RESUMO
The Mediterranean region, with its unique ecological characteristics, is particularly sensitive to global environmental changes, including climate change and impact of air pollution. Although Aleppo pine and black pine forests are the most abundant on the eastern Adriatic coast, atmospheric deposition in these forests is poorly studied. Changes in the chemical composition of precipitation as it passes through the tree canopy can lead to soil and groundwater eutrophication, and soil acidification, which affects plant vitality. In this study, the dynamics of ion deposition in Aleppo pine forest (Pinus halepensis Mill.) and black pine forest (Pinus nigra Arnold) on the eastern Adriatic coast are investigated, focusing on throughfall and bulk open field depositions. The aim of our research was to fill the gaps in understanding the influence of tree canopies on deposition fluxes in two different Mediterranean pine stands and to compare total inorganic nitrogen loads with critical loads. Over a period of two years, bulk open field precipitation and throughfall were sampled, measured and analysed using the ICP Forest methodology. The results indicate significant differences in ion deposition between bulk open field and throughfall, with throughfall showing higher values for almost all ions. The highest enrichment ratio was determined for K+. The comparison of the actual inorganic nitrogen load with the critical nitrogen load for Mediterranean pine forests revealed that the inorganic nitrogen load exceeded the critical load in the Aleppo pine forest. Ion deposition increased in the throughfall compared to bulk precipitation, which can be attributed to the seasonality of precipitation, including leaching and long dry periods. These findings enhance our understanding of ion deposition fluxes in vulnerable Mediterranean pine ecosystems and emphasize the need for long-term research on this topic in the actual changing environmental conditions.
RESUMO
Maintenance of asymmetric ion concentrations across cellular membranes is crucial for proper yeast cellular function. Disruptions of these ionic gradients can significantly impact membrane electrochemical potential and the balance of other ions, particularly under stressful conditions such as exposure to acetic acid. This weak acid, ubiquitous to both yeast metabolism and industrial processes, is a major inhibitor of yeast cell growth in industrial settings and a key determinant of host colonization by pathogenic yeast. Acetic acid toxicity depends on medium composition, especially on the pH (H+ concentration), but also on other ions' concentrations. Regulation of ion fluxes is essential for effective yeast response and adaptation to acetic acid stress. However, the intricate interplay among ion balancing systems and stress response mechanisms still presents significant knowledge gaps. This review offers a comprehensive overview of the mechanisms governing ion homeostasis, including H+, K+, Zn2+, Fe2+/3+, and acetate, in the context of acetic acid toxicity, adaptation, and tolerance. While focus is given on Saccharomyces cerevisiae due to its extensive physiological characterization, insights are also provided for biotechnologically and clinically relevant yeast species whenever available.
Assuntos
Ácido Acético , Adaptação Fisiológica , Homeostase , Íons , Saccharomyces cerevisiae , Estresse Fisiológico , Ácido Acético/metabolismo , Ácido Acético/farmacologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Íons/metabolismo , Concentração de Íons de HidrogênioRESUMO
Bacterial ion fluxes are involved in the generation of energy, transport, and motility. As such, bacterial electrophysiology is fundamentally important for the bacterial life cycle, but it is often neglected and consequently, by and large, not understood. Arguably, the two main reasons for this are the complexity of measuring relevant variables in small cells with a cell envelope that contains the cell wall and the fact that, in a unicellular organism, relevant variables become intertwined in a nontrivial manner. To help give bacterial electrophysiology studies a firm footing, in this review, we go back to basics. We look first at the biophysics of bacterial membrane potential, and then at the approaches and models developed mostly for the study of neurons and eukaryotic mitochondria. We discuss their applicability to bacterial cells. Finally, we connect bacterial membrane potential with other relevant (electro)physiological variables and summarize methods that can be used to both measure and influence bacterial electrophysiology.
Assuntos
Potenciais da Membrana , Potenciais da Membrana/fisiologia , Bactérias/metabolismo , Fenômenos Eletrofisiológicos , Fenômenos Fisiológicos BacterianosRESUMO
Bacterial flagellar system (BFS) was the primary example of a purported 'rotary-motor' functionality in a natural assembly. This mandates the translation of a circular motion of components inside into a linear displacement of the cell body outside, which is supposedly orchestrated with the following features of the BFS: (i) A chemical/electrical differential generates proton motive force (pmf, including a trans-membrane potential, TMP), which is electro-mechanically transduced by inward movement of protons via BFS. (ii) Membrane-bound proteins of BFS serve as stators and the slender filament acts as an external propeller, culminating into a hook-rod that pierces the membrane to connect to a 'broader assembly of deterministically movable rotor'. We had disclaimed the purported pmf/TMP-based respiratory/photosynthetic physiology involving Complex V, which was also perceived as a 'rotary machine' earlier. We pointed out that the murburn redox logic was operative therein. We pursue the following similar perspectives in BFS-context: (i) Low probability for the evolutionary attainment of an ordered/synchronized teaming of about two dozen types of proteins (assembled across five-seven distinct phases) towards the singular agendum of rotary motility. (ii) Vital redox activity (not the gambit of pmf/TMP!) powers the molecular and macroscopic activities of cells, including flagella. (iii) Flagellar movement is noted even in ambiances lacking/countering the directionality mandates sought by pmf/TMP. (iv) Structural features of BFS lack component(s) capable of harnessing/achieving pmf/TMP and functional rotation. A viable murburn model for conversion of molecular/biochemical activity into macroscopic/mechanical outcomes is proposed herein for understanding BFS-assisted motility. HIGHLIGHTSThe motor-like functionalism of bacterial flagellar system (BFS) is analyzedProton/Ion-differential based powering of BFS is unviable in bacteriaUncouplers-sponsored effects were misinterpreted, resulting in a detour in BFS researchThese findings mandate new explanation for nano-bio-mechanical movements in BFSA minimalist murburn model for the bacterial flagella-aided movement is proposedCommunicated by Ramaswamy H. Sarma.
Assuntos
Bactérias , Flagelos , Bactérias/metabolismo , Flagelos/química , Flagelos/metabolismo , Força Próton-Motriz , Prótons , Proteínas de Bactérias/metabolismoRESUMO
3D porous Zn-metal anodes have aroused widespread interest for Zn-ion batteries (ZIBs). Nevertheless, the notorious "top-growth" dendrites caused by the intrinsic top-concentrated ions and randomly distributed electrons may ultimately trigger a cell failure. Herein, an electron/ion-flux dual-gradient 3D porous Zn anode is reported for dendrite-free ZIBs by adopting 3D printing technology. The 3D-printed Zn anode with layer-by-layer bottom-up attenuating Ag nanoparticles (3DP-BU@Zn) establishes dual-gradient electron/ion fluxes, i.e., an internal bottom-up gradient electron flux created by bottom-rich conductive Ag nanoparticles, and a gradient ion flux resulting from zincophilic Ag nanoparticles which pump ions toward the bottom. Meanwhile, the 3D-printing-enabled hierarchical porous structure and continuously conducting network endow unimpeded electron transfer and ion diffusion among the electrode, dominating a bottom-preferential Zn deposition behavior. As a result, the 3DP-BU@Zn symmetrical cell affords highly reversible Zn plating/stripping with an extremely small voltage hysteresis of 17.7 mV and a superior lifespan over 630 h at 1 mA cm-2 and 1 mAh cm-2 . Meanwhile, the 3DP-BU@Zn//VO2 full cell exhibits remarkable cyclic stability over 500 cycles. This unique dual-gradient strategy sheds light on the roadmap for the next-generation safe and durable Zn-metal batteries.
RESUMO
Plants are constantly facing abiotic and biotic stresses. To continue to thrive in their environment, they have developed many sophisticated mechanisms to perceive these stresses and provide an appropriate response. There are many ways to study these stress signals in plant, and among them, protoplasts appear to provide a unique experimental system. As plant cells devoid of cell wall, protoplasts allow observations at the individual cell level. They also offer a prime access to the plasma membrane and an original view on the inside of the cell. In this regard, protoplasts are particularly useful to address essential biological questions regarding stress response, such as protein signaling, ion fluxes, ROS production, and plasma membrane dynamics. Here, the tools associated with protoplasts to comprehend plant stress signaling are overviewed and their potential to decipher plant defense mechanisms is discussed.
RESUMO
Transmembrane ion fluxes have earlier been identified as a source of potential instability in solid contact ion-selective electrodes (SC-ISEs). In this work, foamlike structures were intentionally introduced into a potassium-sensitive plasticized poly(vinyl chloride) ion-selective membrane (ISM) near the membrane|solid contact interface by controlling the temperature during membrane deposition. Foamlike structures in the ISM were shown to be effective at physically tailoring the transport of ions in the ion-selective membrane, greatly reducing the flux of interfering ions from the sample to the membrane|solid contact interface. The drifts during a conventional water layer test were hence able to be greatly mitigated, even with SC-ISEs incorporating a relatively hydrophilic poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) solid contact. In solutions with a high background concentration of interfering ions, equilibrated ion-selective electrodes with foamlike membranes were able to reproduce their initial potentials within 0.6 mV uncertainty (n = 3) from 0 to 18 h. This was achieved despite sensor exposure to solutions exceeding the selectivity limit of the ISEs in 3 h intervals, allowing improvement of the potential reproducibility of the sensors. Since the introduction of foamlike structures into ISM is linked to temperature-controlled membrane deposition, it is envisaged that the method is generally applicable to all solid contact ion-selective electrodes that are based on polymeric membranes and require membrane deposition from the cocktail solution.
Assuntos
Eletrodos Seletivos de Íons , Polímeros , Interações Hidrofóbicas e Hidrofílicas , Íons , Reprodutibilidade dos TestesRESUMO
Patients affected by the rare Glanzmann thrombasthenia (GT) suffer from defective or low levels of the platelet-associated glycoprotein (GP) IIb/IIIa, which acts as a fibrinogen receptor, and have therefore an impaired ability to aggregate platelets. Because the procoagulant activity is a dichotomous facet of platelet activation, diverging from the aggregation endpoint, we were interested in characterizing the ability to generate procoagulant platelets in GT patients. Therefore, we investigated, by flow cytometry analysis, platelet functions in three GT patients as well as their ability to generate procoagulant collagen-and-thrombin (COAT) platelets upon combined activation with convulxin-plus-thrombin. In addition, we further characterized intracellular ion fluxes during the procoagulant response, using specific probes to monitor by flow cytometry kinetics of cytosolic calcium, sodium, and potassium ion fluxes. GT patients generated higher percentages of procoagulant COAT platelets compared to healthy donors. Moreover, they were able to mobilize higher levels of cytosolic calcium following convulxin-plus-thrombin activation, which is congruent with the greater procoagulant activity. Further investigations will dissect the role of GPIIb/IIIa outside-in signalling possibly implicated in the regulation of platelet procoagulant activity.
Assuntos
Plaquetas/metabolismo , Trombastenia/metabolismo , Plaquetas/fisiologia , Cálcio/metabolismo , Colágeno/metabolismo , Citometria de Fluxo , Humanos , Ativação Plaquetária/fisiologia , Potássio/metabolismo , Sódio/metabolismo , Trombina/metabolismoRESUMO
Fluxes of monovalent ions through the multiple pathways of the plasma membrane are highly interdependent, and their assessment by direct measurement is difficult or even impossible. Computation of the entire flux balance helps to identify partial flows and study the functional expression of individual transporters. Our previous computation of unidirectional fluxes in real cells ignored the ubiquitous cotransporters NKCC and KCC. Here, we present an analysis of the entire balance of unidirectional Na+, K+, and Cl- fluxes through the plasma membrane in human lymphoid U937 cells, taking into account not only the Na/K pump and electroconductive channels but all major types of cotransporters NC, NKCC, and KCC. Our calculations use flux equations based on the fundamental principles of macroscopic electroneutrality of the system, water balance, and the generally accepted thermodynamic dependence of ion fluxes on the driving force, and they do not depend on hypotheses about the molecular structure of the channel and transporters. A complete list of the major inward and outward Na+, K+, and Cl- fluxes is obtained for human lymphoid U937 cells at rest and during changes in the ion and water balance for the first 4 h of staurosporine-induced apoptosis. It is shown how the problem of the inevitable multiplicity of solutions to the flux equations, which arises with an increase in the number of ion pathways, can be solved in real cases by analyzing the ratio of ouabain-sensitive and ouabain-resistant parts of K+ (Rb+) influx (OSOR) and using additional experimental data on the effects of specific inhibitors. It is found that dynamics of changes in the membrane channels and transporters underlying apoptotic changes in the content of ions and water in cells, calculated without taking into account the KCC and NKCC cotransporters, differs only in details from that calculated for cells with KCC and NKCC. The developed approach to the assessment of unidirectional fluxes may be useful for understanding functional expression of ion channels and transporters in other cells under various conditions. Attached software allows reproduction of all calculated data under presented conditions and to study the effects of the condition variation.
RESUMO
The criticality hypothesis states that a system may be poised in a critical state at the boundary between different types of dynamics. Previous studies have suggested that criticality has been evolutionarily selected, and examples have been found in cortical cell cultures and in the human nervous system. However, no one has yet reported a single- or multi-cell ensemble that was investigated ex vivo and found to be in the critical state. Here, the precise 1/f noise was found for pollen tube cells of optimum growth and for the physiological ("healthy") state of blood cells. We show that the multi-scale processes that arise from the so-called critical phenomena can be a fundamental property of a living cell. Our results reveal that cell life is conducted at the border between order and disorder, and that the dynamics themselves drive a system towards a critical state. Moreover, a temperature-driven re-entrant state transition, manifest in the form of a Lorentz resonance, was found in the fluctuation amplitude of the extracellular ionic fluxes for the ensemble of elongating pollen tubes of Nicotiana tabacum L. or Hyacintus orientalis L. Since this system is fine-tuned for rapid expansion to reach the ovule at a critical temperature which results in fertilisation, the core nature of criticality (long-range coherence) offers an explanation for its potential in cell growth. We suggest that the autonomous organisation of expansive growth is accomplished by self-organised criticality, which is an orchestrated instability that occurs in an evolving cell.
Assuntos
Espaço Extracelular/metabolismo , Modelos Biológicos , Transporte Biológico , Hyacinthus/citologia , Tubo Polínico/citologia , Tubo Polínico/metabolismo , Nicotiana/citologiaRESUMO
Microsorum pteropus has been proven to be a potential novel aquatic Cd hyperaccumulator. In this study, Non-invasive Micro-test Technology (NMT) was used to observe the ion fluxes of different M. pteropus tissues under Cd exposure. M. pteropus can hyperaccumulate more than 1000 mg/kg Cd in roots and leaves and approximately 600 mg/kg Cd in stems after seven days of exposure to 500 µM Cd, showing that this plant have a great capacity for Cd enrichment and resistance. The NMT test found H+ fluxes increased in all tissues after Cd exposure, with the largest increases being observed in stems, followed by the leaves and roots. Cd2+ fluxes showed different accumulation levels in different tissues, with low-level Cd exposure leading to influxes into roots and leaves, and high-level Cd exposure resulting in effluxes from roots. No significant influxes or effluxes were observed in leaves under high-level Cd exposure, or in stems under low- and high-levels of Cd exposure. However, transient high-level Cd exposure showed long-term Cd2+ influxes into roots and short-term Cd2+ effluxes out of stems and leaves. The roots of M. pteropus had greater regulation mechanisms for Cd enrichment and resistance, with influxes occurring following low-level exposure and effluxes occurring from high-level exposure. When exposed to Cd, M. pteropus stems showed less transportation and absorption. Low-level Cd exposure resulted in individual leaves directly absorbing Cd from hydroponic solutions. Different Cd enrichment and resistance mechanisms were exhibited by different M. pteropus tissues.
Assuntos
Cádmio/toxicidade , Polypodiaceae/fisiologia , Poluentes do Solo/toxicidade , Animais , Transporte Biológico , Quirópteros , Hidroponia , Folhas de Planta/fisiologia , Raízes de PlantasRESUMO
Phyllotaxis describes the periodic arrangement of plant organs most conspicuously floral. Oscillators generally underlie periodic phenomena. A hypothetical algorithm generates phyllotaxis regulated by the Hechtian growth oscillator of the stem apical meristem (SAM) protoderm. The oscillator integrates biochemical and mechanical force that regulate morphogenetic gradients of three ionic species, auxin, protons and Ca2+. Hechtian adhesion between cell wall and plasma membrane transduces wall stress that opens Ca2+ channels and reorients auxin efflux "PIN" proteins; they control the auxin-activated proton pump that dissociates Ca2+ bound by periplasmic arabinogalactan proteins (AGP-Ca2+) hence the source of cytosolic Ca2+ waves that activate exocytosis of wall precursors, AGPs and PIN proteins essential for morphogenesis. This novel approach identifies the critical determinants of an algorithm that generates phyllotaxis spiral and Fibonaccian symmetry: these determinants in order of their relative contribution are: (1) size of the apical meristem and the AGP-Ca2+ capacitor; (2) proton pump activity; (3) auxin efflux proteins; (4) Ca2+ channel activity; (5) Hechtian adhesion that mediates the cell wall stress vector. Arguably, AGPs and the AGP-Ca2+ capacitor plays a decisive role in phyllotaxis periodicity and its evolutionary origins.
Assuntos
Sinalização do Cálcio , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Cálcio/metabolismo , Parede Celular/metabolismo , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Mucoproteínas/metabolismo , Periodicidade , Plantas/metabolismoRESUMO
Plant K+ uptake typically consists low-affinity mechanisms mediated by Shaker K+ channels (AKT/KAT/KC) and high-affinity mechanisms regulated by HAK/KUP/KT transporters, which are extensively studied. However, the evolutionary and genetic roles of both K+ uptake mechanisms for drought tolerance are not fully explored in crops adapted to dryland agriculture. Here, we employed evolutionary bioinformatics, biotechnological and electrophysiological approaches to determine the role of two important K+ transporters HvAKT2 and HvHAK1 in drought tolerance in barley. HvAKT2 and HvHAK1 were cloned and functionally characterized using barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) in drought-tolerant wild barley XZ5 and agrobacterium-mediated gene transfer in the barley cultivar Golden Promise. The hallmarks of the K+ selective filters of AKT2 and HAK1 are both found in homologues from strepotophyte algae, and they are evolutionarily conserved in strepotophyte algae and land plants. HvAKT2 and HvHAK1 are both localized to the plasma membrane and have high selectivity to K+ and Rb+ over other tested cations. Overexpression of HvAKT2 and HvHAK1 enhanced K+ uptake and H+ homoeostasis leading to drought tolerance in these transgenic lines. Moreover, HvAKT2- and HvHAK1-overexpressing lines showed distinct response of K+ , H+ and Ca2+ fluxes across plasma membrane and production of nitric oxide and hydrogen peroxide in leaves as compared to the wild type and silenced lines. High- and low-affinity K+ uptake mechanisms and their coordination with H+ homoeostasis play essential roles in drought adaptation of wild barley. These findings can potentially facilitate future breeding programs for resilient cereal crops in a changing global climate.
Assuntos
Secas , Hordeum , Homeostase , Hordeum/genética , Folhas de Planta/genética , Proteínas de Plantas/genéticaRESUMO
Our mathematical model of epithelial transport (Larsen et al. Acta Physiol. 195:171-186, 2009) is extended by equations for currents and conductance of apical SGLT2. With independent variables of the physiological parameter space, the model reproduces intracellular solute concentrations, ion and water fluxes, and electrophysiology of proximal convoluted tubule. The following were shown: 1. Water flux is given by active Na+ flux into lateral spaces, while osmolarity of absorbed fluid depends on osmotic permeability of apical membranes. 2. Following aquaporin "knock-out," water uptake is not reduced but redirected to the paracellular pathway. 3. Reported decrease in epithelial water uptake in aquaporin-1 knock-out mouse is caused by downregulation of active Na+ absorption. 4. Luminal glucose stimulates Na+ uptake by instantaneous depolarization-induced pump activity ("cross-talk") and delayed stimulation because of slow rise in intracellular [Na+]. 5. Rate of fluid absorption and flux of active K+ absorption would have to be attuned at epithelial cell level for the [K+] of the absorbate being in the physiological range of interstitial [K+]. 6. Following unilateral osmotic perturbation, time course of water fluxes between intraepithelial compartments provides physical explanation for the transepithelial osmotic permeability being orders of magnitude smaller than cell membranes' osmotic permeability. 7. Fluid absorption is always hyperosmotic to bath. 8. Deviation from isosmotic absorption is increased in presence of glucose contrasting experimental studies showing isosmotic transport being independent of glucose uptake. 9. For achieving isosmotic transport, the cost of Na+ recirculation is predicted to be but a few percent of the energy consumption of Na+/K+ pumps.
Assuntos
Túbulos Renais Proximais/metabolismo , Modelos Biológicos , Potássio/metabolismo , Sódio/metabolismo , Água , Animais , Aquaporinas , Permeabilidade da Membrana Celular , Camundongos , Camundongos Knockout , Água/metabolismoRESUMO
Anesthetic effect of Aloysia triphylla and Lippia alba essential oils (EOs) in the Amazonian fish Serrasalmus eigenmanni was evaluated. The fish were placed in aquaria containing A. triphylla or L. alba EOs (25 to 200 µL L-1). Then, fish were transferred to aquaria containing EO-free water to evaluate their recovery time. In another experiment, fish were transferred to aquaria containing A. triphylla or L. alba EOs (3 to 10 µL L-1) and swimming behavior was analyzed for up to 240 min of exposure. Water samples were collected at 0 and 240 min and blood samples were collected at 240 min. Tested concentrations induced all stages of anesthesia, except 25 µL L-1 A. triphylla EO and 50 µL L-1 L. alba EO, which only induced sedation. Prolonged exposure to both EOs reduced swimming time compared to the control at all evaluated times. The fish exposed to 3 µL L-1 A. triphylla EO showed a lower net K+ efflux compared to ethanol-exposed fish; in those exposed to 5 µL L-1, ammonia excretion was reduced. The blood parameters did not show significant differences between treatments. In conclusion, both EOs can be used as anesthetics and sedatives for transport of S. eigenmanni.(AU)
Avaliou-se o efeito anestésico dos óleos essenciais de Aloysia triphylla e de Lippia alba no peixe amazônico Serrasalmus eigenmanni. Os peixes foram colocados em aquários contendo OEs de A. triphylla ou L. alba (25 a 200 µL L-1). Após, foram transferidos para aquários com água sem anestésicos para avaliar o tempo de recuperação. Em outro experimento, peixes foram transferidos para aquários contendo OEs de A. triphylla ou L. alba (3 a 10 µL L-1) e o comportamento natatório foi analisado até 240 min de exposição. Foram coletadas amostras de água em 0 e 240 min e de sangue em 240 min. As concentrações testadas induziram todos estágios de anestesia, exceto 25 µL L-1 OE de A. triphylla e 50 µL L-1 OE de L. alba, que causaram somente sedação. Exposição prolongada a ambos OEs reduziu o tempo de natação comparado ao controle. Peixes expostos a 3 µL L-1 OE de A. triphylla apresentaram menor efluxo de K+ comparado aos expostos ao etanol e nos expostos a 5 µL L-1 a excreção de amônia reduziu. Parâmetros sanguíneos não diferiram entre tratamentos. Conclui-se que ambos OEs podem ser utilizados como anestésicos e no transporte de S. eigenmanni.(AU)
Assuntos
Animais , Óleos Voláteis/administração & dosagem , Substâncias Redutoras/análise , Caraciformes , Anestésicos/análiseRESUMO
Harmful algal blooms (HAB) are responsible for massive mortalities of wild and aquacultured fish due to noticeable gill damage, but the precise fish-killing mechanisms remain poorly understood. A non-invasive microelectrode ion flux estimation (MIFE) technique was successfully applied to assess changes in membrane-transport processes in a model fish gill cell line exposed to harmful microplankton. Net Ca2+, H+, K+ ion fluxes in the rainbow trout cell line RTgill-W1 were monitored before and after addition of lysed cells of this Paralytic Shellfish Toxins (PST) producer along with purified endocellular dinoflagellate PST. It was demonstrated that PST alone do not play a role in fish gill damage during A. catenella outbreaks as previously thought, but that other ichthyotoxic metabolites from lysed algal cells (i.e. lipid peroxidation products or other unknown metabolites) result in net K+ efflux from fish gill cells and thereby gill cell death.
Assuntos
Brânquias/patologia , Proliferação Nociva de Algas , Toxinas Marinhas/toxicidade , Microalgas , Animais , Linhagem Celular , Transporte de Íons/efeitos dos fármacos , Microeletrodos , Oncorhynchus mykissRESUMO
Transepithelial electrical measurements in the renal tubule have provided a better understanding of how kidney regulates electrolyte and water homeostasis through the reabsorption of molecules and ions (e.g., H2 O and NaCl). While experiments and measurement techniques using native tissue are difficult to prepare and to reproduce, cell cultures conducted largely with the Ussing chamber lack the effect of fluid shear stress which is a key physiological stimulus in the renal tubule. To overcome these limitations, we present a modular perfusion chamber for long-term culture of renal epithelial cells under flow that allows the continuous and simultaneous monitoring of both transepithelial electrical parameters and transepithelial NaCl transport. The latter is obtained from electrical conductivity measurements since Na+ and Cl- are the ions that contribute most to the electrical conductivity of a standard physiological solution. The system was validated with epithelial monolayers of raTAL and NRK-52E cells that were characterized electrophysiologically for 5 days under different flow conditions (i.e., apical perfusion, basal, or both). In addition, apical to basal chemical gradients of NaCl (140/70 and 70/140 mM) were imposed in order to demonstrate the feasibility of this methodology for quantifying and monitoring in real time the transepithelial reabsorption of NaCl, which is a primary function of the renal tubule.
Assuntos
Técnicas Citológicas/métodos , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Cloreto de Sódio/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Técnicas Citológicas/instrumentação , Modelos Biológicos , RatosRESUMO
This study investigated the anesthetic effect of the essential oils (EOs) from the peel of Citrus x aurantium (EOCA) and Citrus x latifolia (EOCL) on silver catfish Rhamdia quelen. Fish were exposed to different concentrations of EOCA and EOCL to determine time of anesthesia induction and recovery. Induction of anesthesia was observed in all fish exposed to 400, 600 or 800 µL L−1 EOCA and 300, 400 or 500 µL L−1 EOCL. Another group of fish were exposed for 8 h to 50, 100, or 200 µL L−1 of either EOs. Overall, fish exposed to ethanol and both EOs presented higher ventilatory frequencies (VF) than the control group throughout the 8 h of exposure. Net ion (Na+, K+ and Cl−) effluxes and ammonia excretion were significantly lower in fish exposed to 50, 100 or 200 µL L−1 of either EOs compared to control fish. Mortality was 37% in fish exposed to 200 µL L−1 of either EOs after 8 h. These findings suggest that EOCA and EOCL are useful anesthetics and sedatives for Rhamdia quelen, but their usefulness as alternatives to reduce stress in fish transportation at the lower concentrations tested (50-100 µL L−1) deserves further study.(AU)
O efeito anestésico dos óleos essenciais (OEs) da casca de Citrus x aurantium (OECA) e Citrus x latifolia (OECL) em jundiá Rhamdia quelen foi investigado. Os peixes foram expostos a diferentes concentrações de OECA e OECL para determinar o tempo de indução e recuperação da anestesia. Todos peixes expostos a 400, 600 ou 800 µL L−1 OECA e 300, 400 ou 500 µL L−1 OECL foram anestesiados. Outro grupo de peixes foi exposto aos OEs durante 8 h a 50, 100 ou 200 µL L−1. Peixes expostos ao etanol e aos OEs apresentaram VF maior que o grupo controle durante as 8 h de exposição. Os efluxos líquidos de Na+, K+, Cl− e a excreção de amônia foram significativamente menores nos peixes expostos a 50, 100 ou 200 µL L−1 dos OEs em comparação com o grupo controle. A mortalidade foi de 37% nos peixes expostos a 200 µL L−1 de ambos os OEs após 8 h. Os resultados sugerem que OECA e OECL são anestésicos e sedativos úteis para o jundiá, mas sua utilidade como alternativa para reduzir o estresse no transporte de peixes nas concentrações mais baixas testadas (50-100 µL L−1) necessita de estudos adicionais.(AU)
Assuntos
Animais , Óleos Voláteis/toxicidade , Citrus/efeitos adversos , Peixes-Gato/metabolismoRESUMO
Sound is a fundamental form of energy and it has been suggested that plants can make use of acoustic cues to obtain information regarding their environments and alter and fine-tune their growth and development. Despite an increasing body of evidence indicating that it can influence plant growth and physiology, many questions concerning the effect of sound waves on plant growth and the underlying signalling mechanisms remains unknown. Here we show that in Arabidopsis thaliana, exposure to sound waves (200Hz) for 2 weeks induced positive phonotropism in roots, which grew towards to sound source. We found that sound waves triggered very quickly (within minutes) an increase in cytosolic Ca2+, possibly mediated by an influx through plasma membrane and a release from internal stock. Sound waves likewise elicited rapid reactive oxygen species (ROS) production and K+ efflux. Taken together these results suggest that changes in ion fluxes (Ca2+ and K+) and an increase in superoxide production are involved in sound perception in plants, as previously established in animals.
Assuntos
Arabidopsis/fisiologia , Cálcio/metabolismo , Raízes de Plantas/fisiologia , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Som , Membrana Celular/metabolismo , Transdução de SinaisRESUMO
Urea is the most common nitrogen (N) fertilizer in agriculture, due to its cheaper price and high N content. Although the reciprocal influence between NO3- and NH4+ nutrition are well known, urea (U) interactions with these N-inorganic forms are poorly studied. Here, the responses of two tomato genotypes to ammonium nitrate (AN), U alone or in combination were investigated. Significant differences in root and shoot biomass between genotypes were observed. Under AN+U supply, Linosa showed higher biomass compared to UC82, exhibiting also higher values for many root architectural traits. Linosa showed higher Nitrogen Uptake (NUpE) and Utilization Efficiency (NUtE) compared to UC82, under AN+U nutrition. Interestingly, Linosa exhibited also a significantly higher DUR3 transcript abundance. These results underline the beneficial effect of AN+U nutrition, highlighting new molecular and physiological strategies for selecting crops that can be used for more sustainable agriculture. The data suggest that translocation and utilization (NUtE) might be a more important component of NUE than uptake (NUpE) in tomato. Genetic variation could be a source for useful NUE traits in tomato; further experiments are needed to dissect the NUtE components that confer a higher ability to utilize N in Linosa.