RESUMO
Photocatalytic reduction of CO2 in pure H2O media to produce chemicals presents an appealing avenue for simultaneously alleviating energy and environmental crises. However, the rapid recombination of photogenerated charge carriers presents a significant challenge in this promising field. Heterojunction engineering has emerged as an effective approach to address this dilemma. Here, by decorating 2D NiAl-layered double hydroxides (NAL) onto bismuth oxybromide (BOB), we have created a S-scheme heterojunction (N1B1 composite). This catalyst affords CO2-to-CO yields of 102.30 µmol g-1 with a selectivity of 100 %. Ultraviolet photoelectron spectroscopy (UPS) and in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) reveal that charge transfer occurs efficiently from BOB to 2D-NAL upon light irradiation. The designed N1B1 heterojunction achieves 7.3-fold and 2.1-fold increase in the internal electric field strength compared to bare 2D-NAL and BOB, respectively, which should be accountable for the improved charge migration. Additionally, pulsed chemisorption and in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) show the presence of multiple carbonate intermediates with activated OCO bonds upon N1B1 composite, with *CO2- being identified as the most crucial species for CO production.
RESUMO
Combining photocatalytic reduction with organic synthetic oxidation in the same photocatalytic redox system can effectively utilize photoexcited electrons and holes from solar to chemical energy. Here, we stabilized 0D Au clusters on the substrate surface of Zn vacancies modified 2D ZnIn2S4 (ZIS-V) nanosheets by chemically bonding Au-S interaction, forming surfactant functionalized Au/ZIS-V photocatalyst, which can not only synergistic accelerate the selective oxidation of phenylcarbinol to value-added products coupled with clean energy hydrogen production but also further drive photocatalytic CO2-to-CO conversion. An internal electric field of Au/ZIS-V ohmic junction and Zn vacancies synchronously promote the photoexcited charge carrier separation and transfer to optimized active sites for redox reactions. Compared with CO2 reduction in water and the pristine ZnIn2S4, the reaction thermodynamics and kinetics of CO2 reduction over the Au/ZIS-V were simultaneously improved about 11.09 and 45.51 times, respectively. Moreover, the photocatalytic redox mechanisms were also profoundly studied by 13CO2 isotope tracing tests, in situ electron paramagnetic resonance (in situ EPR), in situ X-ray photoelectron spectroscopy (in situ XPS), in situ diffuse reflection infrared Fourier transform spectroscopy (in situ DRIFTS) and density functional theory (DFT) characterizations, etc. These results demonstrate the advantages of vacancies coupled with metal clusters in the synergetic enhancement of photocatalytic redox performance and have great potential applications in a wide range of environments and energy.
RESUMO
Balancing optical modulation and response time is crucial for achieving high coloration efficiency in electrochromic materials. Here, internal electric fields are introduced to titanium dioxide nanosheets by constructing abundant amorphous-crystalline interfaces, ensuring large optical modulation while reducing response time and therefore improving coloration efficiency. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals the presence of numerous amorphous-crystalline phase boundaries in titanium dioxide nanosheets. Kelvin probe force microscopy (KPFM) exhibits an intense surface potential distribution, demonstrating the presence of internal electric fields. Density functional theory (DFT) calculations confirm that the amorphous-crystalline heterointerfaces can generate internal electric fields and reduce diffusion barriers of lithium ions. As a result, the amorphous-crystalline titanium dioxide nanosheets exhibit better coloration efficiency (35.1 cm2 C-1) than pure amorphous and crystalline titanium dioxide nanosheets.
RESUMO
Two-dimensional (2D) polarized heterostructures with internal electric fields are potential photocatalysts for high catalytic performance. The Blue P/SiS van der Waals heterostructures were formed from monolayer Blue P and polar monolayer SiS with different stacking interfaces, including Si-P and P-S interfaces. The structural, electronic, optical and photocatalytic properties of the Blue P/SiS heterostructures were studied via first-principle calculations. The results showed that the Si-P-2 or P-S-4 stacking order contributes to the most stable heterostructure with the Si-P or P-S interface. The direction of the internal electric field is from the 001 surface toward the 001¯ surface, which is helpful for separating photo-generated electron-hole pairs. The bandgap and electrostatic potential differences in the Si-P-2(P-S-4) heterostructures are 1.74 eV (2.30 eV) and 0.287 eV (0.181 eV), respectively. Moreover, the Si-P-2(P-S-4) heterostructures possess suitable band alignment and wide ultraviolet and visible light spectrum regions. All results suggest that 2D polarized Blue P/SiS heterostructures are potential novel photocatalysts for water splitting under a wide ultraviolet and visible light spectrum region.
RESUMO
It is, in fact, inevitable for steel to be covered with a layer of iron oxides and/or peroxides on its surface. However, knowledge of its existence and functionality for tribological behaviors is usually ignored. Herein, covalent-organic framework nanomaterials (CONs) composed of three well-screened acceptors and a donor through the imide linkage were fabricated to explore their lubrication performances. The results indicate that the energy-level matching between CONs and iron oxides or peroxides leads to the formation of a Z-scheme heterojunction structure at the rubbing interface. Also, the friction produces an internal electric field in the heterojunction, which drives the negative atomic/ionic species from the sliding interface to immigrate into the pore of CONs and resettle inside to engender the pinning effects, producing a fixed lubrication layer. Synchronously, it also attracts the free CONs in the base oil to form an easy-shear lubrication layer assembling onto the fixed one, producing a lubrication film with two layered configurations. Finally, the unique lubrication film, despite its thickness of a dozen nanometers, still exhibits impressive friction reduction and antiwear. This finding will inspire the technology to utilize the intrinsic surface nature of steel materials to exploit lubricant additives or modulate tribological behaviors.
RESUMO
The development of valid chemical enhancement strategy with charge transfer (CT) for semiconductors has great scientific significance in surface-enhanced Raman scattering (SERS) technology. Herein, a phosphorus doped crystalline/amorphous polymeric carbon nitride (PCPCN) is fabricated by a facile molten salt method, and is employed as a SERS substrate for the first time. Upon the synergies of phosphatization and molten salt etching, PCPCN owns a cascaded internal electric field (IEF) due to the formation of p-n homojunction (interface-IEF) and crystalline/amorphous homojunction (bulk-IEF). The interface-IEF and bulk-IEF could effectively suppress the recombination of charge carriers and promote electron transfer between PCPCN and target methylene blue (MB), respectively. The strong CT interaction endows PCPCN substrate with superior SERS activity with an enhancement factor (EF) of 5.53 × 105. Au nanoparticles (Au NPs) are subsequently decorated on PCPCN to introduce electromagnetic enhancement for a better SERS response. The Au/PCPCN substrate allows to reliably detect trace crystal violet, as well as the thiram residue on cherry tomato. This work offers an integrated solution to enhance CT efficiency based on collaborative homojunction and internal electric field, and may inspire the design of novel semiconductor-based SERS substrates.
RESUMO
The construction of heterojunction is an effective and conventional method to improve the photocatalytic activity of photocatalysts. On this basis, how to further regulate the separation and migration of photogenerated carrier is worthy of further investigation. As a mature and efficient modification method, oxygen defect engineering was used to regulate the S-scheme heterojunction composed of AgIO3 and Bi4Ti3O12 to further enhance the photocatalytic activity of the constructed heterojunction in this study. In addition to improving the visible light absorption of the photocatalyst and providing active sites, the introduction of oxygen vacancies can also strengthen the internal electric field between the two semiconductors by expanding the Fermi level gap, which can be verified by Mott-Schottky experiment and DFT calculations, resulting in more efficient photogenerated carrier separation efficiency. As a result, compared with AgIO3/Bi4Ti3O12, the AgIO3/Bi4Ti3O12 heterojunction modulated by oxygen defect engineering exhibited excellent photocatalytic activity, which proves the feasibility of the regulation of the interfacial electric field. This work provides a new idea for the modulation strategy of the interface electric field.
Assuntos
Oxigênio , Catálise , Oxigênio/química , Titânio/química , Bismuto/química , LuzRESUMO
The rational design of S-scheme photocatalysts, achieved by serially integrating two different semiconductors, represents a promising strategy for efficient charge separation and amplified photocatalytic performance, yet it remains a challenge. Herein, ZnIn2S4 (ZIS) and oxygen-doped ZnIn2S4 (O-ZIS) nanosheets are chosen to construct a homojunction catalyst architecture. Theoretical simulations alongside comprehensive in situ and ex situ characterizations confirm that ZIS and O-ZIS with noncentrosymmetric layered structures can generate a polarization-induced bulk-internal electric field (IEF) within the crystal. A robust interface-IEF is also created by the strong interfacial interaction between O-ZIS and ZIS with different work functions. Owing to these features, the O-ZIS/ZIS homojunction adopts an S-scheme directional charge transfer route, wherein photoexcited electrons in ZIS and holes in O-ZIS concurrently migrate to their interface and subsequently recombine. This enables spatial charge separation and provides a high driving force for both reduction and oxidation reactions simultaneously. Consequently, such photocatalyst exhibits an H2 evolution rate up to 142.9 µmol h-1 without any cocatalysts, which is 4.6- and 3.4-fold higher than that of pristine ZIS and O-ZIS, respectively. Benzaldehyde is also produced as a value-added oxidation product with a rate of 146.9 µmol h-1. This work offers a new perspective on the design of S-scheme systems.
RESUMO
Molybdenum disulfide (MoS2) is heralded as an exemplary two-dimensional (2D) functional material, largely attributed to its distinctive layered structure. Upon forming heterojunctions with reducing species, MoS2 displays remarkable photocatalytic properties. In this research, we fabricated a novel heterojunction photocatalyst, FeS/MoS2-0.05, through the integration of FeS with hollow MoS2. This composite aims at the efficient photocatalytic reduction of hexavalent chromium (Cr(VI)). A comprehensive array of characterization techniques unveiled that MoS2 flakes, dispersed on FeS, provide numerous active sites for photocatalysis at the heterojunction interface. The inclusion of FeS seemingly promotes the formation of sulfur vacancies on MoS2. Consequently, this heterojunction catalyst exhibits photocatalytic activity surpassing pristine MoS2 by a factor of 3.77. The augmented activity of the FeS/MoS2-0.05 catalyst is attributed chiefly to an internal electric field at the interface. This field enhances the facilitation of charge transfer and separation significantly. Density functional theory (DFT) calculations, coupled with experimental analyses, corroborate this observation. Additionally, DFT calculations indicate that sulfur vacancies act as pivotal sites for Cr(VI) adsorption. Significantly, the adsorption energy of Cr(VI) species shows enhanced favorability under acidic conditions. Our results suggest that the FeS/MoS2-0.05 heterojunction photocatalyst presents substantial potential for the remediation of Cr(VI)-contaminated wastewater.
Assuntos
Cromo , Dissulfetos , Molibdênio , Enxofre , Molibdênio/química , Cromo/química , Dissulfetos/química , Catálise , Enxofre/química , Adsorção , Processos Fotoquímicos , Poluentes Químicos da Água/químicaRESUMO
Lattice strain is widely investigated to improve the performance of heterogeneous catalysts, however, the effect of lattice strain is under-explored in high-entropy oxide based photocatalyst. In this study, noble-metal-free (CoCrMnFeNi)Ox with lattice strain is synthesized using a temperature-controlled, template-free and salt-assisted strategy. In the presence of lattice strain, an intensive internal electric field is formed in (CoCrMnFeNi)Ox, promoting the separation of photoinduced charge carriers. The size of the (CoCrMnFeNi)Ox can be tuned by varying the calcination temperature. Specifically, (CoCrMnFeNi)Ox prepared at a higher temperature possesses a smaller grain size exposing more active sites, resulting in an enhanced CO2 photomethanation performance. This work provides valuable insights for the rational design of the photocatalysts and highlights the promising role of high-entropy oxides in heterogeneous photocatalysis.
RESUMO
Contact-electro-catalysis (CEC) usually uses polymer dielectrics as its catalysts under mechanical stimulation conditions, which although has a decent catalytic dye degradation effect still warrants performance improvement. A carrier separation promotion strategy based on an internal electric field by polarization can effectively improve ferroelectric material performance in photocatalysis and piezocatalysis. Therefore, carrier separation as a necessary process of CEC also can be promoted and is largely expected to improve CEC performance theoretically. However, the carrier separation enhancement by the internal electric field strategy has not been achieved in the CEC experiment yet, because of the difficulty of building an internal electric field in an inert polymer dielectric. Herein, a polytetrafluoroethylene (PTFE) dielectric was charged through an electret process, which was believed to establish an internal electric field for CEC catalysts proved by KPFM, XPS, and triboelectric nanogenerator voltage output analysis. The fastest degradation rate of methyl orange reached over 90% at 1.5 h, while the hydroxyl free radical (â¢OH) yield of the PTFE electret was nearly three times that of the original PTFE. Density functional theory (DFT) calculations verified that the potential barrier of interatomic electron transfer between PTFE and H2O was reduced by 37% under the internal electric field. The electret strategy used herein to optimize the PTFE catalyst provides a base for the use of other general plastics in CEC and facilitates the production of easily prepared, easily recyclable, and inexpensive polymer dielectric catalysts that can promote large-scale pollutant degradation via CEC.
RESUMO
Photocatalytic degradation of pollutants coupled with hydrogen (H2) evolution has emerged as a promising solution for environmental and energy crises. However, the fast recombination of photoexcited electrons and holes limits photocatalytic activities. Herein, an S-scheme heterojunction carbon doped-TiO2/ZnIn2S4 (C-TiO2/ZnIn2S4) was designed by substituting oxygen sites within C-TiO2 by ZnIn2S4. Under visible light irradiation, the optimal C-TiO2/ZnIn2S4 exhibits a higher degradation efficiency (88.6%) of microcystin-LR (MC-LR), compared to pristine C-TiO2 (72.9%) and ZnIn2S4 (66.8%). Furthermore, the H2 yield of the C-TiO2/ZnIn2S4 reaches 1526.9 µmol g-1 h-1, which is 3.83 times and 2.87 times that of the C-TiO2 and ZnIn2S4, respectively. Experimental and theoretical investigations reveal that an internal electric field (IEF) informed in the C-TiO2/ZnIn2S4 heterojunction, accelerates the separation of photogenerated charge pairs, thereby enhancing photocatalytic efficiency of MC-LR degradation and H2 production. This work highlights a new perspective on the development of high-performance photocatalysts for wastewater treatment and H2 generation.
Assuntos
Carbono , Hidrogênio , Toxinas Marinhas , Microcistinas , Titânio , Microcistinas/química , Titânio/química , Toxinas Marinhas/química , Catálise , Hidrogênio/química , Carbono/química , Fotólise , Poluentes Químicos da Água/química , Águas Residuárias/química , Luz , Processos Fotoquímicos , Zinco/químicaRESUMO
The "shuttle effect" issue severely hinders the practical application of lithium-sulfur (Li-S) batteries, which is primarily caused by the significant accumulation of lithium polysulfides in the electrolyte. Designing effective catalysts is highly desired for enhancing polysulfide conversion to address the above issue. Here, the one-step flash-Joule-heating route is employed to synthesize a W-W2C heterostructure on the graphene substrate (W-W2C/G) as a catalytic interlayer for this purpose. Theoretical calculations reveal that the work function difference between W (5.08 eV) and W2C (6.31 eV) induces an internal electric field at the heterostructure interface, accelerating the movement of electrons and ions, thus promoting the sulfur reduction reaction (SRR) process. The high catalytic activity is also confirmed by the reduced activation energy and suppressed polysulfide shuttling by in situ Raman analyses. With the W-W2C/G interlayer, the Li-S batteries exhibit an outstanding rate performance (665 mAh g-1 at 5.0 C) and cycle steadily with a low decay rate of 0.06% over 1000 cycles at a high rate of 3.0 C. Moreover, a high areal capacity of 10.9 mAh cm-2 (1381.4 mAh g-1) is obtained with a high area sulfur loading of 7.9 mg cm-2 but a low electrolyte/sulfur ratio of 9.0 µL mg-1.
RESUMO
The photocatalytic conversion of solar energy to hydrogen is a promising pathway toward clean fuel production, yet it requires advancement to meet industrial-scale demands. This study demonstrates that the interface engineering of heterojunctions is a viable strategy to enhance the photocatalytic performance of CuInS2/Mo2S3. Specifically, CuInS2 nanoparticles are incorporated into Mo2S3 nanospheres via a wet impregnation technique to form an S-scheme heterojunction. This configuration facilitates directional electron transfer, optimizing electron utilization and fostering efficient photocatalytic processes. The presence of an S-scheme heterojunction in CuInS2/Mo2S3 is corroborated by in situ irradiation X-ray photoelectron spectroscopy and density functional theory analyses, which confirm the directional movement of electrons at the interface of heterojunction. Comprehensive characterization of the heterojunction photocatalyst, including phase, structural, and photoelectric property assessments, reveals a significant specific surface area and light absorption capability. These attributes augment the number of active sites available in CuInS2/Mo2S3 for proton reduction reactions. This study offers a pragmatic approach for designing metal sulfide-based photocatalysts via strategic interface engineering, potentially advancing the field toward sustainable hydrogen production.
RESUMO
Exploring strategies to improve the near-infrared response of photocatalysts is an urgent challenge that can be overcome by utilizing upconversion (UC) luminescence to enhance photocatalysis. This paper reports the fabrication of a ZnO/Bi3Ti2O8F:Yb3+, Er3+ (ZnO/BTOFYE) Z-scheme heterojunction based on a Bi3Ti2O8F:Yb3+, Er3+ (BTOFYE) UC photocatalyst via electrostatic self-assembly. Fermi energy difference at the interface of BTOFYE and ZnO generates a strong internal electric field (IEF) in the Z-scheme heterojunction, offering a novel charge transfer mode that promotes carrier transfer and separation while retaining the strong redox capability. These results are confirmed through in situ X-ray photoelectron spectroscopy, in situ Kelvin probe force microscopy, electron spin resonance, and density functional theory calculations. In addition, the effect of the IEF on the UC luminescence process of Er3+ enhances the luminescence intensity, considerably improving the UC utilization efficiency. The optimal ZnO/BTOFYE degrades 64 % of ciprofloxacin in 120 min, which is 2.3 times more than that degraded by BTOFYE. Overall, the results of this study offer a reference for the rational development of high efficiency UC photocatalysts by generating IEF in Z-scheme heterojunctions.
RESUMO
Constructing strong interfacial electric fields to enhance the surface charge transport kinetics is an effective strategy for promoting CO2 conversion. Herein, we present the fabrication of CdS-Bi2MoO6 Z-scheme heterojunctions with a robust internal electric field (IEF) using an in situ growth technique, establishing chemical bonding between the components. The IEF at the interface can offer an impetus for the segregation and transportation of photogenerated carriers, while the Cd-O chemical bonding mode acts as a rapid conduit for these carriers, thereby reducing the charge transfer distance. As a result, the Z-scheme charge transfer is accelerated due to the synergistic influence of these two factors. Therefore, the optimized CdS/Bi2MoO6 Z-scheme heterojunction possesses significantly enhanced dynamic carrier mobility, thus promoting the conversion of CO2 to CO without the need for additional co-catalysts or sacrificial agents. This optimization yields a remarkable CO selectivity of up to 97%. Meanwhile, the expedited Z-scheme charge transfer mechanism is validated through X-ray photoelectron spectroscopy, Kelvin probe force microscopy, and in situ diffuse reflectance infrared Fourier transform spectroscopy.
RESUMO
Photoreduction of highly toxic U(VI) to less toxic U(IV) is crucial for mitigating radioactive contamination. Herein, a CoWO4/TpDD p-n heterojunction is synthesized, with TpDD serving as the n-type semiconductor substrate and CoWO4 as the p-type semiconductor grown in situ on its surface. The Fermi energy difference between TpDD and CoWO4 provides the electrochemical potential for charge-hole separation. Moreover, the Coulombic forces from the distinct carrier types between the two materials synergistically facilitate the transfer of electrons and holes. Hence, an internal electric field directed from TpDD to CoWO4 is established. Under photoexcitation conditions, charges and holes migrate efficiently along the curved band and internal electric field, further enhancing charge-hole separation. As a result, the removal capacity of CoWO4/TpDD increases from 515.2 mg/g in the dark to 1754.6 mg/g under light conditions. Thus, constructing a p-n heterojunction proves to be an effective strategy for remediating uranium-contaminated environments.
RESUMO
The advancement of highly effective heterojunction photocatalysts with improved charge separation and transfer has become a crucial scientific perspective for utilizing solar energy. In this study, we developed the S-scheme heterostructure by depositing N-doped CeO2-δ (NC) nanoparticles onto two-dimensional ZnIn2S4 (ZIS) nanosheets via hydrolysis strategy for significantly enhanced photocatalytic hydrogen evolution reaction. The optimal H2 generation rate of â¼ 798 µmol g-1 h-1 was achieved for NC-3@ZIS under solar light irradiation, which is about 18 and 2 times higher than those of pristine CeO2 (â¼44 µmol g-1 h-1) and ZIS (â¼358 µmol g-1 h-1), respectively. The photogenerated electrons from NC interact with the photogenerated holes of ZIS driven by an internal electric field, confirmed by In-situ KPFM, DFT calculation, and XPS results. According to EPR and photoelectrochemical measurements, NC-3@ZIS composite shows dramatically high separation efficiency of photogenerated charge carriers. This study provides a new approach for developing non-noble metal S-scheme heterojunctions with enhanced photocatalytic hydrogen evolution.
RESUMO
The 5G sub-6 GHz radio frequency (RF) electromagnetic fields (EMF) are the most widely used in China's communications. The public has expressed concerns about possible brain health effects of the higher frequency bands in 5G compared to 2G, 3G, and 4G bands. It is imperative to empirically investigate the potential health hazards of these novel frequency bands in 5G communication technology. This study evaluates the assessment of brain tissue dose coupling from sub-6 GHz band EMF emitted by base stations in China. Based on the 3D virtual human body model, the simulation environment was established. Dose including specific absorption rate (SAR) and internal electric field (IEF) between 2G, 3G, and 4G bands and 5G sub-6 GHz was investigated using normalized exposure values and exposure limits. The results indicate that the sub-6 GHz high-frequency band of 5G has the lowest dose value. It can be concluded that high-frequency electromagnetic radiation in 5G sub-6 GHz reduces the dose and health threats to the brain. This provides strong support for the promotion of 5G commutation in China and other regions.
Assuntos
Encéfalo , Campos Eletromagnéticos , Ondas de Rádio , China , Humanos , Encéfalo/efeitos da radiação , Radiação EletromagnéticaRESUMO
Covalent organic frameworks (COFs) have recently emerged as a kind of promising photocatalytic platform in addressing the growing threat of trace pollutants in aquatic environments. Along this, we propose a strategy of constructing internal electric field (IEF) in COFs through the dipole moment regulation, which intrinsically facilitates the separation and transfer of photogenerated excitons. Two COFs of BTT-TZ-COF and BTT-TB-COF are developed by linking the electron-donor of benzotrithiophene (BTT) block and the electron-acceptor of triazine (TZ) or tribenzene (TB) block, respectively. DFT calculations demonstrate TZ block with larger dipole moment can achieve more efficient IEF due to the stronger electron-attractive force and hence narrower bandgap. Moreover, featuring the highly-order crystalline structure for accelerating photo-excitons transfer and rich porosity for facilitating the adsorption, BTT-TZ-COF exhibited an excellent universal performance of photocatalytic degradations of various dyes. Specifically, a superior photodegradation efficiency of 99% Rhodamine B (RhB) is achieved within 20 min under the simulated sunlight. Therefore, this convenient construction approach of enhanced IEF in COFs through rational regulation of the dipole moment can be a promising way to realize high photocatalytic activity.