Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Cell ; 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39500322

RESUMO

Tissue damage and repair are hallmarks of inflammation. Despite a wealth of information on the mechanisms that govern tissue damage, mechanistic insight into how inflammation affects repair is lacking. Here, we investigated how interferons influence tissue repair after damage to the intestinal mucosa. We found that type III, not type I or type II, interferons delay epithelial cell regeneration by inducing the upregulation of Z-DNA-binding protein 1 (ZBP1). Z-nucleic acids formed following intestinal damage are sensed by ZBP1, leading to caspase-8 activation and the cleavage of gasdermin C (GSDMC). Cleaved GSDMC drives epithelial cell death by pyroptosis and delays repair of the large or small intestine after colitis or irradiation, respectively. The type III interferon/ZBP1/caspase-8/GSDMC axis is also active in patients with inflammatory bowel disease (IBD). Our findings highlight the capacity of type III interferons to delay gut repair, which has implications for IBD patients or individuals exposed to radiation therapies.

2.
Gastroenterol Rep (Oxf) ; 12: goae090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39444950

RESUMO

Background: Lgr5-positive cells located in the basal layer of crypts have self-regenerative and proliferative differentiation potentials of intestinal stem cells (ISCs), maintaining a balance of regeneration-repair in mucosal epithelium. However, the mechanisms of mucosal repair that are regulated by ISCs in ulcerative colitis (UC) remain unclear. Method: Colon tissues from patients with UC were collected to test ß-catenin and Notch1 expression by using Western blot and quantitative real-time polymerase chain reaction (PCR). ß-cateninfl/fl mice, ß-cateninTg mice, and Dll1tm1 Gos mice were used to cross with Lgr5-EGFP-IRES-creERT2 mice to generate mice of different genotypes, altering the activation of Wnt/ß-catenin and Dll1-mediated Notch signaling in ISCs in vivo. Dextran sulfate sodium (DSS) was used to induce a colitis mice model. Intestinal organoids were isolated and cultured to observe the proliferation and differentiation levels of ISCs. Result: ß-catenin and Notch1 expression were significantly increased in the inflamed colon tissues from patients with UC. Wnt/ß-catenin activation and Dll1-mediated Notch pathway inhibition in Lgr5-positive stem cells promoted the expressions of E-cadherin, CK20, and CHGA in colonic organoids and epithelium, implying the promotion of colonic epithelial integrity. Activation of Wnt/ß-catenin and suppression of Dll1-mediated Notch pathway in Lgr5-positive ISCs alleviated the DSS-induced intestinal mucosal inflammation in mice. Conclusions: Lgr5-positive ISCs are characterized by self-renewal and high dividend potential, which play an important role in the injury and repair of intestinal mucosa. More importantly, the Wnt/ß-catenin signaling pathway cooperates with the Notch signaling pathway to maintain the function of the Lgr5-positive ISCs.

3.
Front Cell Dev Biol ; 12: 1491740, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39450272

RESUMO

Introduction: Intestinal stem cells (ISCs) are crucial for tissue repair and homeostasis because of their ability to self-renew and differentiate. However, their functionality declines significantly with age, resulting in reduced tissue regeneration and a higher risk of age-related diseases. Addressing this decline in ISC performance during aging presents a substantial challenge. The specific impact of nutrients or dietary elements on ISC adaptive resizing is urgent to explore. Methods: Drosophila ISCs are an ideal model for studying development and aging because of their genetic richness, ease of manipulation, and similarity to mammalian tissues. As the primary mitotically active cells in the Drosophila gut, ISCs are flexible in response to dietary and stress signals. Manipulating signaling pathways or dietary restrictions has shown promise in regulating ISC functions and extending lifespan in flies, these approaches face broader applications for aging research. Results: Kaempferol is well-regarded for its antioxidant, anti-inflammatory, and potential anticancer effects. However, its impacts on ISCs and the associated mechanisms remain inadequately understood. Our findings indicate that Kaempferol accelerates gut recovery after damage and improves the organism's stress tolerance. Moreover, Kaempferol suppresses the hyperproliferation of aging ISCs in Drosophila. Further investigation revealed that the regulatory effects of Kaempferol on ISCs are mediated through the reduction of endoplasmic reticulum (ER) stress in aging flies and the modulation of excessive reactive oxygen species (ROS) levels via ER-stress pathways. Furthermore, Kaempferol exerts regulatory effects on the insulin signaling pathway, thereby contributing to the attenuation of ISC senescence. Discussion: This study reveals that Kaempferol promotes intestinal homeostasis and longevity in aging flies by targeting ER stress and insulin signaling pathways, though the exact molecular mechanisms require further exploration. Future research will aim to dissect the downstream signaling events involved in these pathways to better understand how Kaempferol exerts its protective effects at the molecular level.

4.
MedComm (2020) ; 5(11): e776, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39465140

RESUMO

Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39404771

RESUMO

Intestinal ischemia and reperfusion injury (IRI) is a deadly and common condition. Death is associated with sepsis due to insufficient epithelial repair, requiring stem cell-driven regeneration, typically beginning 48 hours after injury. Animal models are critical to advancing this field. To effectively study epithelial healing, models must survive clinically relevant intestinal ischemic injury extending to the crypt. Though mouse models are indispensable to intestinal research, their application for studying epithelial repair following severe IRI may be limited. Ischemic injury was induced in mouse and porcine jejunum for up to 3 hours, with up to 72 hours of reperfusion. Histologic damage was scored by Chiu-Park grade and animal survival was assessed. Findings were compared between species. A mouse IRI literature review was performed to evaluate the purported degree of injury, duration of recovery, and reported survival rates. In mice and pigs, 3 hours of ischemia induced severe, reliable injury extending into the crypt. However, at 48 hours, mouse survival was only 23.5% compared to 100% survival in pigs. In literature, ischemia was induced for >1 hour in only 4 of 102 mouse studies and none to 3 hours. Recovery was attempted for 48 hours in only 6 reports. 47 studies reported intestinal crypt injury. Of those that featured histologic intestinal crypt damage, survival rates at 48 hours ranged from 10-50% (median 30%). Mouse models are not ideal to study intestinal stem cell mediated recovery from severe IRI. Alternative large animal models, like pigs, are recommended.

6.
Inflamm Regen ; 44(1): 42, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327633

RESUMO

The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.

7.
J Inflamm Res ; 17: 6023-6038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247835

RESUMO

Introduction: Rhodiola species have been utilized as functional foods in Asia and Europe for promoting health. Research has demonstrated that Rhodiola has the potential to alleviate inflammatory bowel disease (IBD) in animal models. However, the specific active components and the underlying mechanism for ameliorating intestinal damage remain unclear. This study aims to explore the relieving effect of Rosavin (Rov), a known active constituent of Rhodiola, in IBD and the regulatory mechanisms. Methods: The therapeutic effect of Rov was evaluated using a murine model of acute colitis induced by dextran sulfate sodium salt (DSS). Inflammatory cytokines and neutrophil activation markers were measured by corresponding kits. Immunohistochemistry, immunofluorescence, TUNEL, and EdU assays were applied to investigate the tight conjunction proteins expression, epithelial marker expression, number of apoptotic cells, and epithelial proliferation, respectively. The protection effect of Rov on gut epithelial injury was assessed using TNF-α-induced intestinal organoids. Additinally, RNA sequencing was applied to observe the genetic alteration profile in these intestinal organoids. Results: Oral administration of Rov significantly attenuated weight loss and restored colon length in mice. Notably, Rov treatment led to decreased levels of pro-inflammatory cytokines and neutrophil activation markers while increasing anti-inflammatory factors. Importantly, Rov restored intestinal despair by increasing the number of Lgr5+ stem cells, Lyz1+ Paneth cells and Muc2+ goblet cells in intestines of colitis mice, displaying reduced epithelial apoptosis and recovered barrier function. In TNF-α-induced intestinal organoids, Rov facilitated epithelial cell differentiation and protected against TNF-α-induced damage. RNA sequencing revealed upregulation in the gene expression associated with epithelial cells (including Lgr5+, Lyz1+ and Muc2+ cells) proliferation and defensin secretion, unveiling the protective mechanisms of Rov on the intestinal epithelial barrier. Discussion: Rov holds potential as a natural prophylactic agent against IBD, with its protective action on the intestinal epithelium being crucial for its therapeutic efficacy.

8.
J Agric Food Chem ; 72(34): 18930-18941, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39146439

RESUMO

High-fat diet (HFD) feeding is known to cause intestinal barrier disruption, thereby triggering severe intestinal inflammatory disease. Indole-3-aldehyde (IAld) has emerged as a potential candidate for mitigating inflammatory responses and maintaining intestinal homeostasis. However, the role of IAld in the HFD-related intestinal disruption remains unclear. In this study, 48 7 week-old male C57BL/6J mice were assigned to four groups: the normal chow diet (NCD) group received a NCD; the HFD group was fed an HFD; the HFD + IAld200 group was supplemented with 200 mg/kg IAld in the HFD; and the HFD + IAld600 group was supplemented with 600 mg/kg IAld in the HFD. The results showed that dietary IAld supplementation ameliorated fat accumulation and metabolic disorders, which are associated with reduced intestinal permeability. This reduction potentially led to decreased systemic inflammation and enhanced intestinal barrier function in HFD-fed mice. Furthermore, we found that IAld promoted intestinal stem cell (ISC) proliferation by activating aryl hydrocarbon receptors (AHRs) in vivo and ex vivo. These findings suggest that IAld restores the HFD-induced intestinal barrier disruption by promoting AHR-mediated ISC proliferation.


Assuntos
Proliferação de Células , Dieta Hiperlipídica , Indóis , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Células-Tronco , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Indóis/farmacologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Permeabilidade
9.
Phytomedicine ; 132: 155888, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084128

RESUMO

BACKGROUND: The efficacy of Liangxue Guyuan Yishen Decoction (LGYD), a traditional Chinese medicine, has been scientifically proven in the treatment of radiation-induced intestinal injury (RIII) and preservation of intestinal integrity and function following high-dose radiation exposure. However, further investigation is required to comprehensively elucidate the precise mechanisms underlying the therapeutic effects of LGYD in order to provide potential pharmaceutical options for radiation protection. PURPOSE: This study aims to elucidate the potential mechanism through which LGYD exerts its therapeutic effects on RIII by modulating the gut microbiota (GM). METHODS: 16 s rRNA analysis was employed to assess the impact of varying doses of whole body irradiation (WBI) on GM in order to establish an appropriate model for this study. The effects of LGYD on GM and SCFA were evaluated using 16 s rRNA and Quantification of SCFA. UHPLC-QE-MS was utilized to identify the active components in LGYD as well as LGYD drug containing serum (LGYD-DS). Subsequently, immunofluorescence and immunohistochemical staining were conducted to validate the influence of LGYD and/or characteristic microbiota on RIII recovery in vivo. The effects of LGYD-DS, characteristic flora, and SCFA on intestinal stem cell (ISC) were assessed by measuring organoid surface area in intestinal organoid model. RESULTS: The species composition and abundance of GM were significantly influenced by whole-body irradiation with a dose of 8.5 Gy, which was used as in vivo model. LGYD significantly improves the survival rate and promotes recovery from RIII. Additionally, LGYD exhibited a notable increase in the abundance of Akkermansia muciniphila (AKK) and levels of SCFA, particularly isobutyric acid. LGYD-DS consisted of seven main components derived from herbs of LGYD. In vivo experiments indicated that both LGYD and AKK substantially enhanced the survival rate after radiation and facilitated the recovery process for intestinal structure and function. In the organoid model, treatment with LGYD-DS, AKK supernatant or isobutyric acid significantly increased organoid surface area. CONCLUSIONS: LGYD has the potential to enhance RIII by promoting the restoration of intestinal stem cell, which is closely associated with the upregulation of AKK abundance and production of SCFA, particularly isobutyric acid.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Animais , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Células-Tronco/efeitos dos fármacos , Akkermansia/efeitos dos fármacos , Verrucomicrobia/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/efeitos da radiação , Irradiação Corporal Total , Camundongos Endogâmicos C57BL
10.
Dev Cell ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39047737

RESUMO

Peroxisome dynamics are crucial for intestinal stem cell (ISC) differentiation and gut regeneration. However, the precise mechanisms that govern peroxisome dynamics within ISCs during gut regeneration remain unknown. Using mouse colitis and Drosophila intestine models, we have identified a negative-feedback control mechanism involving the transcription factors peroxisome proliferator-activated receptors (PPARs) and SOX21. This feedback mechanism effectively regulates peroxisome abundance during gut regeneration. Following gut injury, the released free very long-chain fatty acids (VLCFAs) increase peroxisome abundance by stimulating PPARs-PEX11s signaling. PPARs act to stimulate peroxisome fission and inhibit pexophagy. SOX21, which acts downstream of peroxisomes during ISC differentiation, induces peroxisome elimination through pexophagy while repressing PPAR expression. Hence, PPARs and SOX21 constitute a finely tuned negative-feedback loop that regulates peroxisome dynamics. These findings shed light on the complex molecular mechanisms underlying peroxisome regulation in ISCs, contributing to our understanding of gut renewal and repair.

11.
Sci Rep ; 14(1): 15195, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956443

RESUMO

The intestinal epithelium dynamically controls cell cycle, yet no experimental platform exists for directly analyzing cell cycle phases in non-immortalized human intestinal epithelial cells (IECs). Here, we present two reporters and a complete platform for analyzing cell cycle phases in live primary human IECs. We interrogate the transcriptional identity of IECs grown on soft collagen, develop two fluorescent cell cycle reporter IEC lines, design and 3D print a collagen press to make chamber slides for optimal imaging while supporting primary human IEC growth, live image cell cycle dynamics, then assemble a computational pipeline building upon free-to-use programs for semi-automated analysis of cell cycle phases. The PIP-FUCCI construct allows for assigning cell cycle phase from a single image of living cells, and our PIP-H2A construct allows for semi-automated direct quantification of cell cycle phase lengths using our publicly available computational pipeline. Treating PIP-FUCCI IECs with oligomycin demonstrates that inhibiting mitochondrial respiration lengthens G1 phase, and PIP-H2A cells allow us to measure that oligomycin differentially lengthens S and G2/M phases across heterogeneous IECs. These platforms provide opportunities for future studies on pharmaceutical effects on the intestinal epithelium, cell cycle regulation, and more.


Assuntos
Ciclo Celular , Células Epiteliais , Mucosa Intestinal , Humanos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Oligomicinas/farmacologia , Células Cultivadas
12.
Adv Sci (Weinh) ; 11(33): e2400058, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38937989

RESUMO

Genetically lean and obese individuals have distinct intestinal microbiota and function. However, the underlying mechanisms of the microbiome heterogeneity and its regulation on epithelial function such as intestinal stem cell (ISC) fate remain unclear. Employing pigs of genetically distinct breeds (obese Meishan and lean Yorkshire), this study reveals transcriptome-wide variations in microbial ecology of the jejunum, characterized by enrichment of active Lactobacillus species, notably the predominant Lactobacillus amylovorus (L. amylovorus), and lactate metabolism network in obese breeds. The L. amylovorus-dominant heterogeneity is paralleled with epithelial functionality difference as reflected by highly expressed GPR81, more proliferative ISCs and activated Wnt/ß-catenin signaling. Experiments using in-house developed porcine jejunal organoids prove that live L. amylovorus and its metabolite lactate promote intestinal organoid growth. Mechanistically, L. amylovorus and lactate activate Wnt/ß-catenin signaling in a GPR81-dependent manner to promote ISC-mediated epithelial proliferation. However, heat-killed L. amylovorus fail to cause these changes. These findings uncover a previously underrepresented role of L. amylovorus in regulating jejunal stem cells via Lactobacillus-lactate-GPR81 axis, a key mechanism bridging breed-driven intestinal microbiome heterogeneity with ISC fate. Thus, results from this study provide new insights into the role of gut microbiome and stem cell interactions in maintaining intestinal homeostasis.


Assuntos
Proliferação de Células , Microbioma Gastrointestinal , Ácido Láctico , Lactobacillus , Receptores Acoplados a Proteínas G , Células-Tronco , Animais , Proliferação de Células/fisiologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Lactobacillus/metabolismo , Lactobacillus/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/genética , Suínos , Ácido Láctico/metabolismo , Transdução de Sinais/fisiologia , Via de Sinalização Wnt/fisiologia , Via de Sinalização Wnt/genética , Jejuno/microbiologia , Jejuno/metabolismo , Jejuno/citologia , Obesidade/metabolismo , Obesidade/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/citologia
13.
Curr Biol ; 34(13): 2785-2800.e7, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38823381

RESUMO

Host-microbe interactions influence intestinal stem cell (ISC) activity to modulate epithelial turnover and composition. Here, we investigated the functional impacts of viral infection on intestinal homeostasis and the mechanisms by which viral infection alters ISC activity. We report that Drosophila A virus (DAV) infection disrupts intestinal homeostasis in Drosophila by inducing sustained ISC proliferation, resulting in intestinal dysplasia, loss of gut barrier function, and reduced lifespan. We found that additional viruses common in laboratory-reared Drosophila also promote ISC proliferation. The mechanism of DAV-induced ISC proliferation involves progenitor-autonomous epidermal growth factor receptor (EGFR) signaling, c-Jun N-terminal kinase (JNK) activity in enterocytes, and requires Sting-dependent nuclear factor κB (NF-κB) (Relish) activity. We further demonstrate that activating Sting-Relish signaling is sufficient to induce ISC proliferation, promote intestinal dysplasia, and reduce lifespan in the absence of infection. Our results reveal that viral infection can significantly disrupt intestinal physiology, highlight a novel role for Sting-Relish signaling, and support a role for viral infection in aging.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Homeostase , Intestinos , Proteínas de Membrana , NF-kappa B , Transdução de Sinais , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , NF-kappa B/metabolismo , Drosophila melanogaster/virologia , Drosophila melanogaster/fisiologia , Intestinos/virologia , Células-Tronco/virologia , Células-Tronco/metabolismo , Proliferação de Células , Fatores de Transcrição
14.
Dev Cell ; 59(15): 1972-1987.e8, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38815584

RESUMO

The early mechanisms of spontaneous tumor initiation that precede malignancy are largely unknown. We show that reduced aPKC levels correlate with stem cell loss and the induction of revival and metaplastic programs in serrated- and conventional-initiated premalignant lesions, which is perpetuated in colorectal cancers (CRCs). Acute inactivation of PKCλ/ι in vivo and in mouse organoids is sufficient to stimulate JNK in non-transformed intestinal epithelial cells (IECs), which promotes cell death and the rapid loss of the intestinal stem cells (ISCs), including those that are LGR5+. This is followed by the accumulation of revival stem cells (RSCs) at the bottom of the crypt and fetal-metaplastic cells (FMCs) at the top, creating two spatiotemporally distinct cell populations that depend on JNK-induced AP-1 and YAP. These cell lineage changes are maintained during cancer initiation and progression and determine the aggressive phenotype of human CRC, irrespective of their serrated or conventional origin.


Assuntos
Neoplasias Colorretais , Células Epiteliais , Metaplasia , Proteína Quinase C , Animais , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Proteína Quinase C/metabolismo , Proteína Quinase C/genética , Metaplasia/patologia , Metaplasia/metabolismo , Camundongos , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteínas de Sinalização YAP/metabolismo , Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Organoides/metabolismo , Organoides/patologia , Linhagem da Célula , Isoenzimas/metabolismo , Isoenzimas/genética , Isoenzimas/deficiência , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo
15.
Int Immunopharmacol ; 136: 112278, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815353

RESUMO

Intestinal stem cells (ISCs) are pivotal for the maintenance and regeneration of the intestinal epithelium. Berberine (BBR) exhibits diverse biological activities, but it remains unclear whether BBR can modulate ISCs' function. Therefore, we investigated the effects of BBR on ISCs in healthy and radiation-injured mice and explored the potential underlying mechanisms involved. The results showed that BBR significantly increased the length of the small intestines, the height of the villi, and the depth and density of the crypts, promoted the proliferation of cryptal epithelial cells and increased the number of OLFM4+ ISCs and goblet cells. Crypts from the BBR-treated mice were more capable of growing into enteroids than those from untreated mice. BBR alleviated WAI-induced intestinal injury. BBR suppressed the apoptosis of crypt epithelial cells, increased the quantity of goblet cells, and increased the quantity of OLFM4+ ISCs and tdTomato+ progenies of ISCs after 8 Gy WAI-induced injury. Mechanistically, BBR treatment caused a significant increase in the quantity of p-S6, p-STAT3 and p-ERK1/2 positive cryptal epithelial cells under physiological conditions and after WAI-induced injury. In conclusion, BBR is capable of enhancing the function of ISCs either physiologically or after radiation-induced injury, indicating that BBR has potential value in the treatment of radiation-induced intestinal injury.


Assuntos
Berberina , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Células-Tronco , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Células-Tronco/efeitos dos fármacos , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Mucosa Intestinal/patologia , Masculino , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/patologia , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/efeitos da radiação , Células Caliciformes/patologia , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/patologia , Fator de Transcrição STAT3/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/efeitos da radiação , Intestino Delgado/patologia , Intestino Delgado/lesões , Intestinos/efeitos dos fármacos , Intestinos/efeitos da radiação
16.
J Sci Food Agric ; 104(12): 7417-7428, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38760970

RESUMO

BACKGROUND: Wuliangye strong aroma baijiu (hereafter, Wuliangye baijiu) is a traditional Chinese grain liquor containing short-chain fatty acids, ethyl caproate, ethyl lactate, other trace components, and a large proportion of ethanol. The effects of Wuliangye baijiu on intestinal stem cells and intestinal epithelial development have not been elucidated. Here, the role of Wuliangye baijiu in intestinal epithelial regeneration and gut microbiota modulation was investigated by administering a Lieber-DeCarli chronic ethanol liquid diet in a mouse model to mimic long-term (8 weeks') light/moderate alcohol consumption (1.6 g kg-1 day-1) in healthy human adults. RESULTS: Wuliangye baijiu promoted colonic crypt proliferation in mice. According to immunofluorescence and reverse transcription-quantitative polymerase chain reaction analyses, compared with the ethanol-only treatment, Wuliangye baijiu increased the number of intestinal stem cells and goblet cells and the expression of enteroendocrine cell differentiation markers in the mouse colon. Furthermore, gut microbiota analysis showed an increase in the relative abundance of microbiota related to intestinal homeostasis following Wuliangye baijiu administration. Notably, increased abundance of Bacteroidota, Faecalibaculum, Lachnospiraceae, and Blautia may play an essential role in promoting stem-cell-mediated intestinal epithelial development and maintaining intestinal homeostasis. CONCLUSIONS: In summary, these findings suggest that Wuliangye baijiu can be used to regulate intestinal stem cell proliferation and differentiation in mice and to alter gut microbiota distributions, thereby promoting intestinal homeostasis. This research elucidates the mechanism by which Wuliangye baijiu promotes intestinal health. © 2024 Society of Chemical Industry.


Assuntos
Bactérias , Diferenciação Celular , Proliferação de Células , Microbioma Gastrointestinal , Homeostase , Mucosa Intestinal , Células-Tronco , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Humanos , Masculino , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Intestinos/microbiologia , Intestinos/citologia , Bebidas Alcoólicas/análise , Etanol , Colo/microbiologia , Colo/metabolismo
17.
Cell Mol Life Sci ; 81(1): 126, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470510

RESUMO

Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2-Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/ß-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5+ ISC cell cycle passage through the G1-S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP23-33) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2-Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2-Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI.


Assuntos
Experiências Adversas da Infância , Águas Minerais , Recém-Nascido , Humanos , Animais , Suínos , Silício/metabolismo , Privação Materna , Mucosa Intestinal/metabolismo , Mamíferos
18.
Biomedicines ; 12(3)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38540281

RESUMO

Intestinal epithelial cell activities during homeostasis and regeneration are well described, but their potential interactions with stromal cells remain unresolved. Exploring the functions of these heterogeneous intestinal mesenchymal stromal cells (iMSCs) remains challenging. This difficulty is due to the lack of specific markers for most functionally homogenous subpopulations. In recent years, however, novel clustering techniques such as single-cell RNA sequencing (scRNA-seq), fluorescence-activated cell sorting (FACS), confocal microscope, and computational remodeling of intestinal anatomy have helped identify and characterize some specific iMSC subsets. These methods help researchers learn more about the localization and functions of iMSC populations during intestinal morphogenic and homeostatic conditions. Consequently, it is imperative to understand the cellular pathways that regulate their activation and how they interact with surrounding cellular components, particularly during intestinal epithelial regeneration after mucosal injury. This review provides insights into the spatial distribution and functions of identified iMSC subtypes. It focuses on their involvement in intestinal morphogenesis, homeostasis, and regeneration. We reviewed related signaling mechanisms implicated during epithelial and subepithelial stromal cell crosstalk. Future research should focus on elucidating the molecular intermediates of these regulatory pathways to open a new frontier for potential therapeutic targets that can alleviate intestinal mucosa-related injuries.

19.
Am J Chin Med ; 52(2): 513-539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533568

RESUMO

Aging can cause degenerative changes in multiple tissues and organs. Gastrointestinal diseases and dysfunctions are common in the elderly population. In this study, we investigated the effects of Astragalus membranaceus polysaccharide (APS) and Astragalus membranaceus ethanol extract (AEE) on age-related intestinal dysfunction and gut microbiota dysbiosis in naturally aging mice. The energy expenditure and physical activity of 23-month-old C57BL6/J mice were recorded using a metabolic cage system. Pathological changes in the intestine were evaluated using Alcian blue staining. The protein levels of leucine-rich repeats containing G protein-coupled receptor 5 (Lgr5) and Stat3 in the small intestine were determined using immunohistochemistry. The intestinal cell migration distance was assessed using bromodeoxyuridine (BrdU) immunofluorescence staining. The gene transcription levels of intestinal stem cell (ISC) markers and ISC-related signaling pathways were detected using quantitative real-time PCR (qRT-PCR). Microbiota analysis based on 16S rDNA was performed to evaluate the composition of the gut microbiota. APS and AEE improved a series of aging phenotypes in female but not in male aging mice. APS and AEE ameliorate intestinal dysfunction and histopathological changes in aging mice. APS had a more significant anti-aging effect than AEE, particularly on intestinal dysfunction. APS promotes ISC regeneration by activating the IL-22 signaling pathway. Cohousing (CH) experiments further confirmed that APS induced the IL-22 signaling pathway by increasing the abundance of Lactobacillus, thereby promoting the regeneration of ISCs. Our results show that APS may serve as a promising agent for improving age-related intestinal dysfunction.


Assuntos
Astragalus propinquus , Interleucina 22 , Idoso , Humanos , Camundongos , Masculino , Feminino , Animais , Lactente , Pré-Escolar , Astragalus propinquus/química , Intestinos , Transdução de Sinais , Intestino Delgado , Células-Tronco , Polissacarídeos/farmacologia , Envelhecimento , Regeneração
20.
Phytomedicine ; 128: 155363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493715

RESUMO

BACKGROUND: Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE: This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN: The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 µM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS: The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/ß-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS: The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/ß-catenin signaling. The fact that Wnt/ß-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION: Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/ß-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.


Assuntos
Alcaloides , Galinhas , Coccidiose , Eimeria , Matrinas , Doenças das Aves Domésticas , Quinolizinas , Via de Sinalização Wnt , Animais , Quinolizinas/farmacologia , Alcaloides/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Eimeria/efeitos dos fármacos , Coccidiose/tratamento farmacológico , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/parasitologia , Células-Tronco/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA