RESUMO
Bacillus amyloliquefaciens is a well-accepted probiotic, with many benefits for both humans and animals. The ability of intestinal stem cells (ISCs) to develop into several intestinal epithelial cell types helps accelerate intestinal epithelial regeneration. Limited knowledge exists on how bacteria regulated ISCs proliferation and regeneration. Our study investigated the effects of Bacillus amyloliquefaciens supplementation on ISC proliferation and regeneration and intestinal mucosal barrier functions in piglets exposed to lipopolysaccharide (LPS). Eighteen piglets (male, 21 days old) were randomly split into 3 clusters: CON cluster, LPS cluster, and SC06+LPS cluster. On day 21, 100 µg/kg body weight of LPS was intraperitoneally administered to the SC06+LPS and LPS groups. We found SC06 supplementation maintained the intestinal barrier integrity, enhanced intestinal antioxidant capacity, reduced generation of inflammatory response, and suppressed enterocyte apoptosis against the deleterious effects triggered by LPS. In addition, our research indicated that the SC06 supplementation not only improved the ISC regeneration, but also resulted in upregulation of aryl hydrocarbon receptor (AhR) in LPS-challenge piglets. Further studies showed that SC06 also induced ISC differentiation toward goblet cells and inhibited their differentiation to intestinal absorptive cells and enterocytes. The coculture system of SC06 and ileum organoids revealed that SC06 increased the growth of ISCs and repaired LPS-induced organoid damage through activating the AhR/STAT3 signaling pathway. These findings showed that SC06, possibly through the AhR/STAT3 pathway, accelerated ISC proliferation and promoted epithelial barrier healing, providing a potential clinical treatment for IBD. Our research demonstrated that SC06 is effective in preventing intestinal epithelial damage after pathological injury, restoring intestinal homeostasis, and maintaining intestinal epithelial regeneration.
Assuntos
Bacillus amyloliquefaciens , Lipopolissacarídeos , Humanos , Masculino , Animais , Suínos , Lipopolissacarídeos/farmacologia , Mucosa Intestinal/metabolismo , Bacillus amyloliquefaciens/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Células-Tronco/metabolismo , Proliferação de Células , Inflamação/metabolismo , Fator de Transcrição STAT3/metabolismoRESUMO
DNA methylation functions as a repressive epigenetic mark that can be reversed by the Ten-eleven translocation (TET) family of DNA dioxygenases that sequentially oxidize 5-methylcytosine into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised by DNA base-excision repair factors leading to unmodified cytosines. TET enzymes were recently implicated as potential risk factors for inflammatory bowel disease (IBD), but the contribution of TET-mediated DNA oxidation to intestinal homeostasis and response to environmental stressors are unknown. Here, we show prominent roles of TET3 in regulating mouse intestinal epithelial differentiation and response to luminal stressors. Compared with wild-type littermates, mice with intestinal epithelial cell-specific ablation of Tet3 (Tet3ΔIEC) demonstrated a decreased transcriptome involved in innate immune response, Paneth cell differentiation, and epithelial regeneration. Tet3IEC mice exhibited an elevated susceptibility to enteric pathogen infection that is correlated with a decreased epithelial 5hmC abundance. Infection of human enterocytes or mice with the pathogenic bacteria acutely increased 5hmC abundance. Genome-wide 5hmC profiling revealed a shift of genomic enrichment of 5hmC toward genes involved in activating Notch, Wnt, and autophagy pathways. Furthermore, chemical stressor dextran sulfate sodium (DSS) represses epithelial 5hmC abundance in a temporal fashion, and Tet3IEC mice exhibited increased susceptibility to DSS experimental colitis with reduced regenerative capacity. TET3 is a critical regulator of gut epithelial DNA methylome and transcriptome, especially in response to luminal stressors, for the maintenance of tissue homeostasis.
Assuntos
Colite , Dioxigenases , Animais , Humanos , Camundongos , DNA , Enterócitos , Oxirredução , Celulas de PanethRESUMO
BACKGROUND: Felids are the only definitive hosts of Toxoplasma gondii. However, the biological features of the feline small intestine following T. gondii infection are poorly understood. We investigated the changes in the expression of RNAs (including mRNAs, long non-coding RNAs and circular RNAs) in the small intestinal epithelia of cats following T. gondii infection to improve our understanding of the life cycle of T. gondii and cat responses to T. gondii infection. METHODS: Fifteen cats were randomly assigned to five groups, and the infection groups were inoculated with 600 tissue cysts of the T. gondii Pru strain by gavage. The small intestinal epithelia of cats were collected at 6, 10, 14, and 30 days post infection (DPI). Using high-throughput RNA sequencing (RNA-seq), we investigated the changes in RNA expression. The expression levels of differentially expressed (DE) genes and non-coding RNAs (ncRNAs) identified by RNA-seq were validated by quantitative reverse transcription PCR (qRT-PCR). Differential expression was determined using the DESeq R package. RESULTS: In total, 207 annotated lncRNAs, 20,552 novel lncRNAs, 3342 novel circRNAs and 19,409 mRNAs were identified. Among these, 70 to 344 DE mRNAs, lncRNAs and circRNAs were detected, and the post-cleavage binding sites between 725 ncRNAs and 2082 miRNAs were predicted. Using the co-location method, we predicted that a total of 235 lncRNAs target 1044 protein-coding genes, while the results of co-expression analysis revealed that 174 lncRNAs target 2097 mRNAs. Pathway enrichment analyses of the genes targeted by ncRNAs suggested that most ncRNAs were significantly enriched in immune or diseases-related pathways. NcRNA regulatory networks revealed that a single ncRNA could be directly or indirectly regulated by multiple genes or ncRNAs that could influence the immune response of cats. Co-expression analysis showed that 242 circRNAs, mainly involved in immune responses, were significantly associated with T. gondii infection. In contrast, 1352 protein coding RNAs, mainly involved in nucleic acid process/repair pathways or oocyte development pathways, were negatively associated with T. gondii infection. CONCLUSIONS: This study is the first to reveal the expression profiles of circRNAs, lncRNAs and mRNAs in the cat small intestine following T. gondii infection and will facilitate the elucidation of the role of ncRNAs in the pathogenesis of T. gondii infection in its definitive host, thereby facilitating the development of novel intervention strategies against T. gondii infection in humans and animals.
Assuntos
RNA Longo não Codificante , Toxoplasma , Toxoplasmose , Animais , Gatos , Perfilação da Expressão Gênica , RNA Circular/genética , RNA Longo não Codificante/genética , Toxoplasma/genéticaRESUMO
In this work, we evaluated the probiotic properties of Limosilactobacillus fermentum strains (FL1, FL2, FL3, FL4) isolated from feces of healthy piglets. The in vitro auto-aggregation, hydrophobicity, biofilm-forming capacity, survival in the gastrointestinal tract, antimicrobial activity and anti-oxidation capacity were evaluated. Four strains were resistant to simulated gastrointestinal conditions, including low pH, pepsin, trypsin and bile salts. They also maintained strong self-aggregation and cell surface hydrophobicity. Limosilactobacillus fermentum FL4, which had the strongest adhesion ability and antimicrobial effect on Enterotoxigenic Escherichia coli K88 (ETEC K88), was then tested in porcine intestinal organoid models. The in vitro experiments in basal-out and apical-out organoids demonstrated that L. fermentum FL4 adhered to the apical surfaces more efficiently than basolateral surfaces, had the ability to activate the Wnt/ß-catenin pathway to protect the mucosal barrier integrity, stimulated the proliferation and differentiation of the intestinal epithelium, and repaired ETEC K88-induced damage. Moreover, L. fermentum FL4 inhibited inflammatory responses induced by ETEC K88 through the reduced expression of pro-inflammatory cytokines (TNF-α, IL-1ß and IFN-γ) and higher levels of anti-inflammatory cytokines (TGF-ß and IL-10). These results show that L. fermentum FL4 isolated from feces of healthy Tunchang piglets has the potential to be used as an anti-inflammatory probiotic and for mitigation of intestinal damage in piglets.
RESUMO
The effect of short- and long-term exposure to heat stress (HS) was analyzed on blood components, performance, and intestinal epithelium integrity of pigs. Eighteen pigs (36.0 ± 3.5 kg BW) were assigned to three groups: thermo-neutral (TN); 2 d exposure to HS (2dHS); and 7 d exposure to HS (7dHS). Blood chemistry and hemogram analyses were performed; small intestine samples were analyzed for mRNA expression and histology. Compared to TN, 2dHS and 7dHS pigs reduced weight gain and feed intake; weight gain was higher in 7dHS than in 2dHS pigs (p < 0.05). White blood cells, platelet, and hematocrit were affected in 2dHS and 7dHS compared to TN pigs (p < 0.05). Short- and long-term exposure to HS affected blood concentration of triglycerides, urea, total protein, and albumin (p ≤ 0.05). Villi-height and crypt-depth decreased in HS pigs (p < 0.01). Mucin-producing and apoptotic cell number increased in 7dHS compared to TN pigs (p < 0.05). Expression of tight-junction-proteins decreased in 2dHS pigs compared to TN and 7dHS pigs (p < 0.05). Short-term exposure of pigs to HS dramatically affects performance, blood components, and integrity of the small intestine epithelia; nevertheless, pigs show signs of recovery at 7 d of HS exposure.
RESUMO
It has been well established that Foxp3+ regulatory T cells (Treg cells) play a crucial role for immune repression and tolerance, protecting the body from autoimmunity and inflammation. Previous studies indicate that intestinal Treg cells are one specialized population of Treg cells, distinct from those in other organ compartments, both functionally and phenotypically. Specific external and internal signals, particularly the presence of microbiota, shape these Treg cells to better cooperate with the gut ecosystem, controlling intestinal physiology. The integrity of intestinal epithelial barrier represents a key feature of gut immune tolerance, which can be regulated by multiple factors. Emerging evidence suggests that bidirectional interactions between gut epithelium and resident T cells significantly contribute to intestinal barrier function. Understanding how Treg cells regulate intestinal barrier integrity provides insights into immune tolerance-mediated mucosal homeostasis, which can further illuminate potential therapeutic strategies for treating inflammatory bowel disease and colon cancer.
Assuntos
Microbiota , Linfócitos T Reguladores , Colo , Células Epiteliais , Tolerância ImunológicaRESUMO
Ulcerative colitis (UC) is a chronic inflammatory bowel disease impacting patients' quality of life and imposing heavy societal and economic burdens. Apoptosis of intestinal epithelial cells (IECs) has been considered an early event during the onset of UC and plays a crucial role in disease development. Thus, effectively inhibiting apoptosis of IECs is of critical significance for the clinical management of UC, presenting a potential direction for the research and development of pharmacotherapeutic agents. In recent years, research on the ameliorative effects of natural products on UC through inhibiting IECs apoptosis has attracted increasing attention and made remarkable achievements in ameliorating UC. In this review, we summarized the currently available research about the anti-apoptotic effects of natural products on UC and its mechanisms involving the death-receptor mediated pathway, mitochondrial-dependent pathway, ERS-mediated pathway, MAPK-mediated pathway, NF-κB mediated pathway, P13k/Akt pathway, JAK/STAT3 pathway, and NLRP3/ASC/Caspase-1 pathway. Hopefully, this review may yield useful information about the anti-apoptotic effects of natural products on UC and their potential molecular mechanisms and provide helpful insights for further investigations.
RESUMO
OBJECTIVE: To explore the effect of Tangshen Formula (, TSF), a Chinese herbal medicine, on interstitial cells of Cajal (ICC) in the colon of diabetic rats. METHODS: Fifty-four male Wistar rats were randomly divided into normal control (NC, n=14) and high-fat diet (HFD) groups (n=40). After 6 weeks, the rats in the HFD group were injected intraperitoneally streptozotocin once (30 mg/kg). Thirty rats with fasting blood glucose higher than 11.7 mmol/L were randomly divided into diabetes (DM) and TSF groups, 15 rats in each group. Rats in the NC and DM groups were intragastrically administered with saline, and those in the TSF group were given with TSF (2.4 g/kg) once daily for 20 weeks. Expression levels of Bax, Bcl-2, and caspase-3 in colonic smooth muscle layer were measured by Western blotting and immunohistochemical staining. The number of ICC was determined by immunohistochemical staining. Immunofluorescence was used for analyzing the ratio of classically activated macrophages (M1) and alternatively activated macrophages (M2) to total macrophages. Electron microscopy was used to observe the epithelial ultrastructure and junctions. RESULTS: TSF appeared to partially prevented loss of ICC in DM rats (P<0.05). Compared with the NC group, expression levels of Bcl-2, Bax, caspase-3, and TNF-α as well as the ratio of M1 to total macrophages increased in DM rats (all P<0.05), and the ratio of M2 to total macrophages decreased (P<0.05 or P<0.01). Compared with the DM group, TSF decreased the expression levels of abovementioned proteins and restore M2 to total macrophages ratio (P<0.05 or P<0.01). TSF appeared to attenuate the ultrastructural changes of epithelia and improve the tight and desmosome junctions between epithelia reduced in the DM rats. CONCLUSION: Reduced number of ICC in DM rats may be associated with damage of the intestinal barrier. The protective effects of TSF on ICC may be through repair of the epithelial junctions, which attenuates inflammation and inflammation-initiated apoptosis in colon of DM rats.
Assuntos
Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Células Intersticiais de Cajal , Animais , Colo , Diabetes Mellitus Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Ratos , Ratos WistarRESUMO
Coordinated AP-1 and clathrin coat assembly mediate secretory sorting on the trans-Golgi network (TGN) during conventional secretion. Here we found that SMAP-1/SMAPs deficiency caused the apical protein ERM-1 to accumulate on the basolateral side of the TGN. In contrast, the basolateral protein SLCF-1 appeared abnormally on the apical membrane. SMAP-1 colocalized with AP-1 on the TGN. The integrity of AP-1 is required for the subcellular presence of SMAP-1. Moreover, we found that the loss of SMAP-1 reduced clathrin-positive structures in the cytosol, suggesting that SMAP-1 has a regulatory role in clathrin assembly on the TGN. Functional experiments showed that overexpressing clathrin effectively alleviated exocytic defects due to the lack of SMAP-1, corroborating the role of SMAP-1 in promoting the assembly of clathrin on the TGN. Together, our results suggested that the AP-1 complex regulates the TGN localization of SMAP-1, promoting clathrin assembly to ensure polarized conventional secretion in C. elegans intestinal epithelia.
RESUMO
Intestinal epithelial cells (IECs) have long been understood to express high levels of major histocompatibility complex class II (MHC class II) molecules but are not considered canonical antigen-presenting cells, and the impact of IEC-MHC class II signaling on gut homeostasis remains enigmatic. As IECs serve as the primary barrier between underlying host immune cells, we reasoned that IEC-intrinsic antigen presentation may play a role in responses toward the microbiota. Mice with an IEC-intrinsic deletion of MHC class II (IECΔMHC class II) are healthy but have fewer microbial-bound IgA, regulatory T cells (Tregs), and immune repertoire selection. This was associated with increased interindividual microbiota variation and altered proportions of two taxa in the ileum where MHC class II on IECs is highest. Intestinal mononuclear phagocytes (MNPs) have similar MHC class II transcription but less surface MHC class II and are capable of acquiring MHC class II from IECs. Thus, epithelial-myeloid interactions mediate development of adaptive responses to microbial antigens within the gastrointestinal tract.
Assuntos
Imunidade Adaptativa , Bactérias/imunologia , Células Epiteliais/imunologia , Microbioma Gastrointestinal , Antígenos de Histocompatibilidade Classe II/imunologia , Íleo/microbiologia , Imunidade nas Mucosas , Sistema Fagocitário Mononuclear/imunologia , Células Mieloides/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Linhagem Celular , Colite/imunologia , Colite/metabolismo , Colite/microbiologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Interações Hospedeiro-Patógeno , Íleo/imunologia , Íleo/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Fagocitário Mononuclear/metabolismo , Sistema Fagocitário Mononuclear/microbiologia , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismoRESUMO
The disruption of endosomal actin architecture negatively affects endocytic recycling. However, the underlying homeostatic mechanisms that regulate actin organization during recycling remain unclear. In this study, we identified a synergistic endosomal actin assembly restricting mechanism in C. elegans involving WTS-1, the homolog of LATS kinases, which is a core component of the Hippo pathway. WTS-1 resides on the sorting endosomes and colocalizes with the actin polymerization regulator PTRN-1 [the homolog of the calmodulin-regulated spectrin-associated proteins (CAMSAPs)]. We observed an increase in PTRN-1-labeled structures in WTS-1-deficient cells, indicating that WTS-1 can limit the endosomal localization of PTRN-1. Accordingly, the actin overaccumulation phenotype in WTS-1-depleted cells was mitigated by the associated PTRN-1 loss. We further demonstrated that recycling defects and actin overaccumulation in WTS-1-deficient cells were reduced by the overexpression of constitutively active UNC-60A(S3A) (a cofilin protein homolog), which aligns with the role of LATS as a positive regulator of cofilin activity. Altogether, our data confirmed previous findings, and we propose an additional model, that WTS-1 acts alongside the UNC-60A-mediated actin disassembly to restrict the assembly of endosomal F-actin by curbing PTRN-1 dwelling on endosomes, preserving recycling transport.
Assuntos
Actinas , Proteínas de Caenorhabditis elegans , Proteínas Serina-Treonina Quinases , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Endossomos , Proteínas dos Microfilamentos/genéticaRESUMO
Enterotoxigenic Escherichia coli (ETEC) is an important cause of post-weaning diarrhea (PWD) worldwide, resulting in huge economic losses to the swine industry worldwide. In this study, to understand the pathogenesis, the transcriptomic analysis was performed to explore the biological processes (BP) in porcine intestinal epithelial J2 cells infected with an emerging ETEC strain isolated from weaned pigs with diarrhea. Under the criteria of |fold change| (FC) ≥ 2 and P < 0.05 with false discovery rate < 0.05, a total of 131 referenced and 19 novel differentially expressed genes (DEGs) were identified after ETEC infection, including 96 upregulated DEGs and 54 downregulated DEGs. The Gene Ontology (GO) analysis of DEGs showed that ETEC evoked BP specifically involved in response to lipopolysaccharide (LPS) and negative regulation of intracellular signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that immune response-related pathways were mainly enriched in J2 cells after ETEC infection, in which tumor necrosis factor (TNF), interleukin 17, and mitogen-activated protein kinase (MAPK) signaling pathways possessed the highest rich factor, followed by nucleotide-binding and oligomerization domain-like receptor (NLRs), C-type lectin receptor (CLR), cytokine-cytokine receptor interaction, and Toll-like receptor (TLR), and nuclear factor kappa-B (NF-κB) signaling pathways. Furthermore, 30 of 131 referenced DEGs, especially the nuclear transcription factor AP-1 and NF-κB, participate in the immune response to infection through an integral signal cascade and can be target molecules for prevention and control of enteric ETEC infection by probiotic Lactobacillus reuteri. Our data provide a comprehensive insight into the immune response of porcine intestinal epithelial cells (IECs) to ETEC infection and advance the identification of targets for prevention and control of ETEC-related PWD.
RESUMO
INTRODUCTION: The FDA approval of oral semaglutide for type 2 diabetes (2019) and oral octreotide for acromegaly (2020) is evidence that selected niche peptides can be administered orally if formulated with selected intestinal permeation enhancers. AREAS COVERED: We evaluated the oral octreotide formulation, MYCAPSSA® (Chiasma Pharmaceuticals, Needham, MA, USA). An outline of the current standard of care in acromegaly and the benefits of oral octreotide versus depot injections is provided. We discuss the Transient Permeation Enhancer (TPE®) technology used and detail the safety and efficacy data from animal models and clinical trials. EXPERT OPINION: TPE® is an oily suspension of octreotide that includes a number of excipients that can transiently alter epithelial barrier integrity by opening of intestinal epithelial tight junctions arising from transcellular perturbation. Phase I studies using 20 mg octreotide capsules yielded a relative oral bioavailability of ~0.7% and primary endpoints were achieved in two Phase III studies. The oral octreotide dose required to achieve these endpoints was over 200 times that of the 0.1 mg immediate-release subcutaneous injection, a reminder of the difficulty in achieving oral absorption of macromolecules. Many acromegaly patients will prefer a convenient twice-daily oral formulation of octreotide compared to monthly depot injections.
Assuntos
Acromegalia , Diabetes Mellitus Tipo 2 , Animais , Disponibilidade Biológica , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase III como Assunto , Humanos , Octreotida , TecnologiaRESUMO
Laurate (C12)-sucrose esters are established intestinal epithelial permeation enhancers (PEs) with potential for use in oral delivery. Most studies have examined blends of ester rather than specific monoesters, with little variation on the sugar moiety. To investigate the influence of varying the sugar moiety on monoester performance, we compared three monoesters: C12-sucrose, C12-lactose, and C12-trehalose. The assays were: critical micellar concentration (CMC) in Krebs-Henseleit buffer, MTS and lactate dehydrogenase assays in Caco-2 cells, transepithelial electrical resistance (TEER) and apparent permeability coefficient (Papp) of [14C] mannitol across isolated rat intestinal mucosae, and tissue histology. For CMC, the rank order was C12-trehalose (0.21 mM) < C12-sucrose (0.34 mM) < C12-lactose (0.43 mM). Exposure to Caco-2 cells for 120 min produced TC50 values in the MTS assay from 0.1 to 0.4 mM. Each ester produced a concentration-dependent decrease in TEER across rat mucosae with 80% reduction seen with 8 mM in 5 min, but C12-trehalose was less potent. C12-sucrose and C12-lactose increased the Papp of [14C] mannitol across mucosae with similar potency and efficacy, whereas C12-trehalose was not as potent or efficacious, even though it still increased flux. In the presence of the three esters, gross intestinal histology was unaffected except at 8 mM for C12-sucrose and C12-lactose. In conclusion, the three esters enhanced permeability likely via tight junction modulation in rat intestinal tissue. C12-trehalose was not quite as efficacious, but neither did it damage tissue to the same extent. All three can be considered as potential PEs to be included in oral formulations.
Assuntos
Absorção Intestinal , Lauratos , Animais , Células CACO-2 , Dissacarídeos , Humanos , Mucosa Intestinal/metabolismo , Permeabilidade , Ratos , Ratos WistarRESUMO
The cadherin superfamily of calcium-dependent cell-adhesion proteins has over 100 members in the human genome. All members of the superfamily feature at least a pair of extracellular cadherin (EC) repeats with calcium-binding sites in the EC linker region. The EC repeats across family members form distinct complexes that mediate cellular adhesion. For instance, classical cadherins (five EC repeats) strand-swap their N-termini and exchange tryptophan residues in EC1, while the clustered protocadherins (six EC repeats) use an extended antiparallel `forearm handshake' involving repeats EC1-EC4. The 7D-cadherins, cadherin-16 (CDH16) and cadherin-17 (CDH17), are the most similar to classical cadherins and have seven EC repeats, two of which are likely to have arisen from gene duplication of EC1-2 from a classical ancestor. However, CDH16 and CDH17 lack the EC1 tryptophan residue used by classical cadherins to mediate adhesion. The structure of human CDH17 EC1-2 presented here reveals features that are not seen in classical cadherins and that are incompatible with the EC1 strand-swap mechanism for adhesion. Analyses of crystal contacts, predicted glycosylation and disease-related mutations are presented along with sequence alignments suggesting that the novel features in the CDH17 EC1-2 structure are well conserved. These results hint at distinct adhesive properties for 7D-cadherins.
Assuntos
Caderinas/química , Caderinas/metabolismo , Sequência de Aminoácidos , Caderinas/isolamento & purificação , Cristalografia por Raios X , Glicosilação , Humanos , Ligação Proteica , Eletricidade EstáticaRESUMO
The adenomatous polyposis coli (Apc) protein regulates diverse effector pathways essential for tissue homeostasis. Truncating oncogenic mutations in Apc removing its Wnt pathway and microtubule regulatory domains drives intestinal epithelia tumorigenesis. Exuberant cell proliferation is one well-established consequence of oncogenic Wnt pathway activity; however, the contribution of other deregulated molecular circuits to tumorigenesis has not been fully examined. Using in vivo and organoid models of intestinal epithelial tumorigenesis we found that Wnt pathway activity controls intestinal epithelial villi and crypt structure, morphological features lost upon Apc inactivation. Although the Wnt pathway target gene c-Myc (also known as Myc) has critical roles in regulating cell proliferation and tumorigenesis, Apc specification of intestinal epithelial morphology is independent of the Wnt-responsive Myc-335 (also known as Rr21) regulatory element. We further demonstrate that Apc inactivation disrupts the microtubule cytoskeleton and consequently localisation of organelles without affecting the distribution of the actin cytoskeleton and associated components. Our data indicates the direct control over microtubule dynamics by Apc through an independent molecular circuit. Our study stratifies three independent Apc effector pathways in the intestinal epithelial controlling: (1) proliferation, (2) microtubule dynamics and (3) epithelial morphology.This article has an associated First Person interview with the first author of the paper.
Assuntos
Proteína da Polipose Adenomatosa do Colo , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Carcinogênese , Proliferação de Células/genética , Humanos , Mucosa Intestinal/metabolismo , Mutação/genética , Via de Sinalização Wnt/genéticaRESUMO
BACKGROUND: Probiotics are defined as live, nonpathogenic bacteria that confer health benefits beyond their nutritional value. In particular, VSL#3 exhibits demonstrated efficacy in the management of diseases characterized by an increased intestinal permeability. Our study aimed to understand how VSL#3 promotes gut health by secreting bioactive factors and identify which human pathways are modulated by secretome derived from the VSL#3 formula. METHODS: Two different lots of VSL#3 were used, and Caco-2 cell line was treated with conditioned media (CM) prepared using 1 g of the probiotic formula. We evaluated the effects of the probiotics on cellular proliferation and apoptosis by cytometry and the expression of tight junction proteins by western blotting. A proteomics analysis of both culture media and the whole proteome of Caco-2 cells treated with VSL#3-CM was performed by nano-ultra performance liquid chromatography - tandem mass (nUPLC MS/MS) spectrometry. RESULTS: The probiotic formula increased cell proliferation, decreased cellular apoptosis cells, and increased re-epithelialization in the scratch assay. Several peptides specifically synthetized by all the species within the probiotic preparation were recognized in the proteomics analysis. Human proteins synthesized by CaCo-2 cells were also identified. CONCLUSIONS: To our knowledge, this manuscript describes the first evaluation of the probiotic secretome, and the results showed that the improvement in intestinal barrier functions induced by probiotics seems to be accompanied by the modulation of some human cellular pathways.
Assuntos
Mucosa Intestinal , Probióticos , Secretoma , Células CACO-2 , Humanos , Mucosa Intestinal/metabolismo , Probióticos/farmacologia , Espectrometria de Massas em TandemRESUMO
Potential probiotic or immunobiotic effects of lactic acid bacteria (LAB) isolated from the milk of the South American camelid llama (Lama glama) have not been reported in published studies. The aim of the present work was to isolate beneficial LAB from llama milk that can be used as potential probiotics active against bacterial pathogens. LAB strains were isolated from llama milk samples. In vitro functional characterization of the strains was performed by evaluating the resistance against gastrointestinal conditions and inhibition of the pathogen growth. Additionally, the adhesive and immunomodulatory properties of the strains were assessed. The functional studies were complemented with a comparative genomic evaluation and in vivo studies in mice. Ligilactobacillus salivarius TUCO-L2 showed enhanced probiotic/immunobiotic potential compared to that of other tested strains. The TUCO-L2 strain was resistant to pH and high bile salt concentrations and demonstrated antimicrobial activity against Gram-negative intestinal pathogens and adhesion to mucins and epithelial cells. L. salivarius TUCO-L2 modulated the innate immune response triggered by Toll-like receptor (TLR)-4 activation in intestinal epithelial cells. This effect involved differential regulation of the expression of inflammatory cytokines and chemokines mediated by the modulation of the negative regulators of the TLR signaling pathway. Moreover, the TUCO-L2 strain enhanced the resistance of mice to Salmonella infection. This is the first report on the isolation and characterization of a potential probiotic/immunobiotic strain from llama milk. The in vitro, in vivo, and in silico investigation performed in this study reveals several research directions that are needed to characterize the TUCO-L2 strain in detail to position this strain as a probiotic or immunobiotic that can be used against infections in humans or animals, including llama.
RESUMO
Heparins show great anticoagulant effect with few side effects, and are administered by subcutaneous or intravenous route in clinics. To improve patient compliance, oral administration is an alternative route. Nonetheless, oral administration of heparins still faces enormous challenges due to the multiple obstacles. This review briefly analyzes a series of barriers ranging from poorly physicochemical properties of heparins, to harsh biological barriers including gastrointestinal degradation and pre-systemic metabolism. Moreover, several approaches have been developed to overcome these obstacles, such as improving stability of heparins in the gastrointestinal tract, enhancing the intestinal epithelia permeability and facilitating lymphatic delivery of heparins. Overall, this review aims to provide insights concerning advanced delivery strategies facilitating oral absorption of heparins.