Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.906
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39115696

RESUMO

Little is known regarding radiation-induced matrikines and the possible degradation of extracellular matrix following therapeutic irradiation. The goal of this study was to determine if irradiation can cut collagen proteins at specific sites, inducing potentially biologically active peptides against cartilage cells. Chondrocytes cultured as 3D models were evaluated for extracellular matrix production. Bystander molecules were analyzed in vitro in the conditioned medium of X-irradiated chondrocytes. Preferential breakage sites were analyzed in collagen polypeptide by mass spectrometry and resulting peptides were tested against chondrocytes. 3D models of chondrocytes displayed a light extracellular matrix able to maintain the structure. Irradiated and bystander chondrocytes showed a surprising radiation sensitivity at low doses, characteristic of the presence of bystander factors, particularly following 0.1 Gy. The glycine-proline peptidic bond was observed as a preferential cleavage site and a possible weakness of the collagen polypeptide after irradiation. From the 46 collagen peptides analyzed against chondrocytes culture, 20 peptides induced a reduction of viability and 5 peptides induced an increase of viability at the highest concentration between 0.1 and 1 µg/ml. We conclude that irradiation promoted a site-specific degradation of collagen. The potentially resulting peptides induce negative or positive regulations of chondrocyte growth. Taken together, these results suggest that ionizing radiation causes a degradation of cartilage proteins, leading to a functional unbalance of cartilage homeostasis after exposure, contributing to cartilage dysfunction.

2.
Clin Transl Oncol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103729

RESUMO

BACKGROUND: In recent years, evidence has accumulated that a second method of conserving the breast from cancer with re-irradiation as part of treatment may be feasible and safe. Many oncologists are skeptical of breast re-irradiation due to concerns about late complications, so access to quantitative data on the prevalence of breast re-irradiation complications is very important. In this meta-analysis, we determine the prevalence of complications in normal tissue after breast re-irradiation. MATERIALS AND METHODS: A search was done to recognize qualified studies using EMBASE, MEDLINE, PUBMED, Google Scholar, and Cochrane Collaboration Library electronic databases from 2000 to 2023. In total, ten primary studies were applied in this meta-analysis to estimate the prevalence of complications of disorders, skin fibrosis, and chest pain. Heterogeneity was investigated using the I2 index and the meta-regression to evaluate variables suspected of causing heterogeneity. Statistical analysis and synthesis were performed using Stata 17. RESULTS: The average dose received by patients who underwent radiation therapy in two stages was 100.32 Gy, and in these patients, the prevalence of skin fibrosis and disorders was 47% (95% CI 71-22%; I2 = 96.76%, P < 0.001) and the prevalence of chest pain was 35% (95% CI 68-8%; I2 = 98.13%, P < 0.001). CONCLUSIONS: There is little clinical information about the incidence of complications in breast re-irradiation therapy. This meta-analysis presents the prevalence of complications after breast re-irradiation to help radiation oncologists and physicists make better decisions.

3.
BMC Cancer ; 24(1): 953, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103758

RESUMO

BACKGROUND AND PURPOSE: In the context of the widespread availability of magnetic resonance imaging (MRI) and aggressive salvage irradiation techniques, there has been controversy surrounding the use of prophylactic cranial irradiation (PCI) for small-cell lung cancer (SCLC) patients. This study aimed to explore whether regular brain MRI plus salvage brain irradiation (SBI) is not inferior to PCI in patients with limited-stage SCLC (LS-SCLC). METHODS: This real-world multicenter study, which was conducted between January 2014 and September 2020 at three general hospitals, involved patients with LS-SCLC who had a good response to initial chemoradiotherapy and no brain metastasis confirmed by MRI. Overall survival (OS) was compared between patients who did not receive PCI for various reasons but chose regular MRI surveillance and followed salvage brain irradiation (SBI) when brain metastasis was detected and patients who received PCI. RESULTS: 120 patients met the inclusion criteria. 55 patients received regular brain MRI plus SBI (SBI group) and 65 patients received PCI (PCI group). There was no statistically significant difference in median OS between the two groups (27.14 versus 33.00 months; P = 0.18). In the SBI group, 32 patients underwent whole brain radiotherapy and 23 patients underwent whole brain radiotherapy + simultaneous integrated boost. On multivariate analysis, only extracranial metastasis was independently associated with poor OS in the SBI group. CONCLUSION: The results of this real-world study showed that MRI surveillance plus SBI is not inferior to PCI in OS for LS-SCLC patients who had a good response to initial chemoradiotherapy.


Assuntos
Neoplasias Encefálicas , Irradiação Craniana , Neoplasias Pulmonares , Imageamento por Ressonância Magnética , Terapia de Salvação , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/radioterapia , Carcinoma de Pequenas Células do Pulmão/diagnóstico por imagem , Carcinoma de Pequenas Células do Pulmão/mortalidade , Carcinoma de Pequenas Células do Pulmão/patologia , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Idoso , Irradiação Craniana/métodos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/mortalidade , Estudos Retrospectivos , Estadiamento de Neoplasias , Adulto , Quimiorradioterapia/métodos
4.
Int J Biol Macromol ; 277(Pt 3): 134384, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098683

RESUMO

This study aimed to develop hydrogel dressings for wound healing composed of gum tragacanth (TG) and polyvinyl alcohol (PVA) loaded with Graphene oxide (GO) and Cinnamon oil (CMO) using electron beam irradiation. The impact of the preparation conditions and the incorporation of GO and CMO on the characteristic properties of the prepared CMO-(PVA/TG)-GO wound dressings was evaluated. The healing-related characteristics were assessed, including fluid absorption and retention, water vapor transmission rate (WVTR), hemolytic assay, and antimicrobial potential. Wound healing efficacy was evaluated using a scratch wound healing assay. FTIR analysis verified the chemical structure, whereas scanning electron microscopy demonstrated an appropriate porosity structure necessary for optimal wound healing. The gel content increases with the initial total polymer concentration and the irradiation dose increases. Higher GO and CMO content improve the gel content and decreases swelling. WVTR decreases with the rise in CMO content. In vitro, cytotoxicity and hemolytic potency assessments confirmed their biocompatibility. The incorporation of GO and CMO enhances the antimicrobial activity and wound-healing capability. Based on the above findings, CMO-(PVA/TG)-GO dressings show promising potential as candidates for wound care.

5.
Environ Sci Ecotechnol ; 22: 100455, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39114557

RESUMO

Harmful cyanobacterial blooms (HCBs) pose a global ecological threat. Ultraviolet C (UVC) irradiation at 254 nm is a promising method for controlling cyanobacterial proliferation, but the growth suppression is temporary. Resuscitation remains a challenge with UVC application, necessitating alternative strategies for lethal effects. Here, we show synergistic inhibition of Microcystis aeruginosa using ultraviolet A (UVA) pre-irradiation before UVC. We find that low-dosage UVA pre-irradiation (1.5 J cm-2) combined with UVC (0.085 J cm-2) reduces 85% more cell densities compared to UVC alone (0.085 J cm-2) and triggers mazEF-mediated regulated cell death (RCD), which led to cell lysis, while high-dosage UVA pre-irradiations (7.5 and 14.7 J cm-2) increase cell densities by 75-155%. Our oxygen evolution tests and transcriptomic analysis indicate that UVA pre-irradiation damages photosystem I (PSI) and, when combined with UVC-induced PSII damage, synergistically inhibits photosynthesis. However, higher UVA dosages activate the SOS response, facilitating the repair of UVC-induced DNA damage. This study highlights the impact of UVA pre-irradiation on UVC suppression of cyanobacteria and proposes a practical strategy for improved HCBs control.

6.
Radiother Oncol ; 199: 110471, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127406

RESUMO

BACKGROUND AND PURPOSE: The quality of the Cone Beam Computed Tomography (CBCT) images used for patient set-up is essential to avoid geographical miss when narrower margins or shorter fractionation are used for example in Accelerated Partial Breast Irradiation (APBI). This study evaluates deep inspiration breath hold (DIBH) with skin guided radiotherapy as a tool for image improvement reducing motion artifacts. MATERIALS AND METHODS: Daily CBCT images of left and right breast cancer patients with well-defined surgical cavity on CT simulation were used for this study. Only left sided CBCT were acquired with DIBH. Trained and experienced radiation therapists were asked to evaluate the image quality using a cavity visualization score (CVS), an image quality Likert score, and to perform registration shifts. Images were anonymized and therapists were blinded to the use of DIBH. RESULTS: Images from 21 patients, with 15 CBCT each, were evaluated by 6 radiation therapists, generating 4,015 evaluation points. Statistically significant improvements were observed in CVS and image quality (p < 0.001) with DIBH. Also, the rate of surgical cavity identification increased to 76 % with DIBH compared to 56 % without (p < 0.001). DIBH significantly reduced the inter-observer variability in registration shift corrections (p < 0.001) CONCLUSION: Utilizing DIBH for motion control improves both the image quality and the surgical cavity identification. This results in a decrease in registration variability, which is important for APBI accuracy.

7.
Front Immunol ; 15: 1365946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131155

RESUMO

Introduction: Humanized mouse models to recapitulate human biological systems still have limitations, such as the onset of lethal graft-versus-host disease (GvHD), a variable success rate, and the low accessibility of total body irradiation (TBI). Recently, mice modified with the CD47-SIRPA axis have been studied to improve humanized mouse models. However, such trials have been rarely applied in NOD mice. In this study, we created a novel mouse strain, NOD-CD47nullRag2nullIL-2rγnull (RTKO) mice, and applied it to generate humanized mice. Methods: Four-week-old female NOD-Rag2nullIL-2rγnull (RID) and RTKO mice pre-conditioned with TBI or busulfan (BSF) injection were used for generating human CD34+ hematopoietic stem cell (HSC) engrafted humanized mice. Clinical signs were observed twice a week, and body weight was measured once a week. Flow cytometry for human leukocyte antigens was performed at intervals of four weeks or two weeks, and mice were sacrificed at 48 weeks after HSC injection. Results: For a long period from 16 to 40 weeks post transplantation, the percentage of hCD45 was mostly maintained above 25% in all groups, and it was sustained the longest and highest in the RTKO BSF group. Reconstruction of human leukocytes, including hCD3, was also most prominent in the RTKO BSF group. Only two mice died before 40 weeks post transplantation in all groups, and there were no life-threatening GvHD lesions except in the dead mice. The occurrence of GvHD has been identified as mainly due to human T cells infiltrating tissues and their related cytokines. Discussion: Humanized mouse models under all conditions applied in this study are considered suitable models for long-term experiments based on the improvement of human leukocytes reconstruction and the stable animal health. Especially, RTKO mice pretreated with BSF are expected to be a valuable platform not only for generating humanized mice but also for various immune research fields.


Assuntos
Bussulfano , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Camundongos Endogâmicos NOD , Camundongos Knockout , Condicionamento Pré-Transplante , Animais , Bussulfano/farmacologia , Humanos , Camundongos , Transplante de Células-Tronco Hematopoéticas/métodos , Condicionamento Pré-Transplante/métodos , Células-Tronco Hematopoéticas/metabolismo , Feminino , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/deficiência , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/imunologia , Modelos Animais de Doenças , Irradiação Corporal Total
8.
Angew Chem Int Ed Engl ; : e202413774, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136239

RESUMO

Developing sustainable energy solutions is critical for addressing the dual challenges of energy demand and environmental impact. In this study, a zinc-nitrate (Zn-NO3-) battery system was designed for the simultaneous production of ammonia (NH3) via the electrocatalytic NO3- reduction reaction (NO3RR) and electricity generation. Continuous wave CO2 laser irradiation yielded precisely controlled CoFe2O4@nitrogen-doped carbon (CoFe2O4@NC) hollow nanocubes from CoFe Prussian blue analogs (CoFe-PBA) as the integral electrocatalyst for NO3RR in 1.0-M KOH, achieving a remarkable NH3 production rate of 10.9 mgh-1cm-2 at -0.47 V versus RHE with exceptional stability. In-situ and ex-situ methods revealed that the CoFe2O4@NC surface transformed into high-valent Fe/CoOOH active-species, optimizing the adsorption energy of NO3RR (*NO2 and *NO species) intermediates. Furthermore, DFT calculations validated the possible NO3RR pathway on CoFe2O4@NC starting with NO3- conversion to *NO2 intermediates, followed by reduction to *NO. Subsequent protonation forms the *NH and *NH2 species, leading to NH3 formation via final protonation. The Zn-NO3- battery utilizing the CoFe2O4@NC cathode exhibits dual functionality by generating electricity with a stable open-circuit voltage of 1.38-V versus Zn/Zn2+ and producing NH3. This study inspires the simple design of low-cost catalysts for NO3RR-to-NH3 conversion and positions the Zn-NO3- battery as a promising technology for industrial applications.

9.
Transplant Cell Ther ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39122188

RESUMO

BACKGROUND: Allogeneic hematopoietic cell transplantation (HCT) remains the only curative treatment for most patients with hematological malignancies. A well-matched donor (related or unrelated) remains as the preferred donor for patients undergoing allogeneic HCT; however, a large number of patients rely on alternative donor choices of mismatched related (haploidentical) or unrelated donors to access HCT. In this retrospective study, we described outcomes of patients who underwent mismatched donor (related or unrelated) HCT with radiation-based MAC regimen in combination with FLU, and PTCy as higher intensity GVHD prophylaxis. We analyzed outcomes based on donor type. METHODS: We retrospectively assessed HCT outcomes in 155 patients who underwent mismatched donor HCT [related/haploidentical vs unrelated (MMUD)] with fractionated-total body irradiation (FTBI) plus fludarabine and post-transplant cyclophosphamide (PTCy) as graft-versus-host disease (GVHD) prophylaxis at City of Hope from 2015 to 2021. Diagnoses included ALL (46.5%), AML (36.1%) and MDS (6.5%). The median age at HCT was 38 years and 126 (81.3%) patients were from ethnic minorities. HCT-CI was ≥3 in 36.1% and 29% had a disease-risk-index (DRI) of high/very high. Donor type was haplo (67.1%) or MMUD (32.9%). RESULTS: At 2-years post-HCT, disease-free survival (DFS) and overall survival (OS) for all subjects were 75.4% and 80.6%, respectively. Donor type did not impact OS [HR=0.72, (95% CI: 0.35,1.49), p=0.37] and DFS [HR=0.78, (95% CI: 0.41,1.48), p=0.44] but younger donors resulted in less grade III-IV acute GVHD (aGVHD, [HR=6.60, (95% CI: 1.80,24.19), p=0.004] and less moderate or severe chronic GVHD [HR=3.53, (95% CI: 1.70,7.34), p<0.001] with a trend toward better survival (p=0.099). MMUD led to significantly faster neutrophil (median 15 vs 16 days, p=0.014) and platelet recovery (median 18 vs 24 days, p=0.029); however, there was no difference in GVHD outcomes between these groups. Non-relapse mortality [HR=0.86, (95% CI: 0.34,2.20), p=0.76] and relapse risk [HR=0.78, 95%CI: (0.33,1.85), p=0.57] were comparable between the two groups. Patient age <40-years and low-intermediate DRI showed a DFS benefit (p=0.004 and 0.029, respectively). High or very High DRI was the only predictor of increased relapse [HR=2.89, 95%CI: (1.32, 6.34), p=0.008]. CONCLUSION: In conclusion, FLU/FTBI with PTCy was well-tolerated in mismatched donor HCT, regardless of relationship with patient, provided promising results, and improved access to HCT for patients without a matched donor especially patients from ethnic minorities and mixed race.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39110152

RESUMO

Given that the original tumor microenvironment of oral cancer cannot be reproduced, predicting the therapeutic effects of irradiation using monolayer cultures and animal models of ectopic tumors is challenging. Unique properties of carbon-ion irradiation (CIR) characterized by the Bragg peak exert therapeutic effects on tumors and prevent adverse events in surrounding normal tissues. However, the underlying mechanism remains unclear. The biological effects of CIR were evaluated on three-dimensional (3D) in vitro models of normal oral mucosa (NOMM) and oral cancer (OCM3 and OCM4) consisting of HSC-3 and HSC-4 cells. A single 10- or 20-Gy dose of CIR was delivered to NOMM, OCM3, and OCM4 models. Histopathological and histomorphometric analyses and labeling indices for Ki-67, γH2AX, and TUNEL were examined after CIR. The concentrations of high mobility group box 1 (HMGB1) were measured. NOMM exhibited epithelial thinning after CIR, which could be caused by the decreased presence of Ki-67-labeled basal cells. The relative proportion of the thickness of cancer cells to the underlying stroma in cancer models decreased after CIR. This finding appeared to be supported by changes in the three labeling indices, indicating CIR-induced cancer cell death, mostly via apoptosis. Furthermore, the three indices and the HMGB1 release levels significantly differed among the OCM4 that received different doses and with different incubation times after CIR while those of the OCM3 models did not, suggesting more radiosensitivity in the OCM4. The three 3D in vitro models can be a feasible and novel tool to elucidate radiation biology.

11.
Pediatr Blood Cancer ; : e31185, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118225

RESUMO

Historically, total body irradiation (TBI) has been delivered using static, parallel opposed photon beams (2D-TBI). Recently, centers have increasingly used intensity-modulated radiation therapy (IMRT) techniques for TBI. Relative to 2D-TBI, IMRT can reduce doses to critical organs (i.e., lungs and kidneys) while delivering myeloablative doses to the rest of the body, so it may decrease the risk of toxicity while maintaining oncologic outcomes. Despite these potential benefits, delivering TBI using IMRT introduces new challenges in treatment planning and delivery. We describe the extensive experience with IMRT-based TBI at Stanford University and City of Hope Cancer Center. These groups, and others, have reported favorable clinical outcomes and have developed methods to optimize treatment planning and delivery. A critical next step is to evaluate the broader adoption of this approach. Therefore, IMRT-based TBI will be incorporated into a prospective, multi-institutional Children's Oncology Group study with careful procedures and safeguards in place.

12.
ACS Nano ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118372

RESUMO

cGAS/STING pathway, which is highly related to tumor hypoxia, is considered as a potential target for remodeling the immunosuppressive microenvironment of solid tumors. Metal ions, such as Mn2+, activate the cGAS/STING pathway, but their efficacy in cancer therapy is limited by insufficient effect on immunogenic tumor cell death of a single ion. Here, we evaluate the association between tumor hypoxia and cGAS/STING inhibition and report a polymetallic-immunotherapy strategy based on large mesoporous trimetal-based nanozyme (AuPdRh) coordinated with Mn2+ (Mn2+@AuPdRh) to activate cGAS/STING signaling for robust adaptive antitumor immunity. Specifically, the inherent CAT-like activity of this polymetallic Mn2+@AuPdRh nanozyme decomposes the endogenous H2O2 into O2 to relieve tumor hypoxia induced suppression of cGAS/STING signaling. Moreover, the Mn2+@AuPdRh nanozyme displays a potent near-infrared-II photothermal effect and strong POD-mimic activity; and the generated hyperthermia and •OH radicals synergistically trigger immunogenic cell death in tumors, releasing abundant dsDNA, while the delivered Mn2+ augments the sensitivity of cGAS to dsDNA and activates the cGAS-STING pathway, thereby triggering downstream immunostimulatory signals to kill primary and distant metastatic tumors. Our study demonstrates the potential of metal-based nanozyme for STING-mediated tumor polymetallic-immunotherapy and may inspire the development of more effective strategies for cancer immunotherapy.

13.
Front Oncol ; 14: 1382220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139283

RESUMO

Small cell lung cancer (SCLC) is the most malignant pathological type of lung cancer with the highest mortality, and the incidence of brain metastasis (BM) is in high frequency. So far, prophylactic cranial irradiation (PCI) has been suggested as an effective treatment for preventing brain metastasis of SCLC. PCI has long been applied to limited-stage SCLC (LS-SCLC) patients who have achieved complete remission after radiotherapy and chemotherapy as a standard treatment. However, the neurocognitive decline is a major concern surrounding PCI. New therapeutic approaches targeting PCI-induced neurotoxicity, including hippocampal protection or memantine, have been increasingly incorporated into the therapeutic interventions of PCI. Helical tomotherapy, RapidArc, and Volumetric-modulated arc therapy (VMAT) with a head-tilting baseplate are recommended for hippocampal protection. Besides, in the MRI and immunotherapy era, the significance of PCI in SCLC patients is controversial. SCLC patients with PCI should be recruited in clinical trials since this is the only way to improve the existing standard of care. This review summarizes the current therapeutic strategy and dilemma over PCI for SCLC, providing a theoretical basis for clinical decision-making and suggestions for PCI practice in clinical.

14.
Int J Part Ther ; 13: 100623, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39139470

RESUMO

Purpose: Single vocal cord irradiation (SVCI) is a promising technique to maintain excellent oncologic control and potentially improve upon toxicities for treatment of early-stage glottic squamous cell carcinomas. We sought to investigate whether pencil beam scanning (PBS) proton therapy could improve upon the already favorable dose gradients demonstrated with volumetric modulated arc therapy (VMAT) SVCI. Patients and Methods: A 64-year-old gentleman was treated in our department with 6X-flattening filter-free VMAT SVCI to 58.08 Gy in 16 fractions for a T1a well-differentiated squamous cell carcinoma of the left true vocal cord and tolerated it well with good local control. Comparative PBS plans were created in Raystation for the Varian ProBeam with clinical target volume (CTVs) generated to mimic the prescription target volume extent of the VMAT planning target volumes when accounting for PBS plan robustness (±3 mm translational shifts, 3.5% density perturbation). A 3-field single-field optimization plan was selected as dosimetrically preferable. Dosimetric variables were compared. Results: Several organs at risk doses improved with PBS, including the maximum and mean dose to ipsilateral carotids, maximum and mean dose to contralateral carotid, maximum dose to the spinal cord, maximum and mean dose to inferior constrictor/cricopharyngeus, maximum and mean dose to the uninvolved vocal cord, and mean dose to the thyroid gland. There are tradeoffs in skin dose depending on location relative to the target-with the highest and lowest isodoses extending more into the skin with the VMAT plan but with the moderate isodose lines covering a wider area with the PBS plan, but we deemed it tolerable regardless. Conclusion: SVCI is a promising strategy for maintaining the oncologic effectiveness of whole-larynx photon radiation while potentially improving upon the historic toxicity profile. The favorable dose distribution with PBS with respect to organs at risk dosimetry for PBS may allow for further improvements upon VMAT SVCI strategies. Clinical implementation of PBS SVCI may be considered.

15.
Res Sq ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39108471

RESUMO

Evidence shows that ultra-high dose-rate FLASH-radiotherapy (FLASH-RT) protects against normal tissue complications and functional decrements in the irradiated brain. Past work has shown that radiation-induced cognitive impairment, neuroinflammation and reduced structural complexity of granule cell neurons were not observed to the same extent after FLASH-RT (> MGy/s) compared to conventional dose-rate (CONV, 0.1 Gy/s) delivery. To explore the sensitivity of different neuronal populations to cranial irradiation and dose-rate modulation, hippocampal CA1 and medial prefrontal cortex (PFC) pyramidal neurons were analyzed by electron and confocal microscopy. Neuron ultrastructural analyses by electron microscopy after 10 Gy FLASH- or CONV-RT exposures indicated that irradiation had little impact on dendritic complexity and synapse density in the CA1, but did increase length and head diameter of smaller non-perforated synapses. Similarly, irradiation caused no change in PFC prelimbic/infralimbic axospinous synapse density, but reductions in non-perforated synapse diameters. While irradiation resulted in thinner myelin sheaths compared to controls, none of these metrics were dose-rate sensitive. Analysis of fluorescently labeled CA1 neurons revealed no radiation-induced or dose-rate-dependent changes in overall dendritic complexity or spine density, in contrast to our past analysis of granule cell neurons. Super-resolution confocal microscopy following a clinical dosing paradigm (3×10Gy) showed significant reductions in excitatory vesicular glutamate transporter 1 and inhibitory vesicular GABA transporter puncta density within the CA1 that were largely dose-rate independent. Collectively, these data reveal that, compared to granule cell neurons, CA1 and mPFC neurons are more radioresistant irrespective of radiation dose-rate.

16.
Sensors (Basel) ; 24(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39123932

RESUMO

To study the physical property effects of the laser on GaInP/GaAs/Ge solar cells and their sub-cell layers, a pulsed laser with a wavelength of 532 nm was used to irradiate the solar cells under various energy conditions. The working performance of the cell was measured with a source meter. The electroluminescence (EL) characteristics were assessed using an ordinary and an infrared camera. Based on the detailed balance theory, in the voltage characteristics of an ideal pristine cell, the GaInP layer made the most significant voltage contribution, followed by the GaAs layer, with the Ge layer contributing the least. When a bias voltage was applied to the pristine cell, the top GaInP cell emitted red light at 670 nm, the middle GaAs cell emitted near-infrared light at 926 nm, and the bottom Ge cell emitted infrared light at 1852 nm. In the experiment, the 532 nm laser wavelength within the response spectrum bands of the GaInP layer and the laser passed through the glass cover slip and directly interacted with the GaInP layer. The experimental results indicated that the GaInP layer first exhibited different degrees of damage under laser irradiation, and the cell voltage was substantially attenuated. The GaInP/GaAs/Ge solar cell showed a decrease in electrical and light emission characteristics. As the laser energy increased, the cell's damage intensified, gradually leading to a loss of photoelectric conversion capability, the near-complete disappearance of red light emission, and a gradual degradation of near-infrared emission properties. The EL imaging revealed varying damage states across the triple-junction gallium arsenide solar cell's sub-cells.

17.
Materials (Basel) ; 17(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124310

RESUMO

Materials applied in nuclear environments such as fission or fusion power-plants face severe conditions. The irradiation by neutrons induces thermal loads and irradiation damage. Furthermore, coolants in contact with the materials induce corrosion, which is particularly challenging for liquid salts intended for the next generation of fission reactors. A new device (DICE) is installed at the 3.5 MV accelerator at DIFFER for the accelerated testing of such materials under combined irradiation and corrosion conditions. The DICE enables irradiation of samples at temperatures of up to 1050 K and in contact with liquid salts. An integrated shielding and a low power temperature control concept based on radiation cooling enables high-duty cycle application in a standard accelerator laboratory. Ion currents of up to 30 µA are possible with continuous irradiation. This work outlines the technical concept of the device and presents the first data.

18.
AME Case Rep ; 8: 81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091543

RESUMO

Background: Subungual exostosis is a type of heterotopic ossification, which often has unclear margins. Therefore, marginal resection may cause recurrence and wide resection is sometimes required to achieve a complete cure. However, wide resection may cause postoperative nail deformity and revision of this deformity is generally difficult. The primary treatment of subungual exostosis is surgical treatment, and there have been no comprehensive reports on the efficacy of adjunctive treatments. Although postoperative electron beam irradiation has been successfully used after heterotopic ossification excision to prevent recurrence, there are no reports on the use of this procedure following subungual exostosis resection. Case Description: Herein, we report a case of refractory subungual exostosis that developed as a result of chronic irritation and inflammation caused by an ingrown nail and recurred after initial resection. We performed marginal resection of the lesion to preserve the nail matrix and nail bed as possible, a two-stage skin grafting procedure, and electron-beam irradiation to prevent recurrence. Conclusions: Excellent results were achieved both in terms of complete cure and cosmetic appearance, suggesting that electron-beam irradiation following refractory subungual exostosis excision may help prevent its recurrence. We expect a further study including many cases of subungual exostosis treated with postoperative electron-beam irradiation to be conducted.

19.
J Econ Entomol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093635

RESUMO

Radioisotope irradiators (using cesium-137 or cobalt-60) are used as sources of ionizing radiation to control quarantine or phytosanitary insect pests in internationally traded fresh commodities and to sterilize insects used in sterile insect release programs. There are institutional initiatives to replace isotopic irradiators (producing γ-rays) with lower-energy X-ray machines due to concerns about radiological terrorism and increasingly stringent regulations on the movement of radioisotopes. Questions remain about whether the biological effects of low-energy X-rays are comparable to those of γ-rays since differences in energy levels and dose rates of X-rays may have different efficacies. We compared adult emergence, flight ability, and adult survival in the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritdae), after irradiation of third instar larvae with 100 kV or 5 MeV (5,000 kV) X-rays at 20 and 40 Gy in replicated studies. At 20 Gy, the adult emergence rate was significantly lower after irradiation with 100 kV compared to 5 MeV X-rays, suggesting higher efficacy at the lower energy level. In a follow-up study using 100 kV X-rays, applying 20 Gy using a slow dose rate (0.24 Gy min-1) resulted in significantly higher adult emergence than did a fast dose rate (3.3 Gy min-1), suggesting lower efficacy. Although our study suggests higher efficacy of low energy 100 kV X-rays, there is uncertainty in measuring the dose from an X-ray tube operating at 100 kV using an ionization chamber; we discuss how this uncertainty may change the interpretation of the results. Using a 100 kV X-ray irradiator to develop a phytosanitary treatment may underestimate the dose required for insect control using commercial high-energy γ-ray or X-ray systems.

20.
Ultramicroscopy ; 265: 114019, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39094366

RESUMO

Beside its main purpose as a high-end tool in material analysis reaching the atomic scale for structure, chemical and electronic properties, aberration-corrected scanning transmission electron microscopy (STEM) is increasingly used as a tool to manipulate materials down to that very same scale. In order to obtain exact and reproducible results, it is essential to consider the interaction processes and interaction ranges between the electron beam and the involved materials. Here, we show in situ that electron beam-induced etching in a low-pressure oxygen atmosphere can extend up to a distance of several nm away from the Ångström-size electron beam, usually used for probing the sample. This relatively long-range interaction is related to beam tails and inelastic scattering involved in the etching process. To suppress the influence of surface diffusion, we measure the etching effect indirectly on isolated nm-sized holes in a 2 nm thin amorphous carbon foil that is commonly used as sample support in STEM. During our experiments, the electron beam is placed inside the nanoholes so that most electrons cannot directly participate in the etching process. We characterize the etching process from measuring etching rates at multiple nanoholes with different distances between the hole edge and the electron beam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA