Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 1): 133596, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38960269

RESUMO

In order to investigate the effect of glucono-δ-lactone (GDL) and different salt ions (Na+ and Ca2+) induction on the cold-set gels of bovine serum albumin (BSA)-arabinoxylan (AX), the gel properties and structure of BSA-AX cold-set gels were evaluated by analyzing the gel strength, water-holding capacity, thermal properties, and Fourier Transform Infrared (FTIR) spectra. It was shown that the best gel strength (109.15 g) was obtained when the ratio of BSA to AX was 15:1. The addition of 1 % GDL significantly improved the water-holding capacity, gel strength and thermal stability of the cold-set gels (p < 0.05), and the microstructure was smoother. Low concentrations of Na+ (3 mM) and Ca2+ (6 mM) significantly enhanced the hydrophobic interaction and hydrogen bonding between BSA and AX after acid induction, and the Na+-induced formation of a denser microstructure with a higher water-holding capacity (75.51 %). However, the excess salt ions disrupted the stable network structure of the cold-set gels and reduced their thermal stability and crystalline structure. The results of this study contribute to the understanding of the interactions between BSA and AX induced by GDL and salt ions, and provide a basis for designing hydrogels with different properties.


Assuntos
Géis , Soroalbumina Bovina , Xilanos , Soroalbumina Bovina/química , Xilanos/química , Géis/química , Animais , Bovinos , Gluconatos/química , Lactonas/química , Água/química , Sais/química , Íons/química , Cálcio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
2.
Food Res Int ; 188: 114531, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823850

RESUMO

Different emulsion gel systems are widely applied to deliver functional ingredients. The effects and mechanisms of ultrasound-assisted emulsification (UAE) treatment and carboxymethyl cellulose (CMC) modifying the curcumin delivery properties and in vitro digestibility of the myofibrillar protein (MP)-soybean oil emulsion gels were investigated. The rheological properties, droplet size, protein and CMC distribution, ultrastructure, surface hydrophobicity, sulfhydryl groups, and zeta potential of emulsion gels were also measured. Results indicate that UAE treatment and CMC addition both improved curcumin encapsulation and protection efficiency in MP emulsion gel, especially for the UAE combined with CMC (UAE-CMC) treatment which encapsulation efficiency, protection efficiency, the release rate, and bioaccessibility of curcumin increased from 86.75 % to 97.67 %, 44.85 % to 68.85 %, 18.44 % to 41.78 %, and 28.68 % to 44.93 % respectively. The protein digestibility during the gastric stage was decreased after the CMC addition and UAE treatment, and the protein digestibility during the intestinal stage was reduced after the CMC addition. The fatty acid release rate was increased after CMC addition and UAE treatment. Apparent viscosity, storage modulus, and loss modulus were decreased after CMC addition while increased after UAE and UAE-CMC treatment especially the storage modulus increased from 0.26 Pa to 41 Pa after UAE-CMC treatment. The oil size was decreased, the protein and CMC concentration around the oil was increased, and a denser and uniform emulsion gel network structure was formed after UAE treatment. The surface hydrophobicity, free SH groups, and absolute zeta potential were increased after UAE treatment. The UAE-CMC treatment could strengthen the MP emulsion gel structure and decrease the oil size to increase the curcumin delivery properties, and hydrophobic and electrostatic interaction might be essential forces to maintain the emulsion gel.


Assuntos
Carboximetilcelulose Sódica , Curcumina , Digestão , Emulsões , Géis , Interações Hidrofóbicas e Hidrofílicas , Reologia , Curcumina/química , Emulsões/química , Carboximetilcelulose Sódica/química , Géis/química , Proteínas Musculares , Óleo de Soja/química , Viscosidade , Tamanho da Partícula , Miofibrilas/química , Miofibrilas/metabolismo , Ondas Ultrassônicas
3.
Foods ; 13(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38672937

RESUMO

Dictyophora rubrovolvata volva, an agricultural by-product, is often directly discarded resulting in environmental pollution and waste of the proteins' resources. In this study, D. rubrovolvata volva proteins (DRVPs) were recovered using the ultrasound-assisted extraction (UAE) method. Based on one-way tests, orthogonal tests were conducted to identify the effects of the material-liquid ratio, pH, extraction time, and ultrasonic power on the extraction rate of DRVPs. Moreover, the impact of UAE on the physicochemical properties, structure characteristics, intermolecular forces, and functional attributes of DRVPs were also examined. The maximum protein extraction rate was achieved at 43.34% under the best extraction conditions of UAE (1:20 g/mL, pH 11, 25 min, and 550 W). UAE significantly altered proteins' morphology and molecular size compared to the conventional alkaline method. Furthermore, while UAE did not affect the primary structure, it dramatically changed the secondary and tertiary structure of DRVPs. Approximately 13.42% of the compact secondary structures (α-helices and ß-sheets) underwent a transition to looser structures (ß-turns and random coils), resulting in the exposure of hydrophobic groups previously concealed within the molecule's core. In addition, the driving forces maintaining and stabilizing the sonicated protein aggregates mainly involved hydrophobic forces, disulfide bonding, and hydrogen bonding interactions. Under specific pH and temperature conditions, the water holding capacity, oil holding capacity, foaming capacity and stability, emulsion activity, and stability of UAE increased significantly from 2.01 g/g to 2.52 g/g, 3.90 g/g to 5.53 g/g, 92.56% to 111.90%, 58.97% to 89.36%, 13.85% to 15.37%, and 100.22% to 136.53%, respectively, compared to conventional alkali extraction. The findings contributed to a new approach for the high-value utilization of agricultural waste from D. rubrovolvata.

4.
Heliyon ; 10(5): e26441, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455566

RESUMO

Reinjecting produced methane offers cost-efficiency and environmental benefits for enhances oil recovery. High minimum miscibility pressure (MMP) in methane-oil systems poses a challenge. To overcome this, researchers are increasingly focusing on using surfactants to reduce MMP, thus enhancing the effectiveness of methane injections for oil recovery. This study investigated the impact of pressure and temperature on the equilibrium interfacial tension of the CH4+n-decane system using molecular dynamics simulations and the vanishing interfacial tension technique. The primary goal was to assess the potential of surfactants in lowering MMP. Among four tested surfactants, ME-6 exhibited the most promise by reducing MMP by 14.10% at 373 K. Key findings include that the addition of ME-6 enriching CH4 at the interface, enhancing its solubility in n-decane, improving n-decane diffusion capacity, CH4 weakens n-decane interactions and strengthens its own interaction with n-decane. As the difference in interactions of n-decane with ME-6's ends decreases, the system trends towards a mixed phase. This research sets the stage for broader applications of mixed-phase methane injection in reservoirs, with the potential for reduced gas flaring and environmental benefits.

5.
Int J Biol Macromol ; 263(Pt 1): 130223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365146

RESUMO

In the present study, we investigated the effects of N-homocysteine thiolactone (tHcy) modification on expressed and purified tau protein and the synthesized VQIVYK target peptide. The modified constructs were subjected to comprehensive validation using various methodologies, including mass spectrometry. Subsequently, in vivo, in vitro, and in silico characterizations were performed under both reducing and non-reducing conditions, as well as in the presence and absence of heparin as a cofactor. Our results unequivocally confirmed that under reducing conditions and in the presence of heparin, the modified constructs exhibited a greater propensity for aggregation. This enhanced aggregative behavior can be attributed to the disruption of lysine positive charges and the subsequent influence of hydrophobic and p-stacking intermolecular forces. Notably, the modified oligomeric species induced apoptosis in the SH-SY5Y cell line, and this effect was further exacerbated with longer incubation times and higher concentrations of the modifier. These observations suggest a potential mechanism involving reactive oxygen species (ROS). To gain a deeper understanding of the molecular mechanisms underlying the neurotoxic effects, further investigations are warranted. Elucidating these mechanisms will contribute to the development of more effective strategies to counteract aggregation and mitigate neurodegeneration.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Proteínas tau/química , Lisina/metabolismo , Neuroblastoma/metabolismo , Encéfalo/metabolismo , Heparina/metabolismo , Doença de Alzheimer/metabolismo
6.
Anal Chim Acta ; 1296: 342335, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401942

RESUMO

In this study, three small peptoids with different structures, named Sil-peptoids, were developed to improve the separation selectivity of zwitterion-exchange/reversed-phase mixed-mode chromatography stationary phases for multi-component complex drugs. Nonpolar, amphoteric, and alkaline drugs were used as test samples to demonstrate their retention behaviors in reversed-phase, ionic, and mixed-mode interactions. It was observed that different carboxyl anions in the small peptoids of the Sil-peptoids had vast differences in their stereo-selectivity. The stereo-selectivity and the influence of Sil-peptoids on the retention behavior of complex drugs and their interaction mechanism for the drug molecules were effectively evaluated through the combination of chromatographic analysis and molecular modeling. Finally, a mixture of drugs consisting of two polar and six non-polar drugs was used to obtain a separation effect with a resolution >1.5. Two other groups of polar antibiotics were used to verify the separation ability of the Sil-peptoids. The results indicated that the Sil-peptoids could separate multiple substances simultaneously. These novel stationary phases can be applied to the analysis of complex multi-component drugs.


Assuntos
Peptoides , Cromatografia , Ânions
7.
Food Chem ; 444: 138558, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38335679

RESUMO

This study revealed the variations in odor characteristics and underlying mechanisms of different cross-linked surimi gels under liquid nitrogen (LN) spray freezing. The results demonstrated that LN spray freezing had an essential effect on the gels' odor. The odor changes in the -80 °C LN spray freezing group were closer to the control group, while -35 °C LN spray freezing treatment had the greatest impact on the aroma quality of gels. Freezing reduced gels' texture properties, intensified lipid and protein oxidation, altered protein conformation, increased surface hydrophobicity and hydrophobic interactions. These changes affected the gels' odor characteristics, leading to a reduction in fish aroma and an increase in fishy and oil odors after freezing. These tendencies were more pronounced at -35 °C LN spray freezing with lower cross-linking degrees, and reducing the freezing temperature to -80 °C and increasing the cross-linking degree to 62.99% mitigated the extent of deterioration in gel flavor quality.


Assuntos
Aminoácidos , Nitrogênio , Animais , Congelamento , Oxirredução , Géis/química , Produtos Pesqueiros/análise , Proteínas de Peixes/química , Manipulação de Alimentos/métodos
8.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257344

RESUMO

The new diprotic ligand 3,5-di-tert-butylsalicylaldehyde 4-ethyl-3-thiosemicarbazone, abbreviated H2(3,5-t-Bu2)-sal4eT, exists as the thio-keto tautomer and adopts the E-configuration with respect to the imine double bond, as evidenced by single-crystal X-ray analysis and corroborated by spectroscopic characterisation. Upon treatment with Cu(OAc)2·H2O in the presence of either 2,9-dimethyl-1,10-phenanthroline (2,9-Me2-phen) or 1,10-phenanthroline (phen) as a co-ligand in MeOH, this thiosemicarbazone undergoes conformational transformation (relative donor-atom orientations: syn,anti → syn,syn) concomitantly with tautomerisation and double deprotonation to afford the ternary copper(II) complexes [Cu{(3,5-t-Bu2)-sal4eT}(2,9-Me2-phen)] (1) and [Cu2{3,5-t-Bu2)-sal4eT}2(phen)] (2). Crystallographic elucidation has revealed that complex 1 is a centrosymmetric dimer of mononuclear copper(II) complex molecules brought about by intermolecular H-bonding. The coordination geometry at the copper(II) centre is best described as distorted square pyramidal in accordance with the trigonality index (τ = 0.14). The co-ligand adopts an axial-equatorial coordination mode; hence, there is a disparity between its two Cu-N coordinate bonds arising from weakening of the apical one as a consequence of the tetragonal distortion. The axial X-band ESR spectrum of complex 1 is consistent with retention of this structure in solution. Complex 2 is a centrosymmetric dimer of dinuclear copper(II) complex molecules exhibiting intermolecular H-bonding and π-π-stacking interactions. The two copper(II) centres, which are 4.8067(18) Å apart and bridged by the thio-enolate nitrogen of the quadridentate thiosemicarbazonate ligand, display two different coordination geometries, one distorted square planar (τ4 = 0.082) and the other distorted square pyramidal (τ5 = 0.33). Such dinuclear copper(II) thiosemicarbazone complexes, which are crystallographically characterised, are extremely rare. In vitro, complexes 1 and 2 outperform cisplatin as antiproliferative agents in terms of potency and selectivity towards HeLa and MCF-7 cancer cell lines.


Assuntos
Cobre , Neoplasias , Humanos , Ligantes , Análise Espectral , Ácidos Carboxílicos , Cisplatino , Fenantrolinas/farmacologia , Fenóis , Polímeros
9.
Proc Natl Acad Sci U S A ; 120(45): e2311920120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922324

RESUMO

High salinity has plagued wastewater treatment for a long time by hindering pollutant removal, thereby becoming a global challenge for water pollution control that is difficult to overcome even with massive energy consumption. Herein, we propose a novel process for rapid salinity-mediated water self-purification in a dual-reaction-centers (DRC) system with cation-π structures. In this process, local hydrogen bond networks of H2O molecules can be distorted through the mediation of salinity, thereby opening the channels for the preferential contact of pollutants on the DRC interface. As the result, the elimination rate of pollutants increased approximately 32-fold at high salinity (100 mM) without any external energy consumption. Our findings provide a novel technology for high-efficiency and low-consumption water self-purification, which is of great significance in environmental remediation and even fine chemical industry.

10.
Food Res Int ; 172: 113124, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689843

RESUMO

To investigate the change of ionic strength on the gel characteristics during the processing of mung bean protein-based foods, the effects of NaCl and CaCl2 at different concentrations (0-0.005 g/mL) on the properties of mung bean protein (MBP) and wheat gluten (WG) composite protein gel were studied. The results showed that low concentration (0.001-0.002 g/mL) could significantly improve the water holding capacity (WHC), storage modulus (G') and texture properties of composite protein gel (MBP/WG), while the surface hydrophobicity (H0) and solubility were significantly decreased (P < 0.05). With the increase of ion concentration, the secondary structures of MBP/WG shifted from α-helix to ß-sheet, and the fluorescence spectra also showed fluorescence quenching phenomenon. By analyzing the intermolecular forces of MBP/WG, it was found that with the addition of salt ions, the hydrogen bonds was weakened and the electrostatic interactions, hydrophobic interactions and disulfide bonds were enhanced, which in turn the aggregation behavior of MBP/WG composite protein gel was affected and larger aggregates between the proteins were formed. It could be also demonstrated that the gel network was denser due to the addition of these large aggregates, thus the gel properties of MBP/WG was improved. However, too many salt ions could disrupt the stable network structure of protein gel. This study can provide theoretical support to expand the development of new mung bean protein products.


Assuntos
Vigna , Triticum , Glutens , Cloreto de Sódio , Íons , Cloreto de Sódio na Dieta
11.
Chemphyschem ; 24(22): e202300425, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37608649

RESUMO

We present a new analytical potential energy surface (PES) for the interaction between the trihydrogen cation and a He atom, H 3 + - H e ${{H}_{3}^{+}-He}$ , in its electronic ground state. The proposed PES has been built as a sum of two contributions: a polarization energy term due to the electric field generated by the molecular cation at the position of the polarizable He atom, and an exchange-repulsion and dispersion interactions represented by a sum of "atom-bond" potentials between the three bonds of H 3 + ${{H}_{3}^{+}}$ and the He atom. All parameters of this new PES have been chosen and fitted from data obtained from high-level ab-initio calculations. Using this new PES plus the Aziz-Slaman potential for the interaction between Helium atoms and assuming pair-wise interactions, we carry out classical Basin-Hopping (BH) global optimization, semiclassical BH with Zero Point Energy corrections, and quantum Diffusion Monte Carlo simulations. We have found the minimum energy configurations of small He clusters doped with H 3 + ${{H}_{3}^{+}}$ , H 3 + H e N ${{H}_{3}^{+}{\left(He\right)}_{N}}$ , with N=1-16. The study of the energies of these clusters allows us to find a pronounced anomaly for N=12, in perfect agreement with previous experimental findings, which we relate to a greater relative stability of this aggregate.

12.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513914

RESUMO

Protein particles in biological drugs can significantly impact drug efficacy and carry the risk of adverse effects. Despite advancements, the understanding and control of particle formation in biopharmaceutical manufacturing remain incomplete. Therefore, further investigation into protein particles is warranted, especially considering that novel formats of biological drugs may be more susceptible to aggregation and particle formation than conventional monoclonal antibodies. In this study, we introduce a microfluidic approach for the real-time analysis of individual sub-visible protein particles during buffer exchange. We find that the modulation of intermolecular forces, achieved by changing the buffer pH or urea concentration, leads to the reversible swelling and shrinkage of particles by up to 50%, which is a consequence of altered intermolecular distances. Additionally, we identify a discrepancy in the biophysical behavior of protein particles compared to monomeric protein. This finding highlights the limited predictive power of commonly applied biophysical characterization methods for particle formation in early formulation development. Moreover, the observed particle swelling may be associated with manufacturing deviations, such as filter clogging. These results highlight the importance of studying individual particles to gain a comprehensive insight into particle behavior and the impact of formulation variations in the biopharmaceutical industry.

13.
J Texture Stud ; 54(4): 582-594, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37400374

RESUMO

The aim of this study was to compare the investigations of various contents of egg white protein (2.0%-8.0%, EWP), microbial transglutaminase (0.1%-0.4%, MTGase), and konjac glucomannan (0.5%-2.0%, KGM) on the gelling properties and rheological behavior of Trachypenaeus Curvirostris shrimp surimi gel (SSG), and assessed the modification mechanisms through the analysis of structure characteristics. The findings suggested that all modified SSG samples (expect SSG-KGM2.0% ) had the higher gelling properties and the denser network structure than those of unmodified SSG. Meanwhile, EWP could give SSG a better appearance than MTGase and KGM. Rheological results showed that SSG-EWP6% and SSG-KGM1.0% had the highest G' and G″, demonstrating that the formation of higher levels of elasticity and hardness. All modifications could increase gelation rates of SSG along with the reduction of G″ during the degeneration of protein. According to the FTIR results, three modification methods changed SSG protein conformation with the increasing α-helix and ß-sheet contents and the decreasing of random coil content. LF-NMR results indicated that more free water could be transformed into immobilized water in the modified SSG gels, which contributed to improve the gelling properties. Furthermore, molecular forces showed that EWP and KGM could further increase the hydrogen bonds and hydrophobic interaction in SSG gels, while MTGase could induce the formation of more disulfide bonds. Thus, compared with another two modifications, EWP modified SSG gels showed the highest gelling properties.


Assuntos
Água , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Dureza , Géis/química , Água/análise
14.
J Colloid Interface Sci ; 647: 318-330, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37262994

RESUMO

Quantitatively understanding of interaction mechanism between lignin and cellulases is essential for the efficient improvement of lignocellulose enzymatic hydrolysis. However, the individual contribution of multiple forces between lignin and cellulases to the non-productive adsorption of enzymes still remains deeply ambiguous, especially in situations of near enzymatic hydrolysis temperatures. Herein, atomic force microscopy (AFM) and computational simulations were utilized to quantitatively analyze the intermolecular forces between lignin and enzyme at 25 °C and 40 °C. Our results unveiled that an increase in temperature obviously improved adsorption capacity and total intermolecular forces between lignin and cellulases. This positive relationship mainly comes from the increase in the decay length of hydrophobic forces for lignin-cellulases when temperature increases. Different from the hydrophobic interaction which provides long-range part of attractions, van der Waals forces dominate the intermolecular force only at approaches < 2 nm. On the other hand, electrostatic forces exhibited repulsive effects, and its intensity and distance were limited due to the low surface potential of cellulases. Short-range forces including hydrogen bonding (main) and π-π stacking (minor) stabilize the non-specific binding of enzymes to lignin, but increasing temperature reduces hydrogen bond number. Therefore, the relative contribution of long-range forces increased markedly at higher temperatures, which benefits protein capture and brings lignin and cellulase close together. Finally, the structure-activity relationships between lignin physicochemical properties and its inhibitory effect to enzymes indicated that hydrophobic interactions, hydrogen bonding, and steric effects drive the final adsorption capacity and glucose yields. This work provides quantitative and basic insights into the mechanism of lignin-cellulase interfacial interactions and guides design of saccharification enhancement approaches.


Assuntos
Celulase , Celulases , Lignina/química , Celulases/metabolismo , Celulase/metabolismo , Temperatura , Adsorção , Hidrólise
15.
Int J Biol Macromol ; 240: 124344, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028627

RESUMO

In this study, we investigated the effect of sweet tea polysaccharide (STP) on the physicochemical and structural properties of heat-induced whey protein isolate (WPI) gels, and explored the potential mechanism. The results indicated that STP promoted the unfolding and cross-linking of WPI to form a stable three-dimensional network structure, and significantly improved the strength, water-holding capacity and viscoelasticity of WPI gels. However, the addition of STP was limited to 2 %, too much STP would loosen the gel network and affect the gel properties. The results of FTIR and fluorescence spectroscopy suggested that STP affected the secondary and tertiary structures of WPI, promoted the movement of aromatic amino acids to the protein surface and the conversion of α-helix to ß-sheet. In addition, STP reduced the surface hydrophobicity of the gel, increased the free sulfhydryl content, and enhanced the hydrogen bonding, disulfide bonding, and hydrophobic interactions between protein molecules. These findings can provide a reference for the application of STP as a gel modifier in the food industry.


Assuntos
Indústria Alimentícia , Polissacarídeos , Proteínas do Soro do Leite/química , Polissacarídeos/farmacologia , Géis/química , Chá
16.
Molecules ; 28(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985805

RESUMO

A metal-organic framework (MOF) is a three-dimensional crystalline compound made from organic ligands and metals. The cross-linkage between organic ligands and metals creates a network of coordination polymers containing adjustable voids with a high total surface area. This special feature of MOF made it possible to form a host-guest interaction with small molecules, such as ionic liquid (IL), which can alter the phase behavior and improve the performance in battery applications. The molecular interactions of MOF and IL are, however, hard to understand due to the limited number of computational studies. In this study, the structural parameters of a zirconium-based metal-organic framework (UiO-66) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI] were investigated via a combined experimental and computational approach using the linker model approach. When IL was loaded, the bond length and bond angle of organic linkers were distorted due to the increased electron density surrounding the framework. The increase in molecular orbital energy after confining IL stabilized the structure of this hybrid system. The molecular interactions study revealed that the combination of UiO-66 and [EMIM][TFSI] could be a promising candidate as an electrolyte material in an energy storage system.

17.
Chemosphere ; 319: 137910, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36706812

RESUMO

PER-: and poly-fluoroalkyl substances (PFAS) are a class of substances of increasing concern as environmental contaminants. The interactions between PFAS and surfaces play an important role in PFAS transport and remediation. Previous studies have found PFAS adsorption to be dependent upon properties including pH, organic matter and particle size, along with PFAS functional group and carbon chain length. It is hypothesised that a theoretical examination of PFAS-surface interactions, via Monte Carlo molecular simulation, would show differences resulting from changes in surface charge, H+, OH-, Ca2+ concentrations and PFAS carbon chain length. Monte Carlo molecular simulations of perfluorooctane and perfluorobutane sulfonic acids interacting with a graphite surface in an aqueous medium were performed. Variations in surface charge, H+, OH- and Ca2+ concentrations were made. The distance-dependent density of molecules from the surface was analysed as a proxy for PFAS adsorption to the surface. Simulation results showed differences in surface behaviour that depended on surface charge, H+, OH- and Ca2+ concentrations, along with carbon chain length, with surface charge playing the most prominent role in controlling PFAS adsorption. For negatively charged surfaces, adsorption due to divalent cation bridging was observed in Ca2+ solutions. Modelling, such as in this study, of the thermodynamic equilibrium behaviour of low concentrations of molecules, in scenarios where both adsorption and mobility of PFAS occur, can aid in the design and testing of sorptive surfaces for amendment-based PFAS remediation.


Assuntos
Fluorocarbonos , Íons , Simulação por Computador , Adsorção , Carbono
18.
J Biomol Struct Dyn ; 41(8): 3630-3646, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380095

RESUMO

This combined Al12E12 (E = N, P) surface adsorption and docking study describes the new possibility of prospective potential probing(photophysical/optical) and therapy(medicinal/biochemical) with these adsorbent conjugates. DFT investigations were undertaken herein to help generate geometrical models and better understand the possible favorable adsorption energetics. We attempt to explain their adsorption behaviors and docking involving SARS-CoV-2 viruses (PDB)to assess their possible pharmaceutical potential against the pandemic virus (COVID-19). The adsorption behavior of 8-hydroxy-2-methylquinoline (MQ) and its halogenated derivatives, 5,7-diiodo-8-hydroxy-2-methylquinoline (MQI), 5,7-dichloro-8-hydroxy-2-methylquinoline (MQCl), and 5,7-dibromo-8-hydroxy-2-methylquinoline (MQBr), with aluminum-nitrogen (AlN), and aluminum-phosphorous (AlP) fullerene-like nanocages is reported. A decrease in the hardness of the nanoclusters when adsorbed with drug molecules resulted in an incrementally improved chemical softness (see e.g., Hard-Soft Acid Base theory) indicating that reactivity of the drug molecule in the resulting complex increases upon cluster chemical adsorption. The energy gap is found to be maximized for AlN-MQ and minimized for AlP-MQI; the reduced density gradient (RDG) iso-surfaces and AIM studies also corroborated this. Therefore, these two were found, respectively, to be the least and most electrically conductive of the species under study. We selected a simple medicinal building block (chelator)in addition to selecting the cluster based on previous literature reports. Important parameters such as gap energies and global indices were determined. We assessed NLO properties. The SARS-CoV-2 virus PDB docking data for 6VW1, 6VYO, 6WKQ, 7AD1, 7AOL, 7B3C, were enlisted as ligand targets for studies of docking (PatchDock Server) using the requisite PDB geometries (For the structure of 6VW1, kindly see reference, 2020; For the structure of 6VYO kindly see reference, 2020; For the structure of 6WKQ kindly see reference, 2020; For the structure of 7AD1 kindly see reference, 2021; For the structure of 7AOL kindly see reference, 2021; For the structure of 7B3C kindly see reference, 2021). Such findings indicate that the AlN-drug conjugation have inhibitory effect against these selected receptors.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Quinolonas , Humanos , Adsorção , Alumínio , SARS-CoV-2 , Simulação de Acoplamento Molecular , Teste para COVID-19
19.
Food Res Int ; 162(Pt B): 112058, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461318

RESUMO

A comprehensive investigation was conducted regarding the molecular forces involved in the formation of dry heated egg white protein (DEWP) gels. From the preparation of DEWP powders to the formation of DEWP gels, multiple interactions are involved: the aggregation of DEWP powders in the dry state, the aggregation of DEWP solutions in the water state, and the subsequent gelling process of DEWP gels. The methods included analyses of zeta-potentials, surface hydrophobicity, reducing and nonreducing SDS-PAGE, sulfhydryl (SH) group content, molecular forces, particle size, and critical gel concentration. The results indicated that dry heat promoted the electrostatic and hydrophobic interactions in DEWP and DEWP aggregates. Disulfide (SS) bonds dominated the aggregation process of DEWP solutions in the water state, while hydrophobic and electrostatic interactions dominated the gel forming process. This phenomenon became even more obvious with a longer dry heat time. Furthermore, the intensified molecular interactions induced by dry heat resulted in the formation of smaller gel particles, and a relatively lower protein concentration was required for gel formation. All these factors contributed to the ultimate linear and fine-stranded DEWP gel network, which is more favorable in food processing and application.


Assuntos
Coloides , Temperatura Alta , Géis , Água , Compostos de Sulfidrila , Proteínas do Ovo
20.
Gels ; 8(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36286118

RESUMO

The application of okara treated by a wet-type grinder (WG) is discussed in this paper. We examined the effect of WG-treated okara on the mechanical properties and intermolecular forces in soybean protein isolate (SPI) gels. SPI gels were prepared with varying amounts of WG-treated okara, and compression tests were performed. Protein solubility was also examined by homogenizing the gel in four different solutions (S1, 0.6 M sodium chloride (NaCl); S2, 0.6 M NaCl and 1.5 M urea; S3, 0.6 M NaCl and 8.0 M urea; and S4, 1.0 M sodium hydroxide). The gel with WG-treated okara had higher breaking stress but not breaking strain. In contrast, the protein solubility in S3 was lower than those of the gel without okara or with WG-untreated okara. A negative correlation (R2 = 0.86) was observed between breaking stress and protein solubility in S3. These results suggest that WG-treated okara enhanced the hydrophobic interactions of SPI gels because protein solubilization by S3 is caused by the differences in hydrophobic interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA