain plant viruses hold particular promise because they are sustainably available, biodegradable, nonpathogenic for mammals, and amenable to in vitro self-organization of virus-like particles. This offers great opportunities for their redesign into novel "green" carrier systems by spatial and structural synthetic biology approaches, as worked out here for the robust nanotubular tobacco mosaic virus (TMV) as prime example. Natural TMV of 300 x 18 nm is built from more than 2,100 identical coat proteins (CPs) helically arranged around a 6,395 nucleotides ssRNA. In vitro, TMV-like particles (TLPs) may self-assemble also from modified CPs and RNAs if the latter contain an Origin of Assembly structure, which initiates a bidirectional encapsidation. By way of tailored RNA, the process can be reprogrammed to yield uncommon shapes such as branched nanoobjects. The nonsymmetric mechanism also proceeds on 3'-terminally immobilized RNA and can integrate distinct CP types in blends or serially. Other emerging plant virus-deduced systems include the usually isometric cowpea chlorotic mottle virus (CCMV) with further strikingly altered structures up to "cherrybombs" with protruding nucleic acids. Cartoon strips and pictorial descriptions of major RNA-based strategies induct the reader into a rare field of nanoconstruction that can give rise to utile soft-matter architectures for complex tasks. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.


Assuntos
Biotecnologia , Nanoestruturas , Vírus de Plantas , RNA , Proteínas Virais , Animais , Portadores de Fármacos , Química Verde , Humanos , Conformação de Ácido Nucleico , Materiais Inteligentes , Vírion
15.
J Colloid Interface Sci ; 557: 793-806, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580975

RESUMO

Despite the increasing demand for 'as small as possible' responsive poly(N-isopropylacrylamide) (pNIPAm) nanogels with well-defined internal structure, up to date there is no systematic investigation to provide guidance what are the lower limits of nanogel size and what interactions limit its further decrease. In this work both classical batch precipitation polymerization (at 60, 70 and 80 °C) and monomer-feeding precipitation polymerization (at 80 °C) is used to determine how small pNIPAm particles could be prepared by surfactant addition. The collapsed particle size levels off with increasing surfactant concentration in each case but at a strongly temperature dependent value. The plateau values of the microgel size show non-monotonic temperature dependence. To gain deeper insight into the interactions controlling the variation of microgel size with surfactant concentration and temperature a simple model was developed and fitted to the experimental data. The model fitting clearly showed that microgel size is controlled by two key parameters: the underlying adsorption isotherm of surfactant adsorption on the collapsed microgel particles and the effective initiator concentration (the amount of initiator fragments providing surface charge for the precursor particles in unit volume of reaction mixture). The significance of the formation of carboxylic groups in the polymer network is also discussed.

16.
Anal Sci ; 35(6): 645-649, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30773509

RESUMO

Spiders capture their prey by weaving an "invisible" orb-web that has both adhesive and fixed properties. Different types of silk in the orb-web have different functions, wherein the key to capturing a prey is the ball-like glue (glue ball), which coats the silk strands. This glue ball has highly versatile properties, but the mechanisms leading to its versatility remain unclear. The salts found in the web have been previously suggested to play an important role in terms of viscosity, not water. However, the distribution of salt and water in the glue ball has not yet been directly observed. Here, we mapped the salts in different states using a homemade time-of-flight secondary ion mass spectrometer (TOF-SIMS) with a high lateral resolution. To our surprise, the glue ball was found to contain little water. The functional transformation of the glue ball from a viscous glycoprotein (capturing prey) to a hardened protein (retaining prey) relies solely on the stimulation of mechanical forces. The phosphate is a key factor for its versatility.


Assuntos
Fosfatos/metabolismo , Aranhas/metabolismo , Adesividade , Animais , Fenômenos Biomecânicos , Espectrometria de Massas , Sais/metabolismo
17.
EFSA J ; 16(1): e05115, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32625666

RESUMO

This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) deals with the safety assessment of selenium nanoparticles, FCM substance No 1070, which is intended to be used as an antioxidant. Selenium nanoparticles are incorporated into the adhesive middle layer of multilayer laminates with an outside polyethylene terephthalate (PET) layer and an inner polyolefin (food contact) layer. The final materials are intended to be used for contact with all food types that are susceptible to oxidation. The specific migration of total selenium was tested using multilayer pouches containing selenium nanoparticles at 0.002 mg/dm2 and filled with 3% acetic acid and 20%, 50% or 95% ethanol for 10 days at 60°C. In all tests, migration of selenium was not detectable. Taking into account current knowledge on the diffusional properties of nanoparticles in polymers, the CEF Panel concluded that there is no safety concern for the consumer if selenium nanoparticles are used in multilayer films and separated from the food by a polyolefin food contact layer for any type of food and under any food contact conditions.

18.
EFSA J ; 16(11): e05448, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32625741

RESUMO

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of polyacrylic acid, sodium salt, cross-linked, FCM substance No 1015, which is intended to be used as a liquid absorber in the packaging of fresh or frozen foods such as meat, poultry and seafood as well as fresh fruits and vegetables. Specific migration tests were not performed due to the high absorption of liquids by the substance. The Panel noted that if polyacrylic acid, sodium salt, cross-linked is used not in direct contact with food and placed in a pad under conditions where its absorption capacity is not exceeded, then no migration is to be expected and therefore no exposure from the consumption of the packed food is expected. The Panel also considered that the non-cross-linked polymer and the cross-linkers do not raise a concern for genotoxicity. The CEP Panel concluded that the use of this polyacrylic acid, sodium salt, cross-linked, does not raise a safety concern when used in absorbent pads in the packaging of fresh or frozen foods. The absorbent pads must be used only under conditions in which the absorption capacity of the active substance is not exceeded and direct contact with food is excluded.

19.
EFSA J ; 16(2): e05121, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32625797

RESUMO

This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel) deals with the safety evaluation of the active substances carboxymethylcellulose, acetylated distarch phosphate (FCM substance No 1071), bentonite, boric acid and aluminium sulfate (FCM substance No 1072). The mixture is intended to be used as a liquid absorber in the packaging of perishable foods to extend their shelf-life. All substances have been evaluated and approved for use as additives in plastic food contact materials and/or as food additives. Migration of boron into foods was up to 0.7 mg/kg food. Migration of aluminium was not detected (limit of detection (LOD) of 0.001 mg/kg). The CEF Panel concludes that the substances carboxymethylcellulose, acetylated distarch phosphate, bentonite, boric acid and aluminium sulfate are not of safety concern for the consumer when used as active components in moisture and liquid absorbers. The absorbent pads must be used under conditions in which direct contact between the active mixture and the food is avoided and the fluid absorption capacity of the absorber is not exceeded.

20.
Biophys Rev ; 9(6): 931-940, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29178081

RESUMO

The emergence of different nanoparticles (NPs) has made a significant revolution in the field of medicine. Different NPs in the form of metallic NPs, dendrimers, polymeric NPs, carbon quantum dots and liposomes have been functionalized and used as platforms for intracellular delivery of biomolecules, drugs, imaging agents and nucleic acids. These NPs are designed to improve the pharmacokinetic properties of the drug, improve their bioavailability and successfully surpass physiological or pathological obstacles in the biological system so that therapeutic efficacy is achieved. In this review I present some of the current approaches used in intracellular delivery systems, with a focus on various stimuli-responsive nanocarriers, including cell-penetrating peptides, to highlight their various biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA