RESUMO
OBJECTIVE: To investigate the effect of interleukin-25 (IL-25) on ovalbumin (OVA) induced atopic dermatitis of mice, and the significance of regulating IL-25. METHODS: In this study, 90 healthy male 6-week-old specific pathogen free (SPF) BALB/c mice were divided into 6 groups (15 in each group): â subcutaneous injection of phosphate buffered saline (PBS) group (normal control group); â¡ subcutaneous injection of mouse IL-25 group (IL-25 group); ⢠subcutaneous injection of anti-mouse IL-25 monoclonal antibody (anti-IL-25 group), each group received subcutaneous injection once a day for 1 week, 2 weeks apart, repeated daily subcutaneous injections for 1 week, 2 weeks apart, and repeated daily subcutaneous injections for 1 week, for a total of 7 weeks; ⣠OVA treated group (model group); ⤠OVA treated and IL-25 subcutaneous injection group (IL-25 treated dermatitis group); ⥠OVA treated and anti-mouse IL-25 monoclonal antibody injection group (anti-IL-25 treated dermatitis group). The ⤠and ⥠groups in the process of treatment with OVA, IL-25 or anti-IL-25 antibody were given in the same way as the â¡ and ⢠groups. Scratching behavior and skin performance of the mice were recorded during the seven-week-treatment. Twenty four hours after the final treatment, blood was taken from the mouse heart, and the serum was separated to detect the total IgE, IL-4, IL-5, IL-13, etc. The skin samples of the treatment sites were used for hematoxylin-eosin (HE) staining, immunohistochemistry, real-time PCR and Western blot detections. A single factor (ANOVA) analysis of variance was used to compare the differences in various indicators between the groups. RESULTS: The frequency of scratches in the IL-25 treated dermatitis group was higher than that in the model group, and the scratching behavior of the anti-IL-25 treated dermatitis group was significantly lower than that in the model group. The appearance of atopic dermatitis, thickening of the epidermis and the degree of dermal inflammation in the IL-25 treated dermatitis group were more serious than those in the model group and the anti-IL-25 treated dermatitis group. The levels of serum IgE, IL-4, IL-5, and IL-13 in the IL-25 treated dermatitis group were significantly higher than that in the model group and the anti-IL-25 treated dermatitis group. There were significantly more CD4+ T cells in the dermis of IL-25 treated dermatitis group than that in the anti-IL-25 treated dermatitis group. The expression levels of filaggrin and defensin ß2 proteins in the IL-25 treated dermatitis group were significantly lower than those in the model group and the anti-IL-25 treated dermatitis group. CONCLUSION: In the OVA induced atopic dermatitis mice model, IL-25 can significantly promote the damage of the epidermal barrier function and aggravate the OVA-induced dermatitis. Antagonizing IL-25 can alleviate OVA induced dermatitis to a certain extent.
Assuntos
Dermatite Atópica , Interleucinas , Ovalbumina , Animais , Masculino , Camundongos , Anticorpos Monoclonais , Dermatite Atópica/imunologia , Imunoglobulina E/sangue , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Interleucinas/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina/imunologiaRESUMO
OBJECTIVE: Sarcopenia manifests as a chronic, low-level inflammation along with multiple inflammatory cells infiltration. Interleukin (IL)-25 can regulate the function of macrophages. However, the specific role and mechanisms through which IL-25 functions in sarcopenia are still not fully understood and require further investigation. METHODS: Aged mice were utilized as sarcopenia models and examined the expression of inflammatory factors. To investigate the effects of IL-25 on sarcopenia, the model mice received IL-25 treatment and underwent in vivo adoptive transfer of IL-25-induced macrophages. Meanwhile, RAW264.7 cells, bone marrow-derived macrophages, satellite cells and C2C12 cells were used in vitro. Shh insufficiency was induced through intramuscular administration of SHH-shRNA adenoviruses. Then, various assays including scratch wound, cell counting kit-8 and Transwell assays, as well as histological staining and molecular biological methods, were conducted. RESULTS: Aged mice exhibited an accelerated decline in muscle strength and mass, along with an increased muscle lipid droplets and macrophage infiltration, and decreased IL-25 levels compared to the young group. IL-25 therapy and the transfer of IL-25-preconditioned macrophages could improve these conditions by promoting M2 macrophage polarization in vivo as well as in vitro. M2 macrophage conditioned medium enhanced satellite cell proliferation and migration, as well as the vitality, migration, and differentiation of C2C12 cells in vitro. Furthermore, IL-25 enhanced Shh expression in macrophages in vitro, and activated the Shh signaling pathway in muscle tissue of aged mice, which could be suppressed by either the inhibitor cyclopamine or Shh knockdown. Mechanistic studies showed that Shh insufficiency suppressed the activation of Akt/mTOR signaling pathway in muscle tissue of aged mice. CONCLUSION: IL-25 promotes the secretion of Shh by M2 macrophages and activates the Shh/Akt/mTOR signaling pathway, which improves symptoms and function in sarcopenia mice. This suggests that IL-25 has potential as a therapeutic agent for treating sarcopenia.
Assuntos
Proteínas Hedgehog , Macrófagos , Camundongos Endogâmicos C57BL , Músculo Esquelético , Regeneração , Sarcopenia , Transdução de Sinais , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Células RAW 264.7 , Masculino , Interleucina-17/metabolismo , Modelos Animais de Doenças , Humanos , Proliferação de Células/efeitos dos fármacosRESUMO
Background: Interleukin-25 (IL-25) has been proved to play a role in the pathogenesis and metastasis of Hepatocellular carcinoma (HCC), but the relationship between the level of IL-25 and the metastasis and prognosis of HCC is still not clear. This study aimed to investigate the expression of IL-25 and other potential biochemical indicators among healthy people, HBV-associated HCC patients without lung metastasis and HBV-associated HCC patients with lung metastasis. Methods: From September 2019 to November 2021, 33 HCC patients without lung metastasis, 37 HCC patients with lung metastasis and 29 healthy controls were included in the study. IL-25 and other commonly used biochemical markers were measured to establish predictors of overall survival (OS) and progression-free survival (PFS) after treatment. Results: The serum level of IL-25 was increased in HCC patients than healthy controls (p < 0.001) and HCC patients with lung metastasis had higher IL-25 level than HCC patients without metastasis (p = 0.035). Lung metastasis also indicated higher death rate (p < 0.001) by chi-square test, higher GGT level (p = 0.024) and higher AFP level (p = 0.049) by non-parametric test. Kaplan-Meier analysis demonstrated that IL-25 was negatively associated with PFS (p = 0.024). Multivariate Cox-regression analysis indicated IL-25 (p = 0.030) and GGT (p = 0.020) to be independent predictors of poorer PFS, while IL-25 showed no significant association with OS. Conclusion: The level of IL-25 was significantly associated with disease progression and lung metastasis of HBV-associated HCC. The high expression of IL-25 predicted high recurrence rate and death probability of HCC patients after treatment. Therefore, IL-25 may be an effective predictor of prognosis in HCC.
Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/sangue , Estudos de Casos e Controles , China/epidemiologia , População do Leste Asiático , Hepatite B/complicações , Hepatite B/virologia , Interleucina-17/sangue , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/virologia , PrognósticoRESUMO
The intricate role of innate type-2 cytokines in immune responses is increasingly acknowledged for its dual nature, encompassing both protective and pathogenic dimensions. Ranging from defense against parasitic infections to contributing to inflammatory diseases like asthma, fibrosis, and obesity, these cytokines intricately engage with various innate immune cells. This review meticulously explores the cellular origins of innate type-2 cytokines and their intricate interactions, shedding light on factors that amplify the innate type-2 response, including TSLP, IL-25, and IL-33. Recent advancements in therapeutic strategies, specifically the utilization of biologics targeting pivotal cytokines (IL-4, IL-5, and IL-13), are discussed, offering insights into both challenges and opportunities. Acknowledging the pivotal role of innate type-2 cytokines in orchestrating immune responses positions them as promising therapeutic targets. The evolving landscape of research and development in this field not only propels immunological knowledge forward but also holds the promise of more effective treatments in the future.
RESUMO
Intestinal tuft cells, a kind of epithelial immune cells, rapidly expand in response to pathogenic infections, which is associated with infection-induced interleukin 25 (IL-25) upregulation. However, the metabolic mechanism of IL-25-induced tuft cell expansion is largely unknown. Folate metabolism provides essential purine and methyl substrates for cell proliferation and differentiation. Thus, we aim to investigate the roles of folate metabolism playing in IL-25-induced tuft cell expansion by enteroviral infection and recombinant murine IL-25 (rmIL-25) protein-stimulated mouse models. At present, enteroviruses, such as EV71, CVA16, CVB3, and CVB4, upregulated IL-25 expression and induced tuft cell expansion in the intestinal tissues of mice. However, EV71 did not induce intestinal tuft cell expansion in IL-25-/- mice. Interestingly, compared to the mock group, folate was enriched in the intestinal tissues of both the EV71-infected group and the rmIL-25 protein-stimulated group. Moreover, folate metabolism supported IL-25-induced tuft cell expansion since both folate-depletion and anti-folate MTX-treated mice had a disrupted tuft cell expansion in response to rmIL-25 protein stimulation. In summary, our data suggested that folate metabolism supported intestinal tuft cell expansion in response to enterovirus-induced IL-25 expression, which provided a new insight into the mechanisms of tuft cell expansion from the perspective of folate metabolism.
Assuntos
Infecções por Enterovirus , Ácido Fólico , Células em Tufo , Animais , Camundongos , Proliferação de Células , Enterovirus/metabolismo , Infecções por Enterovirus/metabolismo , Interleucina-17/metabolismo , Células em Tufo/metabolismo , Ácido Fólico/farmacologiaRESUMO
BACKGROUND: Interleukin-17 (IL-17) family plays a role in the pathogenesis of knee osteoarthritis (KOA) by contributing to the inflammatory and destructive processes in the affected joint. This study aimed to measure levels of IL-17 A and IL-25 (IL-17E) in serum of KOA patients and determine their roles in the disease severity of patients. METHODS: In this, 34 patients with KOA and 30 age and sex-matched healthy subjects (HS) were enrolled. Patients were categorized based on their Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analog Scale (VAS), and Body Mass Index (BMI) scores. The enzyme-linked immunosorbent assay (ELISA) technique was employed to measure serum levels of IL-17 A and IL-25. RESULTS: Level of IL-25 was significantly higher (P < 0.0001) in the KOA subjects than HS. IL-17 A level was significantly higher in KOA cases with WOMAC < 40 (P < 0.0001) in comparison to HS. IL-25 level was significantly higher in the KOA cases with WOMAC < 40 (P < 0.0001) and with WOMAC ≥ 40 (P < 0.0001) compared to HS. IL-17 A concentration was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) compared to HS. IL-25 level was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) and with VAS ≥ 5 (P < 0.0001) in comparison to HS. KOA patients with BMI ≥ 30 had significantly higher IL-17 A and IL-25 concentration in comparison to HS. CONCLUSIONS: The serum level of IL-25 in KOA patients is increased probably due to negative controlling feedback on inflammatory responses, which can be associated with obesity and disease activity.
Assuntos
Interleucina-17 , Osteoartrite do Joelho , Humanos , Gravidade do Paciente , Índice de Massa Corporal , CitocinasRESUMO
Abstract Background Interleukin-17 (IL-17) family plays a role in the pathogenesis of knee osteoarthritis (KOA) by contributing to the inflammatory and destructive processes in the affected joint. This study aimed to measure levels of IL-17 A and IL-25 (IL-17E) in serum of KOA patients and determine their roles in the disease severity of patients. Methods In this, 34 patients with KOA and 30 age and sex-matched healthy subjects (HS) were enrolled. Patients were categorized based on their Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analog Scale (VAS), and Body Mass Index (BMI) scores. The enzyme-linked immunosorbent assay (ELISA) technique was employed to measure serum levels of IL-17 A and IL-25. Results Level of IL-25 was significantly higher (P < 0.0001) in the KOA subjects than HS. IL-17 A level was significantly higher in KOA cases with WOMAC < 40 (P < 0.0001) in comparison to HS. IL-25 level was significantly higher in the KOA cases with WOMAC < 40 (P < 0.0001) and with WOMAC ≥ 40 (P < 0.0001) compared to HS. IL-17 A concentration was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) compared to HS. IL-25 level was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) and with VAS ≥ 5 (P < 0.0001) in comparison to HS. KOA patients with BMI ≥ 30 had significantly higher IL-17 A and IL-25 concentration in comparison to HS. Conclusions The serum level of IL-25 in KOA patients is increased probably due to negative controlling feedback on inflammatory responses, which can be associated with obesity and disease activity.
RESUMO
OBJECTIVES: To quantify associations of serum alarmins with risk of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). METHODS: Using serum collected at enrolment, three alarmins (interleukin [IL]-33, thymic stromal lymphopoietin [TSLP], and IL-25) were measured in a multicentre prospective RA cohort. ILD was classified using systematic medical record review. Cross-sectional associations of log-transformed (IL-33, TSLP) or quartile (IL-25) values with RA-ILD at enrolment (prevalent RA-ILD) were examined using logistic regression, while associations with incident RA-ILD developing after enrolment were examined using Cox proportional hazards. Covariates in multivariate models included age, sex, race, smoking status, RA disease activity score, and anti-cyclic citrullinated antibody positivity. RESULTS: Of 2,835 study participants, 115 participants (4.1%) had prevalent RA-ILD at baseline and an additional 146 (5.1%) developed incident ILD. There were no associations between serum alarmin concentrations and prevalent ILD in unadjusted or adjusted logistic regression models. In contrast, there was a significant inverse association between IL-33 concentration and the risk of developing incident RA-ILD in unadjusted (HR 0.73 per log-fold increase; 95% CI 0.57-0.95; p= 0.018) and adjusted (HR 0.77; 95% CI 0.59-1.00, p= 0.047) models. No significant associations of TSLP or IL-25 with incident ILD were observed. CONCLUSIONS: In this study, we observed a significant inverse association between serum IL-33 concentration and the risk of developing incident RA-ILD, but no associations with prevalent ILD. Additional investigation is required to better understand the mechanisms driving this relationship and how serum alarmin IL-33 assessment might contribute to clinical risk stratification in patients with RA.
RESUMO
T cell dysregulation and shift to T helper 2 responses, boosting tumor microenvironment support, contributes to the survival of leukemic B cells in Chronic Lymphocytic Leukemia. Interleukin (IL)-25 is involved in the initiation of T helper 2 cell responses. Signal transduction of IL-25 begins with the heterodimer receptor (IL-17RA/IL-17RB). The presence of IL-25 in the tumor microenvironment may affect the supportive effects of T cells in the surrounding tumor cell environment. The purpose of this study was to evaluate the role of IL-25 in the biology of CLL. IL-17RB expression in CD3+ and CD19+ cells was assessed in isolated peripheral blood mononuclear cells (PBMCs) of nine CLL patients and nine healthy subjects by real-time polymerase chain reaction and flow cytometry. B cells were positively enriched from PBMCs using magnetic-activated cell sorting (MACS). PBMCs and purified leukemic B cells were cultured with recombinant human IL-25 (20ng/ml) for 72 hours, then the viability and apoptosis of cultured cells were measured by MTT assay and AnnexinV/7AAD. Furthermore, the levels of CD69 expression on T lymphocytes and IL-17RB in T and B cells were determined by flow cytometry. The basal level of IL-17RB expression in CLL patients was significantly higher than that in control individuals. In addition, the percentage of IL-17RB+/CD3+, IL-17RB+/CD19+ cells and CD69+/CD3+ cells increased after 72 hours of culture with IL-25 in CLL patients compared to healthy subjects. IL-25 also reduces the apoptosis rate of tumor cells. We found that IL-25 could stimulate T cells in CLL patients and lower B cell death. This suggests that IL-25 might have a role in enhancing the survival of tumor cell by expressing receptors for inflammation, such as IL-17RB, and might be involved in the development of CLL.
Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Linfócitos B , Células Cultivadas , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária , Microambiente TumoralRESUMO
Intestinal tuft cells, a chemosensory cell type in mucosal epithelia that secrete interleukin (IL)-25, play a pivotal role in type 2 immune responses triggered by parasitic infections. Tuft cell-derived IL-25 activates type 2 innate lymphoid cells (ILC2) to secrete IL-13, which, in turn, acts on intestinal stem or transient amplifying cells to expand tuft cells themselves and mucus-secreting goblet cells. However, the molecular mechanisms of tuft cell differentiation under type 2 immune responses remain unclear. The present study investigated the effects of the deletion of activating transcription factor 5 (ATF5) on the type 2 immune response triggered by succinate (a metabolite of parasites) in mice. ATF5 mRNAs were expressed in the small intestine, and the loss of the ATF5 gene did not affect the gross morphology of the tissue or the basal differentiation of epithelial cell subtypes. Succinate induced marked increases in tuft and goblet cell numbers in the ATF5-deficient ileum. Tuft cells in the ATF5-deficient ileum are assumed to be a subtype of intestinal tuft cells (Tuft-2 cells) marked by the transcription factor Spib. Exogenous IL-25 induced similar increases in tuft and goblet cell numbers in wild-type and ATF5-deficient ilea. IL-13 at a submaximal dose enhanced tuft cell differentiation more in ATF5-deficient than in wild-type intestinal organoids. These results indicate that the loss of ATF5 enhanced the tuft cell-ILC2 type 2 immune response circuit by promoting tuft cell differentiation in the small intestine, suggesting its novel regulatory role in immune responses against parasitic infections.
Assuntos
Células Caliciformes , Imunidade Inata , Camundongos , Animais , Ácido Succínico/metabolismo , Mucosa Intestinal/metabolismo , Interleucina-13/metabolismo , Linfócitos , Fatores Ativadores da Transcrição/metabolismoRESUMO
Recently, we have reported that the early progression of proteinuria in the obese Dahl salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) strain was associated with increased renal macrophage infiltration before puberty. Macrophages can be divided into two distinct phenotypes: M1 (proinflammatory) and M2 (anti-inflammatory). Moreover, previous studies have demonstrated that interleukin (IL)-25 converts resting macrophages and M1 into M2. Therefore, the present study examined whether treatment with IL-25 would reduce the early progression of renal injury in SSLepRmutant rats by increasing renal M2. We also investigated the impact of IL-25 on M2 subtypes: M2a (wound healing/anti-inflammatory), M2b (immune mediated/proinflammatory), M2c (regulatory/anti-inflammatory), and M2d (tumor associated/proangiogenic). Four-wk-old SS and SSLepRmutant rats were treated with either control (IgG) or IL-25 (1 µg/day ip every other day) for 4 wk. The kidneys from SSLepRmutant rats displayed progressive proteinuria and renal histopathology versus SS rats. IL-25 treatment had no effect on these parameters in SS rats. However, in the SSLepRmutant strain, proteinuria was markedly reduced after IL-25 treatment. Chronic treatment with IL-25 significantly decreased glomerular and tubular injury and renal fibrosis in the SSLepRmutant strain. Although the administration of IL-25 did not change total renal macrophage infiltration in both SS and SSLepRmutant rats, IL-25 increased M2a by >50% and reduced M1 by 60% in the kidneys of SSLepRmutant rats. Overall, these data indicate that IL-25 reduces the early progression of renal injury in SSLepRmutant rats by inducing M2a and suppressing M1 and suggest that IL-25 may be a therapeutic target for renal disease associated with obesity. NEW & NOTEWORTHY For the past few decades, immune cells and inflammatory cytokines have been demonstrated to play an important role in the development of renal disease. The present study provides strong evidence that interleukin-25 slows the early progression of renal injury in obese Dahl salt-sensitive rats before puberty by increasing systemic anti-inflammatory cytokines and renal M2a macrophages.
Assuntos
Interleucina-17 , Nefropatias , Ratos , Animais , Ratos Endogâmicos Dahl , Interleucina-17/farmacologia , Rim/patologia , Nefropatias/patologia , Proteinúria/patologia , Obesidade/complicações , Obesidade/patologia , Cloreto de Sódio na Dieta/farmacologia , Macrófagos/patologiaRESUMO
Atopic dermatitis (AD) is classified as a type 2 disease owing to the majority of type 2 lymphocytes that constitute the skin-infiltrating leukocytes. However, all of the type 1-3 lymphocytes intermingle in inflamed skin lesions. Here, using an AD mouse model where caspase-1 was specifically amplified under keratin-14 induction, we analyzed the sequential changes in type 1-3 inflammatory cytokines in lymphocytes purified from the cervical lymph nodes. Cells were cultured and stained for CD4, CD8, and γδTCR, followed by intracellular cytokines. Cytokine production in innate lymphocyte cells (ILCs) and the protein expression of type 2 cytokine IL-17E (IL-25) were investigated. We observed that, as inflammation progresses, the cytokine-producing T cells increased and abundant IL-13 but low levels of IL-4 are produced in CD4-positive T cells and ILCs. TNF-α and IFN-γ levels increased continuously. The total number of T cells and ILCs peaked at 4 months and decreased in the chronic phase. In addition, IL-25 may be simultaneously produced by IL-17F-producing cells. IL-25-producing cells increased in a time-dependent manner during the chronic phase and may work specifically for the prolongation of type 2 inflammation. Altogether, these findings suggest that inhibition of IL-25 may be a potential target in the treatment of inflammation.
Assuntos
Citocinas , Dermatite Atópica , Animais , Camundongos , Citocinas/metabolismo , Dermatite Atópica/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Interleucina-13/metabolismo , Inflamação/metabolismoRESUMO
This study aimed to investigate the effects of interleukin-25, which belongs to the interleukin-17 family, on short-term high-fructose diet-induced hepatic triacylglycerol accumulation. Rats were fed a high-starch (control) or high-fructose diet for 7 d, with or without intraperitoneal administration of recombinant interleukin-25 from days 3-7. Treatment with interleukin-25 significantly reduced the mRNA levels and activity of fatty acid synthesis enzymes and caused a nominal reduction in hepatic triacylglycerol levels in rats fed a high-fructose diet but not in those fed a control diet. Interleukin-25 treatment did not affect the mRNA levels of ß-oxidation enzymes in either the control or fructose-fed rats. These results suggest that treatment with interleukin-25 suppresses short-term high-fructose diet-induced fatty acid synthesis and leads to the alleviation of triacylglycerol accumulation in the liver.
Assuntos
Frutose , Interleucina-17 , Fígado , Animais , Ratos , Dieta , Ácidos Graxos/metabolismo , Frutose/farmacologia , Expressão Gênica , Interleucina-17/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos Wistar , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismoRESUMO
Background: Interleukin (IL)25 has been implicated in tissue homeostasis at barrier surfaces and the initiation of type two inflammatory signaling in response to infection and cell injury across multiple organs. We sought to discover and engineer a high affinity neutralizing antibody and evaluate the antibody functional activity in vitro and in vivo. Methods: In this study, we generated a novel anti-IL25 antibody (22C7) and investigated the antibody's therapeutic potential for targeting IL25 in inflammation. Results: A novel anti-IL25 antibody (22C7) was generated with equivalent in vitro affinity and potency against the human and mouse orthologs of the cytokine. This translated into in vivo potency in an IL25-induced air pouch model where 22C7 inhibited the recruitment of monocytes, macrophages, neutrophils and eosinophils. Furthermore, 22C7 significantly reduced ear swelling, acanthosis and disease severity in the Aldara mouse model of psoriasiform skin inflammation. Given the therapeutic potential of IL25 targeting in inflammatory conditions, 22C7 was further engineered to generate a highly developable, fully human antibody while maintaining the affinity and potency of the parental molecule. Conclusions: The generation of 22C7, an anti-IL25 antibody with efficacy in a preclinical model of skin inflammation, raises the therapeutic potential for 22C7 use in the spectrum of IL25-mediated diseases.
RESUMO
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by type 2 immune responses. Interleukin-25 (IL-25) is produced predominantly by epithelial cells. It can activate Th2 cells to produce type 2 cytokines such as IL-4, IL-5 and IL-13, contributing to host defense against nematodes. However, excessive/inappropriate production of IL-25 is considered to be involved in development of type 2 cytokine-associated allergic disorders such as asthma. On the other hand, the contribution of IL-25 to the pathogenesis of AD remains poorly understood. In the present study, we found that expression of Il25 mRNA was significantly increased in the skin of mice during oxazolone-induced chronic contact hypersensitivity (CHS), which is a mouse model of human AD. In addition, development of oxazolone-induced chronic CHS was significantly reduced in IL-25-deficient (Il25-/-) mice compared with wild-type mice on the C57BL/6, but not BALB/c, background, although IL-25 was not essential for IL-4 production by hapten-specific T cells. Therefore, IL-25 is crucial for development of chronic CHS, although that is partly dependent on the genetic background of the mice.
Assuntos
Dermatite Atópica , Dermatite de Contato , Interleucina-17 , Animais , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/genética , Dermatite de Contato/genética , Haptenos , Interleucina-13 , Interleucina-17/genética , Interleucina-4/genética , Interleucina-5 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxazolona , RNA Mensageiro , Pele/metabolismoRESUMO
Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode with no tissue phases in the definitive host that has been extensively used as an experimental model to study the factors that determine resistance against intestinal helminths. In E. caproni infections in mice, interleukin-25 (IL-25) plays a critical role and it is required for the resistance to infection. However, little is known on the factors that determine its production. Primary E. caproni infection in mice is characterized by the development of chronic infections and elevated worm recovery, in relation to a local Th1 response with elevated production of interferon-γ. However, partial resistance against secondary E. caproni infections in ICR (Institute of Cancer Research) mice is developed after the chemotherapeutic cure of a primary infection and the innately produced IL-25 after pharmacological treatment. In this paper, we analyse the potential role of intestinal microbiota in the production of IL-25, and the subsequent resistance to infection. For this purpose, we analysed the production of IL-25 under conditions of experimental dysbiosis and also the changes in the resident microbiota in primary infections, pharmacological curation and secondary infections. The results obtained showed that resident microbiota play a major role in the production of IL-25 and the appearance of members of the phylum Verrucomicrobia as a consequence of the curation of the primary infection could be related to the partial resistance to secondary infection.
Assuntos
Echinostoma , Echinostomatidae , Equinostomíase , Microbiota , Infecções por Trematódeos , Camundongos , Animais , Equinostomíase/parasitologia , Camundongos Endogâmicos ICR , Infecções por Trematódeos/parasitologiaRESUMO
Rabies is an important zoonotic disease caused by the rabies virus (RABV). Currently, no effective treatment is available for this condition. The prevention and control of rabies mainly depend on effective vaccination. Therefore, it is crucial to enhance the immune responses induced by the rabies vaccine. Virus neutralizing antibodies (VNA) induced by rabies vaccines are important for the clearance of RABV. Interleukin-25 (IL-25) has been demonstrated to activate T helper type 2 cells that contribute to humoral immune responses. The IL-25 gene was inserted into the genome of RABV, and the immunogenicity of recombinant RABV with IL-25 gene was investigated to develop more efficient rabies vaccines. Here, we found that the expression of IL-25 did not affect RABV production in vitro and pathogenicity in vivo. However, recombinant RABV expression of IL-25 induced a better VNA level than the parental virus in mice. In addition, expression of IL-25 enhanced the IgG1 level induced by RABV. Furthermore, mice immunized with recombinant RABV showed a higher survival rate and milder clinical signs than those immunized with the parent strain after challenge with CVS-11. Thus, these results showed that IL-25 could enhance the humoral immune responses induced by RABV, suggesting that IL-25 can be used as a viral vaccine adjuvant.
Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Anticorpos Antivirais , Imunidade Humoral , Interleucina-17/genética , Camundongos , Raiva/prevenção & controle , Vacina Antirrábica/genética , Vírus da Raiva/genéticaRESUMO
Brush cells are chemosensory epithelial cells present at most mucosal surfaces.Brush cells are a dominant source of cysteinyl leukotrienes and IL-25 in the airway epithelium and are equipped with the machinery to generate prostaglandins and acetylcholine. Activation of innate type 2 lymphoid cells and dendritic cells triggered by brush cell-derived mediators skew the immune response in the airway to type 2 inflammation that underlies atopic disease such as asthma. This chapter describes an effective method of brush cell isolation from the mouse trachea for transcriptional analysis and from the nasal cavity for transcriptional analysis and ex vivo stimulation.The nasal or tracheal mucosa is first incubated in a dispase solution for easy mechanical separation of the epithelial layer from the underlying submucosa. The detached epithelium is then digested with a papain solution. This method provides high yields of viable brush cells in a single-cell suspension, which can be used for flow cytometric analysis, single-cell sorting, cell culture, and functional assays.In the nose, where brush cells are more abundant, we present two methods of isolation of brush cells: (1) using fluorescent reporter mice that mark brush cells or (2) using a combination of high expression of EpCAM and low expression of CD45 to obtain a population of cells that is enriched for nasal chemosensory brush cells.
Assuntos
Células Epiteliais , Traqueia , Acetilcolina/metabolismo , Animais , Células Cultivadas , Camundongos , NarizRESUMO
BACKGROUND: Persistent chronic inflammation is one of the main pathogenic characteristics of diabetic wounds. The resolution of inflammation is important for wound healing and extracellular matrix (ECM) formation. Interleukin (IL)-25 can modulate the function of macrophage and fibroblast, but its role and mechanism of action in the treatment of diabetic wounds remain largely unclear. METHODS: The mice were categorized into diabetic, diabetic + IL-25 and control groups. Human monocytic THP-1 cell line and human dermal fibroblast (HDF) were stimulated under different IL-25 conditions. Then, flow cytometry, real-time quantitative PCR (RT-qPCR), Western blot (WB), and immunofluorescence (IF) assays were carried out. RESULTS: The mice in diabetes group (DG) had a slower wound healing rate, more severe inflammation, less blood vessels and more disordered collagen than those in control group (CG). Intradermal injection of IL-25 could improve these conditions. IL-25 promoted M2 macrophage polarization and fibroblast activation in DG and high-glucose environment. The phenomenon, which was dependent on PI3K/AKT/mTOR and TGF-ß/SMAD signaling, could be blocked by LY294002 and LY2109761. CONCLUSION: IL-25 may serve as a therapeutic target to improve wound healing in diabetic mice.
Assuntos
Diabetes Mellitus Experimental , Interleucinas , Ativação de Macrófagos , Macrófagos , Cicatrização , Animais , Diabetes Mellitus Experimental/metabolismo , Fibroblastos/metabolismo , Humanos , Interleucinas/farmacologia , Macrófagos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Células THP-1RESUMO
Atopic dermatitis and psoriasis are two of the most common chronic skin conditions. Current target therapies represent viable and safe solutions for the most severe cases of these two dermatoses but, presently, several limitations exist in terms of efficacy and side effects. A new class of products, epithelium-derived cytokines (TSLP, IL-25, IL-33), show an increasing potential for use in target therapy for these patients, and demonstrate a direct link between a generalized inflammatory and oxidative stress status and the human skin. A review was conducted to better understand their role in the aforementioned conditions. Of these three molecules, TSLP led has been most often considered in studies regarding target therapies, and most of the results in the literature are related to this cytokine. These three cytokines share common stimuli and are linked to each other in both acute and chronic phases of these diseases, and have been challenged as target therapies or biomarkers of disease activity. The results lead to the conclusion that epithelium-derived cytokines could represent a therapeutic opportunity for these patients, especially in itch control. Furthermore, they might work better when paired together with currently available therapies or in combination with in-development treatments. Further studies are needed in order to verify the efficacy and safety of the biologic treatments currently under development.