Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cogn Neurodyn ; 17(6): 1401-1416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37974580

RESUMO

Non-invasive brain-computer interfaces (BCIs) based on an event-related potential (ERP) component, P300, elicited via the oddball paradigm, have been extensively developed to enable device control and communication. While most P300-based BCIs employ visual stimuli in the oddball paradigm, auditory P300-based BCIs also need to be developed for users with unreliable gaze control or limited visual processing. Specifically, auditory BCIs without additional visual support or multi-channel sound sources can broaden the application areas of BCIs. This study aimed to design optimal stimuli for auditory BCIs among artificial (e.g., beep) and natural (e.g., human voice and animal sounds) sounds in such circumstances. In addition, it aimed to investigate differences between auditory and visual stimulations for online P300-based BCIs. As a result, natural sounds led to both higher online BCI performance and larger differences in ERP amplitudes between the target and non-target compared to artificial sounds. However, no single type of sound offered the best performance for all subjects; rather, each subject indicated different preferences between the human voice and animal sound. In line with previous reports, visual stimuli yielded higher BCI performance (average 77.56%) than auditory counterparts (average 54.67%). In addition, spatiotemporal patterns of the differences in ERP amplitudes between target and non-target were more dynamic with visual stimuli than with auditory stimuli. The results suggest that selecting a natural auditory stimulus optimal for individual users as well as making differences in ERP amplitudes between target and non-target stimuli more dynamic may further improve auditory P300-based BCIs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09901-3.

2.
J Neural Eng ; 20(1)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693278

RESUMO

Objective. Decoding the intended trajectories from brain signals using a brain-computer interface system could be used to improve the mobility of patients with disabilities.Approach. Neuronal activity associated with spatial locations was examined while macaques performed a navigation task within a virtual environment.Main results.Here, we provide proof of principle that multi-unit spiking activity recorded from the lateral prefrontal cortex (LPFC) of non-human primates can be used to predict the location of a subject in a virtual maze during a navigation task. The spatial positions within the maze that require a choice or are associated with relevant task events can be better predicted than the locations where no relevant events occur. Importantly, within a task epoch of a single trial, multiple locations along the maze can be independently identified using a support vector machine model.Significance. Considering that the LPFC of macaques and humans share similar properties, our results suggest that this area could be a valuable implant location for an intracortical brain-computer interface system used for spatial navigation in patients with disabilities.


Assuntos
Córtex Pré-Frontal , Navegação Espacial , Animais , Humanos , Córtex Pré-Frontal/fisiologia , Primatas , Encéfalo/fisiologia , Neurônios/fisiologia , Navegação Espacial/fisiologia , Macaca
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(6): 1074-1081, 2022 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-36575075

RESUMO

The non-invasive brain-computer interface (BCI) has gradually become a hot spot of current research, and it has been applied in many fields such as mental disorder detection and physiological monitoring. However, the electroencephalography (EEG) signals required by the non-invasive BCI can be easily contaminated by electrooculographic (EOG) artifacts, which seriously affects the analysis of EEG signals. Therefore, this paper proposed an improved independent component analysis method combined with a frequency filter, which automatically recognizes artifact components based on the correlation coefficient and kurtosis dual threshold. In this method, the frequency difference between EOG and EEG was used to remove the EOG information in the artifact component through frequency filter, so as to retain more EEG information. The experimental results on the public datasets and our laboratory data showed that the method in this paper could effectively improve the effect of EOG artifact removal and improve the loss of EEG information, which is helpful for the promotion of non-invasive BCI.


Assuntos
Artefatos , Interfaces Cérebro-Computador , Humanos , Eletroculografia/métodos , Algoritmos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador
4.
Front Hum Neurosci ; 15: 732764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776904

RESUMO

Recent years have been marked by the fulgurant expansion of non-invasive Brain-Computer Interface (BCI) devices and applications in various contexts (medical, industrial etc.). This technology allows agents "to directly act with thoughts," bypassing the peripheral motor system. Interestingly, it is worth noting that typical non-invasive BCI paradigms remain distant from neuroscientific models of human voluntary action. Notably, bidirectional links between action and perception are constantly ignored in BCI experiments. In the current perspective article, we proposed an innovative BCI paradigm that is directly inspired by the ideomotor principle, which postulates that voluntary actions are driven by the anticipated representation of forthcoming perceptual effects. We believe that (1) adapting BCI paradigms could allow simple action-effect bindings and consequently action-effect predictions and (2) using neural underpinnings of those action-effect predictions as features of interest in AI methods, could lead to more accurate and naturalistic BCI-mediated actions.

5.
Int J Neural Syst ; 31(6): 2150023, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33931006

RESUMO

Most invasive Brain Computer Interfaces (iBCIs) use spike and Local Field Potentials (LFPs) from the motor or parietal cortices to decode movement intentions. It has been debated whether harvesting signals from other brain areas that encode global cognitive variables, such as the allocation of attention and eye movement goals in a variety of spatial reference frames, may improve the outcome of iBCIs. Here, we explore the ability of LFP signals, sampled from the lateral prefrontal cortex (LPFC) of macaque monkeys, to encode eye-movement intention during the pre-movement fixation period of a delayed saccade task. We use spectral dimensionality reduction to examine the spatiotemporal properties of the extracted non-rhythmic broadband activity and explore its usefulness in decoding saccade goals. The dynamics of the broadband signal in low spatial dimensions across the pre-movement fixation period uncovered saccade target separation; its discriminative potential was confirmed using support vector machine classifications. These findings reveal that broadband LFP from the LPFC can be used to decode intended saccade target location during pre-movement periods. We further provide a general workflow that can be implemented in iBCIs and it is relatively robust to the loss of spikes in individual electrodes.


Assuntos
Interfaces Cérebro-Computador , Movimentos Sacádicos , Potenciais de Ação , Animais , Intenção , Córtex Pré-Frontal , Primatas
6.
Neuromodulation ; 19(8): 804-811, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27513737

RESUMO

OBJECTIVES: An invasive brain-computer interface (BCI) is a promising neurorehabilitation device for severely disabled patients. Although some systems have been shown to work well in restricted laboratory settings, their utility must be tested in less controlled, real-time environments. Our objective was to investigate whether a specific motor task could be reliably detected from multiunit intracortical signals from freely moving animals in a simulated, real-time setting. MATERIALS AND METHODS: Intracortical signals were first obtained from electrodes placed in the primary motor cortex of four rats that were trained to hit a retractable paddle (defined as a "Hit"). In the simulated real-time setting, the signal-to-noise-ratio was first increased by wavelet denoising. Action potentials were detected, and features were extracted (spike count, mean absolute values, entropy, and combination of these features) within pre-defined time windows (200 ms, 300 ms, and 400 ms) to classify the occurrence of a "Hit." RESULTS: We found higher detection accuracy of a "Hit" (73.1%, 73.4%, and 67.9% for the three window sizes, respectively) when the decision was made based on a combination of features rather than on a single feature. However, the duration of the window length was not statistically significant (p = 0.5). CONCLUSION: Our results showed the feasibility of detecting a motor task in real time in a less restricted environment compared to environments commonly applied within invasive BCI research, and they showed the feasibility of using information extracted from multiunit recordings, thereby avoiding the time-consuming and complex task of extracting and sorting single units.


Assuntos
Interfaces Cérebro-Computador , Simulação por Computador , Córtex Motor/fisiologia , Movimento/fisiologia , Potenciais de Ação/fisiologia , Animais , Eletroencefalografia , Masculino , Análise Multivariada , Ratos , Ratos Sprague-Dawley , Autocontrole , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA