Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39339110

RESUMO

A large number of the thin-film organic structures (polyimides, 2-cyclooctylarnino-5-nitropyridine, N-(4-nitrophenyl)-(L)-prolinol, 2-(n-Prolinol)-5-nitropyridine) sensitized with the different types of the nano-objects (fullerenes, carbon nanotubes, quantum dots, shungites, reduced graphene oxides) are presented, which are studied using the holographic technique under the Raman-Nath diffraction conditions. Pulsed laser irradiation testing of these materials predicts a dramatic increase of the laser-induced refractive index, which is in several orders of the magnitude greater compared to pure materials. The estimated nonlinear refraction coefficients and the cubic nonlinearities for the materials studied are close to or larger than those known for volumetric inorganic crystals. The role of the intermolecular charge transfer complex formation is considered as the essential in the refractivity increase in nano-objects-doped organics. As a new idea, the shift of charge from the intramolecular donor fragment to the intermolecular acceptors can be proposed as the development of Janus particles. The energy losses via diffraction are considered as an additional mechanism to explain the nonlinear attenuation of the laser beam.

2.
Adv Sci (Weinh) ; 11(35): e2403249, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013078

RESUMO

Exploring the molecular packing and interaction between chiral molecules, no matter single enantiomer or racemates, is important for recognition and resolution of chiral drugs. However, sensitive and non-destructive analysis methods are lacking. Herein, an intermolecular-charge transfer (ICT) based spectroscopy is reported to reveal the differences in interaction between the achiral acceptor 1,2,4,5-tetracyanobenzene (TCNB) and the chiral donors, including S, R, and racemic naproxen (S/R/rac-NAP). In this process, S-NAP+TCNB and R-NAP+TCNB display a narrower band gap attributed to the newly formed ICT state. In contrast, the mixed rac-NAP and TCNB exhibit almost no significant change due to the strong affinity between the stereoisomers according to the Wallach's rule. Thus, S/R-NAP can be easily distinguished from rac-NAP based on significantly different optical behavior. The single crystal analysis, infrared spectroscopy, fluorescence spectroscopy, and theoretical calculation of naproxen confirm the importance of carboxyl for this differentiation in molecular packing and interaction. In addition, the esterification derivatization of naproxen achieves the manipulation of the intermolecular interaction model of racemates from the absolute Wallach's rule to a coexisting form of Wallach's rule and ICT. Further, visualized chiral purification of naproxen by the simple cocrystallization method is achieved through the collaboration of ICT and Wallach's rule.

3.
Adv Mater ; 36(31): e2401000, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38773688

RESUMO

Visible light is a universal and user-friendly excitation source; however, its use to generate persistent luminescence (PersL) in materials remains a huge challenge. Herein, the concept of intermolecular charge transfer (xCT) is applied in typical host-guest molecular systems, which allows for a much lower energy requirement for charge separation, thus enabling efficient charging of near-infrared (NIR) PersL in organics by visible light (425-700 nm). Importantly, NIR PersL in organics occurs via the trapping of electrons from charge-transfer aggregates (CTAs) into constructed trap states with trap depths of 0.63-1.17 eV, followed by the detrapping of these electrons by thermal stimulation, resulting in a unique light-storage effect and long-lasting emission up to 4.6 h at room temperature. The xCT absorption range is modulated by changing the electron-donating ability of a series of acenaphtho[1,2-b]pyrazine-8,9-dicarbonitrile-based CTAs, and the organic PersL is tuned from 681 to 722 nm. This study on xCT interaction-induced NIR PersL in organic materials provides a major step forward in understanding the underlying luminescence mechanism of organic semiconductors and these findings are expected to promote their applications in optoelectronics, energy storage, and medical diagnosis.

4.
Chemistry ; 30(35): e202401246, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38630894

RESUMO

A thorough understanding of the internal conversion process between excited states is important for the designing of ideal multiple-emissive materials. However, it is hard to experimentally measure both the energy barriers and gaps between the excited states of a compound. For a long time, it is dubious if what was measured is the energy gap or barrier between two excited states. In this paper, we designed 1-(pyren-2'-yl)-9,12-di(p-tolyl)-o-carborane (2), which shows dual-emission in solution. Temperature-dependent fluorescence measurements show that the two emission bands in hexane are corresponding to two different excited states. The ratio of the emission bands is controlled by thermodynamics at higher temperatures and by kinetics at lower temperatures. Thus, the energy barrier and energy gaps between the two excited states of 2 can be experimentally estimated.

5.
J Mol Graph Model ; 127: 108677, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38043394

RESUMO

Triphenylamine and 9-phenylcarbazole are the most common electron donor groups, now based on the two groups, eight D-π-A dyes are designed as sensitizers for dye-sensitized solar cells (DSSCs).The eight dyes use the same π-conjugated bridge (thiophene moiety and carbon-carbon double bond) and acceptor fragment (cyanoacrylic acid), and the donor group is added with additional electron-D groups to the original triphenylamine and 9-phenylcarbazole (C4H9 alkyl chain, C4F9 perfluoroalkyl chain, and methoxy), and comparing the properties of several donor groups and terminal branched chains while ensuring that the π-bridges and acceptors are identical. The photophysical properties, electronically excited states, and chemical reactivity affecting the performed dyes have been determined with DFT and TD-DFT calculations of bond lengths and dihedral angles between fragments, frontier molecular orbitals, density of states, isosurface molecular electrostatic potential, charge density differences, fragment transition density matrix, UV-Vis absorption spectra, quantum chemical, and photovoltaic parameters. Comparisons have been made between the dyes under study's photophysical characteristics, electrically excited states, and chemical reactivity. Among all the different donor dyes designed, SH-3 and ZD-3 are poorly molecularly planar compared to the same series of molecules with parameters such as large HOMO-LUMO energy gaps (2.78 eV, 3.28 eV), maximum excited energies (2.93 eV, 3.13 eV), and the shortest absorption peaks (422.76 nm, 396.48 nm), which are considered to be the worst material for photovoltaic applications. Whereas, SH-4 and ZD-4 have the smallest energy gap values (2.35 eV, 2.74 eV) and vertical excitation energies (2.66 eV, 3.04 eV) as well as having the longest absorption peaks (465.34 nm, 408.42 nm), the largest open circuit voltages (1.42 eV, 1.34 eV), which are the best designs among the two groups of molecules. The rest of the designed organic dyes have suitable photophysical properties and all of them are highly recommended for DSSCs.


Assuntos
Corantes , Energia Solar , Corantes/química , Modelos Moleculares , Aminas/química , Carbono
6.
Small ; 20(17): e2308470, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105598

RESUMO

Two-photon excited fluorescence imaging requires high-performance two-photon absorption (TPA) active materials, which are commonly intramolecular charge transfer systems prepared by traditional chemical synthesis. However, this typically needs harsh conditions and new methods are becoming crucial. In this work, based on a collaborative intermolecular charge transfer (inter-CT) strategy, three centimeter-sized organic TPA cocrystals are successfully obtained. All three cocrystals exhibit a mixed stacking arrangement, which can effectively generate inter-CT between the donor and acceptor. The ground and excited state characterizations compare their inter-CT ability: 1,2-BTC > 2D-BTC > 1D-BTC. Transient absorption spectroscopy detects TCNB•-, indicating that the TPA mechanism arises from molecular polarization caused by inter-CT. Meanwhile, 1,2-BTC exhibits the highest excited-state absorption and the longest excited-state lifetime, suggesting a stronger TPA response. First-principles calculations also confirm the presence of inter-CT interactions, and the significant parameter Δµ which can assess the TPA capability indicates that inter-CT enhances the TPA response. Besides, cocrystals also demonstrate excellent water solubility and two-photon excited fluorescence imaging capabilities. This research not only provides an effective method for synthesizing TPA crystal materials and elucidates the connection between inter-CT ability and TPA property but also successfully applies them in the fields of multi-photon fluorescence bioimaging.

7.
J Fluoresc ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530932

RESUMO

Anthracene molecule possesses remarkable optical activity and till today this molecule is of special interest of scientists. Present study is focused on the study of effects of Chloride, Sulfate, Nitrate and Ferrate salts on absorption and emission spectra of targeted fluorophore in carbontetrachloride, chloroform, dichloromethane and methanol. Prominent solvatochromic effects shows dependence of HOMO-LUMO orbitals on solvent polarity. Anthracene molecules exhibits changes in absorption and emission spectra, and show both ON and ON-OFF behavior on addition of said ions. Based on experimental results it was concluded that fluorophore molecule could be used more effectively as UV-Visible (UV-V) sensors in comparison to the emission sensor.

8.
Micromachines (Basel) ; 14(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37420997

RESUMO

With the advent of many optofluidic and droplet microfluidic applications using laser-induced fluorescence (LIF), the need for a better understanding of the heating effect induced by pump laser excitation sources and good monitoring of temperature inside such confined microsystems started to emerge. We developed a broadband highly sensitive optofluidic detection system, which enabled us to show for the first time that Rhodamine-B dye molecules can exhibit standard photoluminescence as well as blue-shifted photoluminescence. We demonstrate that this phenomenon originates from the interaction between the pump laser beam and dye molecules when surrounded by the low thermal conductive fluorocarbon oil, generally used as a carrier medium in droplet microfluidics. We also show that when the temperature is increased, both Stokes and anti-Stokes fluorescence intensities remain practically constant until a temperature transition is reached, above which the fluorescence intensity starts to decrease linearly with a thermal sensitivity of about -0.4%/°C for Stokes emission or -0.2%/°C for anti-Stokes emission. For an excitation power of 3.5 mW, the temperature transition was found to be about 25 °C, whereas for a smaller excitation power (0.5 mW), the transition temperature was found to be about 36 °C.

9.
Nanotechnology ; 34(39)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37343538

RESUMO

Carbon quantum dots (CQDs) have been extensively researched as fluorescent probes, but there are few reports on fluorescence-enhanced probes. Herein, nitrogen and sulfur co-doped CQDs (N, S-CQDs) with blue aggregation-induced emission enhancement (AIEE) fluorescence were synthesized by a one-step hydrothermal reaction. N, S-CQDs can rely on the presence of -OH, C=O, -NH2, and ether bonds on their surfaces and the formation of hydrogen bonds by ciprofloxacin (CIP) containing Ar-F and -COOH functional groups to achieve effective charge transfer. In addition, CIP forces N, S-CQDs to aggregate to form cross-linked structures, which effectively limits the vibration and rotation of N, S-CQDs, leading to enhanced fluorescence of N, S-CQDs. Based on the above intermolecular charge transfer and AIEE between N, S-CQDs and CIP, an efficient and sensitive nano fluorescent probe for the detection of CIP in real water samples was developed, which can achieve sensitive detection of 3.33 × 10-8-1.13 × 10-6M CIP.

10.
Small ; 19(10): e2206698, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642791

RESUMO

Pyrochlore ruthenate (Y2 Ru2 O7-δ ) is highlighted as a promising oxygen evolution reaction (OER) catalyst for water splitting in polymer electrolyte membrane electrolyzers. However, an efficient electronic modulation strategy for Y2 Ru2 O7-δ is required to overcome its electrochemical inertness. Herein, a surface manipulation strategy involving implanting MoOx moieties on nano Y2 Ru2 O7-δ (Mo-YRO) using wet chemical peroxone method is demonstrated. In contrast to electronic structure regulation by intramolecular charge transfer (i.e., substitutional strategies), the heterogeneous Mo-O-Ru micro-interfaces facilitate efficient intermolecular electron transfer from [RuO6 ] to MoOx . This eliminates the bandgap by inducing Ru 4d delocalization and band alignment rearrangement. The MoOx modifiers also alleviate distortion of [RuO6 ] by shortening Ru-O bond and enlarging Ru-O-Ru bond angle. This electronic and geometric structure tailoring enhances the OER performance, showing a small overpotential of 240 mV at 10 mA cm-2 . Moreover, the electron-accepting MoOx moieties provide more electronegative surfaces, which serve as a protective "fence" to inhibit the dissolution of metal ions, thereby stabilizing the electrochemical activity. This study offers fresh insights into the design of new-based pyrochlore electrocatalysts, and also highlights the versatility of surface engineering as a way of optimizing electronic structure and catalytic performance of other related materials.

11.
Chemistry ; 29(21): e202203660, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36650716

RESUMO

Two new 2,3-dicyanopyrazinophenanthrene-based acceptors (A) p-QCN and m-QCN were synthesized to blend with a donor (D) CPTBF for the exciplex formation. The energy levels of p-QCN and m-QCN are modulated by the peripheral substituents 4- and 3-benzonitrile, respectively. Exciplex-forming blends were identified by the observation of the red-shifted emissions from various D : A blends with higher ratios of donor for suppressing the aggregation of acceptor. The two-component relaxation processes observed by time-resolved photoluminescence support the thermally activated delayed fluorescence (TADF) character of the exciplex-forming blends. The device employing CPTBF : p-QCN and (2 : 1) and CPTBF : m-QCN (2 : 1) blend as the emitting layer (EML) gave EQEmax of 1.76 % and 5.12 %, and electroluminescence (EL) λmax of 629 nm and 618 nm, respectively. The device efficiency can be further improved to 4.32 % and 5.57 % with CPTBF : p-QCN and (4 : 1) and CPTBF : m-QCN (4 : 1) as the EML, which is consistent with their improved photoluminescence quantum yields (PLQYs). A new fluorescent emitter BPBBT with photoluminescence (PL) λmax of 726 nm and a high PLQY of 67 % was synthesized and utilized as the dopant of CPTBF : m-QCN (4 : 1) cohost system. The device employing CPTBF : m-QCN (4 : 1): 5 wt.% BPBBT as the EML gave an EQEmax of 5.02 % and EL λmax centered at 735 nm, however, the weak residual exciplex emission remains. By reducing the donor ratio, the exciplex emission can be completely transferred to BPBBT and the corresponding device with CPTBF : m-QCN (2 : 1): 5 wt.% BPBBT as the EML can achieve EL λmax of 743 nm and EQEmax of 4.79 %. This work manifests the high efficiency near infrared (NIR) OLED can be realized by triplet excitons harvesting of exciplex-forming cohost system, followed by the effective energy transfer to an NIR fluorescent dopant.

12.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432201

RESUMO

Molecules with donor-spacer-acceptor configuration have been developed rapidly given their peculiar properties. How to utilize intermolecular interactions and charge transfers for solution-processed organic light-emitting diodes (OLEDs) greatly relies on molecular design strategy. Herein, soluble luminophores with D-spacer-A motif were constructed via shortening the alkyl chain from nonane to propane, where the alkyl chain was utilized as a spatial linker between the donor and acceptor. The alkyl chain blocks the molecular conjugation and induces the existence of aggregation-induced intermolecular CT emission, as well as the improved solubility and morphology in a solid-state film. In addition, the length of the alkyl chain affects the glass transition temperature, carrier transport and balance properties. The mCP-3C-TRZ with nonane as the spacer shows better thermal stability and bipolar carrier transport ability, so the corresponding solution-processable phosphorescent organic light-emitting diodes exhibit superior external quantum efficiency of 9.8% when using mCP-3C-TRZ as a host material. This work offers a promising strategy to establish a bipolar host via utilizing intermolecular charge transfer process in an aggregated state.

13.
J Phys Condens Matter ; 35(6)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379065

RESUMO

Non-fullerene organic solar cells can be classified into four forms in line with the different types of donor (D) and acceptor (A) in the active layer: all-polymer (PD:PA), polymer D:small-molecule A (PD:MA), small-molecule D:polymer A (MD:PA), and all-small-molecule (MD:MA). On the basis of having studied the electronic properties of a large number of related monomer molecules and D:A complexes, this work constructed four groups of D:A molecular pairs as described above as examples to investigate their electronic properties with first-principles density functional theory. The results show that the absolute value of the average binding energy of the PD:PAcomplex D18:P(NDI2HD-T) is larger than others, indicating the structure is relatively more stable. In accordance of the Bader charge analysis, the intra-molecular charge transfer of small-molecule is greater than polymers. For these blends, the intermolecular charge transfer of the all-polymer pair D18:P(NDI2HD-T) is larger, revealing that the PD:PApair may result in a stronger intermolecular dipole electric field, which is beneficial to facilitate the separation of excitons. In addition, the MD:MApair DRTB-T:FDICTF-2Cl and the PD:MAcomplex D18:FDICTF-2Cl all exhibit a larger amount of intra-molecular charge transfer, which indicates that the small-molecule acceptors in D:A complexes are conducive to promoting intra-molecular charge transfer.

14.
Angew Chem Int Ed Engl ; 61(43): e202210579, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36073559

RESUMO

Modulating intermolecular charge-transfer (ICT) interactions between specific donor and acceptor species in host-guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene (p-EtLP6). The solid-state ICT affinities of p-EtLP6 toward multi-types of electron-deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para-bridged mode into a hybrid para- and meta-bridged isomeric form (m-EtLP6). X-ray single-crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host-guest size fit arising from the compressed binding cavity in m-EtLP6 as compared with p-EtLP6.

15.
Mikrochim Acta ; 189(9): 361, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36044086

RESUMO

Covalent organic frameworks (COFs) with good chemical stability, flexible chemical functionalization, tunable pore sizes, and high specific surface areas have been increasingly employed in the field of fluorescence sensing. In this work, a crystalline vinyl-functionalized COF TzDa-V was facilely prepared through a room-temperature synthetic method via condensation reaction between 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline (Tz) and 2,5-diallyloxyterephthalaldehyde (Da-V). The intermolecular charge transfer (ICT) effect endowed the TzDa-V with fluorescence characteristic, and it was sensitive to trace water and can be quenched due to the disruption of ICT process by water. On this base, the prepared COF TzDa-V with excellent chemical/thermal stability was applied to sensing of trace water in common organic solvents such as DMF, acetone, THF, and ethyl acetate with rapid response (less than 10 s), satisfactory sensing range (0.5-18% water in DMF, 0.5-15% water in acetone, 0.5-16% water in THF, 0.5-5% in ethyl acetate, v/v), and high sensitivity. The limits of detection for water in DMF, acetone, THF, and ethyl acetate were 0.0497%, 0.0590%, 0.0502%, and 0.0766% (v/v), respectively. The proposed probe was successfully used for the detection of trace water in food products such as salt and sugar. The COF TzDa-V would be a good candidate for application in water sensing.


Assuntos
Acetona , Água , Fluorescência , Alimentos Crus , Solventes , Água/química
16.
Adv Mater ; 34(38): e2204749, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35862231

RESUMO

Precise recognition of near-infrared (NIR) signals holds great prospects in optical communication, remote sensing, information security, and anti-counterfeiting. For these applications, filters with good NIR transparency are typically essential components. Currently, such NIR transparent filters are dominated by inorganic materials such as chalcogenide glasses. There are, so far, only a handful of organic molecules with suitable optical properties due to the rarity of organic materials with good NIR transparency and relatively flat absorption over the UV-visible region. Here, it is found that the library of NIR-transparent organic materials can be expanded by forming a charge-transfer complex (CTC) between a donor (D) and an acceptor (A) molecule that are commercially available. Via regulating the DA interaction, the CTC filter shows tunable absorption from the visible to NIR region with a relatively high penetration of NIR radiation (≈80%). The CTC filter can successfully highlight NIR information hidden in a complex environment and allow reading of NIR security images for advanced anti-counterfeiting. Moreover, the CTC filter can be used for viewing protected NIR information with good resolution, and thus provide a convenient tool for different security applications using NIR-encoded information.

17.
J Fluoresc ; 32(4): 1481-1488, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35499662

RESUMO

Pyridine based organic molecule as probe has been synthesized for the detection of phenylalanine (PA) biomarker. The synthesized probe is characterized by 1H and 13C NMR and mass spectroscopic studies. The photophysical properties for the probe has recorded by colorimetric and fluorimetric techniques. The quenching has been observed between the probe and PA through ICT (Intermolecular Charge Transfer Mechanism). Under optimized conditions, the probe detects PA selectively in the presence of other biologically important biomolecules. The practical application for PA has been successfully applied in human blood serum and urine.


Assuntos
Corantes Fluorescentes , Fenilalanina , Colorimetria/métodos , Corantes Fluorescentes/química , Humanos , Piridinas
18.
J Phys Condens Matter ; 34(4)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34673553

RESUMO

In this study, the electronic properties of J50:N2200 (benzodithiophene-alt-benzotriazole: NDI-bithiophene) interface before and after fluorination/chlorination were investigated based on the first-principles density functional theory (DFT). The results reveal that the donor (D) and acceptor (A) molecules exhibit direct band gap whether to be fluorinated/chlorinated or not, and the six D:A pairs constructed all display indirect band gap. Next, for the fluorinated/chlorinated D molecule J50, the slope of total density of states (TDOS) curve edge at the highest occupied molecular orbital (HOMO) energy level enlarges, indicating high electron locality; the fluorination/chlorination of the A molecule N2200 reduces the slope of the TDOS at the HOMO level, and the electron delocalization strengthens. Then, the difference ΔE1 of the lowest unoccupied molecular orbital (LUMO) levels between D and A, the difference ΔE2 of HOMO levels between D and A, and the difference ΔE3 between the HOMO level of the D and the LUMO level of the A were calculated about the D:A complexes. The consequences present that by using fluorine/chlorine (F/Cl) substitution at J50, ΔE1 and ΔE2 both decrease, and ΔE3 increases; for N2200, both ΔE1 and ΔE2 increase, and ΔE3 decreases. Since the higher open circuit voltage (VOC) is directly proportional to ΔE3, again ΔE1 and ΔE2 afford the driving force for charge transport, these expose that the fluorination/chlorination of J50 is beneficial to obtain the higherVOC, meanwhile, the F/Cl replacement in N2200 facilitates the separation of excitons. In addition, by the Bader charge analysis, the F/Cl substitution at D in D:A blends will promote the intramolecular charge transfer and enhance the molecular polarity; moreover, the substitution at A will improve the intermolecular charge transfer and the dipole electric field may be enhanced. Finally, the details also depend on the type of element and the position of substitution.

19.
ACS Appl Mater Interfaces ; 13(21): 25193-25201, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34013735

RESUMO

Thermally activated delayed fluorescence (TADF) emitters have aroused considerable attention, particularly for their great potential in organic light-emitting diodes (OLEDs). In typical TADF molecules, intramolecular charge transfer (CT) between electron-donor (D) and electron-acceptor (A) moieties is the dominant transition. Actually, CT transitions can possibly occur between different molecules as well. Herein, we used a nonconjugated triptycene (TPE) moiety to space D and A moieties and developed two novel emitters tBuDMAC-TPE-TRZ and tBuDMAC-TPE-TTR to explore the roles of intra- and intermolecular CT transitions. Along with weak intramolecular CT transitions, intermolecular CT transitions are dominant for tBuDMAC-TPE-TRZ and tBuDMAC-TPE-TTR neat films. Particularly, tBuDMAC-TPE-TRZ showed a high maximum external quantum efficiency of 10.0% in a nondoped solution-processed OLED, which was evidently higher than that of a corresponding 10 wt % tBuDMAC-TPE-TRZ-doped OLED with 4,4',4″-tris(carbazol-9-yl)triphenylamine (TCTA) as the host matrix. The results prove that intermolecular CT transitions indeed participate in the CT transition process in these systems and they are helpful to enhance the electroluminescence performance of emitting systems with weak intramolecular CT transitions.

20.
Chembiochem ; 22(12): 2161-2167, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33871143

RESUMO

Photodynamic therapy (PDT) has attracted great interest in cancer theranostics owing to its minimal invasiveness and low side effect. In PDT, photosensitizers are indispensable components that generate cytotoxic reactive oxygen species (ROS). Tremendous efforts have been devoted to optimizing the photosensitizer with enhanced ROS efficiency. However, to improve the precision and controllability for PDT, developing NIR imaging-guided photosensitizers are still urgent and challenging. Here, we have designed a novel photosensitizer 2Cz-BTZ which integrated with intense NIR emission and photoinduced singlet oxygen 1 O2 generation capabilities. Moreover, after loading the photosensitizers 2Cz-BTZ into biocompatible amphiphilic polymers F127, the formed 2Cz-BTZ@F127 nanoparticles (NPs) exhibited good photoinduced therapy as well as long-term in vivo imaging capabilities. Under these merits, the 2Cz-BTZ@F127 NPs showed NIR imaging-guided PDT, which paves a promising way for spatiotemporally precise tumor theranostics.


Assuntos
Antineoplásicos/farmacologia , Imagem Óptica , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Raios Infravermelhos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Tamanho da Partícula , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA