RESUMO
The mercury pollution status in the northwestern Sea of Okhotsk remains largely unexplored. In this study, hair samples were collected from 40 bearded seals harvested between August and October 2021 in the region. Total mercury (THg) concentrations in the samples exhibited a wide range from 137 to 1885 ng/g (median: 407 ng/g). While no significant differences in THg concentrations were found between male and female seals, distinctions were observed between young and potentially mature seals. Stable nitrogen isotope analysis indicated that juveniles and mature adults did not differ, although sample sizes were limiting. The higher THg concentrations in juveniles were attributed to variations in the seals' diets and/or variations in foraging locations during the juvenile stage which likely contribute to THg differences due to greater seasonal migration to offshore habitats. Notably, THg levels in bearded seals from the northwestern Sea of Okhotsk were lower in comparison to other pinniped species in the North Pacific. These findings, representing the first dataset for this pinniped species in the Russian segment of its habitat, contribute insights into mercury exposure in the Sea of Okhotsk mammalian population.
Assuntos
Monitoramento Ambiental , Cabelo , Mercúrio , Isótopos de Nitrogênio , Focas Verdadeiras , Animais , Mercúrio/análise , Isótopos de Nitrogênio/análise , Cabelo/química , Feminino , Masculino , Poluentes Químicos da Água/análiseRESUMO
The determination of serum concentrations of testosterone (T) and 4-androstenedione (A4) was implemented into the steroidal module of the Athlete Biological Passport in 2023. Monitoring T, A4, and the ratio of T/A4 in a longitudinal manner enables the detection of the misuse of low-dose T administrations especially in female athletes, whereas urinary markers of the steroid profile may not be influenced significantly. In contrast to the urinary steroid profile, knowledge on confounding factors regarding serum concentrations of T and A4 is yet comparably scarce, and corroborating exogenous sources of the target analytes by isotope ratio mass spectrometry (IRMS) is desirable. In a recent study, it was demonstrated that carbon isotope ratios (CIRs) of serum steroids can be determined if analyte concentrations permit. The therein-employed method utilized 2D-GC/IRMS, and only a limited number of potential endogenous reference compounds were available. The here-presented approach uses complementary analyte purification strategies, addressing previous limitations. A high-performance liquid chromatography cleanup was developed and fully validated for serum steroids in order to enable all doping control laboratories to potentially implement this method alongside existing protocols for urinary steroids. Besides the already-investigated endogenous steroids cholesterol, dehydroepiandrosterone sulfate, androsterone sulfate, and epiandrosterone sulfate, two additional steroids were included in the test menu, namely, pregnenolone sulfate and 5-androstene-3ß,17ß-diol sulfate. Serum steroid concentrations down to 25 ng/mL were found to allow robust CIR determinations, and a reference population encompassing 124 male and female athlete samples was investigated to enable the calculation of population-based thresholds for all relevant steroid combinations.
RESUMO
Mercury concentrations remain elevated in sediments and biota of the Wabigoon River downstream from Dryden, Ontario, the home of a former chlor-alkali plant. Understanding the current extent and severity of mercury contamination downstream of this industrial legacy site is of great importance in managing the mercury contamination within the traditional territory of Asubpeeschoseewagong Anishinabek (Grassy Narrows First Nation), located downstream of Dryden. The objective of this study was to use mercury stable isotope ratio analysis to distinguish between legacy mercury from the former chlor-alkali plant and mercury from geogenic sources. Mercury concentrations in surface sediments and biota downstream of the historical source of mercury discharge are elevated relative to the chosen reference location, Wabigoon Lake (WL). Mean sediment mercury levels were as high as 3.27 µg/g at the hydroelectric dam location compared to 0.05-0.10 µg/g at Wabigoon Lake sediments. Isotope ratios in aquatic biota and sediments collected from within the system were distinct from Wabigoon Lake, indicating that anthropogenic mercury contamination is distinguishable from geogenic mercury. Average δ202Hg values of -2.46 ± 0.41 observed in sediments of WL were consistently more negative compared to downstream values, which varied from -1.34 to 0.30 . Young-of-the-year Yellow Perch and Hexagenia were found to have significantly more positive δ202Hg values downstream from Wabigoon Lake.
Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Isótopos de Mercúrio , Mercúrio , Rios , Poluentes Químicos da Água , Mercúrio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Rios/química , Sedimentos Geológicos/química , Isótopos de Mercúrio/análise , Ontário , Animais , Lagos/química , Organismos Aquáticos/metabolismoRESUMO
The COVID-19 pandemic has profoundly impacted human activities and the environment globally. The lockdown measures have led to significant changes in industrial activities, transportation, and human behavior. This study investigates how the lockdown measures influenced the distribution of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Chaohu Lake, a semi-enclosed lake. Surface sediment samples were collected in summer of 2020 (lockdown have just been lifted) and 2022 and analyzed for 16 priority PAHs. The range of ΣPAHs concentrations remained similar between 2020 (158.19-1693.64 ng·g-1) and 2022 (148.86-1396.54 ng·g-1). Among the sampling sites, the west lake exhibited similar PAHs concentrations characteristics over the two years, with higher levels observed in areas near Hefei City. However, the east lake exhibited increased ΣPAHs concentrations in 2022 compared to 2020, especially the area near ship factory. PAHs source analysis using principal component analysis-multiple linear regression (PCA-MLR) revealed an increased proportion of petroleum combustion sources in 2022 compared to 2020. The isotope analysis results showed that organic matter (OM) sources in the western lake remained relatively stable over the two years, with sewage discharge dominating. In contrast, the eastern lake experienced a shift in OM sources from sewage to C3 plants, potentially contributing to the increased PAH levels observed in the eastern lake sediments. Ecological risk assessment revealed low to moderate risk in both 2020 and 2022. Health risk evaluation indicated little difference in incremental lifetime cancer risk (ILCR) values between the two years, with only benzo[a]pyrene (BaP) posing a high risk among the carcinogenic PAHs. Children generally faced higher health risks compared to adults. This study reveals pandemic-induced changes in PAH pollution and sources in lake sediments, offering new insights into the impact of human activities on persistent organic pollutants, with implications for future pollution control strategies.
Assuntos
COVID-19 , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Lagos/química , Sedimentos Geológicos/química , COVID-19/epidemiologia , Poluentes Químicos da Água/análise , HumanosRESUMO
Urban horticulture poses a sustainable form of food production, fosters community engagement and mitigates the impacts of climate change on cities. Yet, it can also be tied to health challenges related to soil contamination. This work builds on a previous study conducted on eleven urban gardens in the city of Vienna, Austria. Following the findings of elevated Pb levels in some soil and plant samples within that project, the present study investigates the elemental composition of soil and plants from two affected gardens 1 year after compost amendment. Inductively coupled plasma mass spectrometry (ICP-MS) analysis of skin, pulp and seeds of tomato fruits revealed minor variations in elemental composition which are unlikely to have an impact on food safety. In turn, a tendency of contaminant accumulation in root tips and leaves of radishes was found. Washing of lettuce led to a significant reduction in the contents of potentially toxic elements such as Be, Al, V, Ni, Ga and Tl, underscoring the significance of washing garden products before consumption. Furthermore, compost amendments led to promising results, with reduced Zn, Cd and Pb levels in radish bulbs. Pb isotope ratios in soil and spinach leaf samples taken in the previous study were assessed by multi-collector (MC-) ICP-MS to trace Pb uptake from soils into food. A direct linkage between the Pb isotopic signatures in soil and those in spinach leaves was observed, underscoring their effectiveness as tracers of Pb sources in the environment.
Assuntos
Compostagem , Poluentes do Solo , Solo , Verduras , Poluentes do Solo/análise , Solo/química , Verduras/química , Jardins , Áustria , Monitoramento Ambiental , Cidades , Isótopos/análiseRESUMO
Honey adulteration represents a worldwide problem, driven by the illicit economic gain that producers, traders, or merchants pursue. Among the falsification methods that can unfairly influence the price is the incorrect declaration of the botanical origin and harvesting year. Therefore, the present study aimed to test the potential given by the application of Artificial Neural Networks (ANNs) for developing prediction models able to assess honey botanical origin and harvesting year based on isotope and elemental fingerprints. For each classification criterion, significant focus was dedicated to the data preprocessing phase to enhance the models' prediction capability. The obtained classification performances (accuracy scores >86% during the test phase) have highlighted the efficiency of ANNs for honey authentication as well as the feasibility of applying the developed classifiers for a large-scale application, supported by their ability to recognize the correct origin despite considerable variability in botanical source, geographical origin, and harvesting period.
Assuntos
Mel , Redes Neurais de Computação , Mel/análise , Contaminação de Alimentos/análiseRESUMO
Understanding the impact of human activities on the metabolic state of soil and aquatic environments is of paramount importance to implement measures for maintaining ecosystem services. Variations of natural abundance 18O/16O ratios in phosphate have been proposed as proxies for the holistic assessment of metabolic activity given the crucial importance of phosphoryl transfer reactions in fundamental biological processes. However, instrumental and procedural limitations inherent to oxygen isotope analysis in phosphate and organophosphorus compounds have so far limited the stable isotope-based evaluation of metabolic processes. Here, we discuss how recent developments in Orbitrap high resolution mass spectrometry enable measurements of 18O/16O ratios in phosphate and outline the critical mass spectrometry parameters for accurate and precise analysis. Subsequently, we evaluate the types of 18O kinetic isotope effects of phosphoryl transfer reactions and illustrate how novel analytical approaches will give rise to an improved understanding of 18O/16O ratio variations from biochemical processes affecting the microbial phosphorus metabolism.
Assuntos
Isótopos de Oxigênio , Fosfatos , Isótopos de Oxigênio/metabolismo , Isótopos de Oxigênio/análise , Fosfatos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Bactérias/metabolismoRESUMO
A wet chemical oxidation (WCO) method has been widely used to obtain the dissolved organic carbon (DOC) content and carbon isotope (δ13CDOC) ratios. However, it is sometimes difficult to get high precision results because not enough CO2 was oxidized from the natural water samples with low DOC concentrations. This improvement primarily aims to increase the water sample volume, improve the removal rate of dissolved inorganic carbon (DIC), and minimize the blank DOC from the standard solution. Following the improved procedure, the δ13C ratios of standardized DOC solutions were consistent with their actual values, and their differences were less than 0.2. The improved method demonstrated good accuracy and stability when applied to natural water samples with DOC concentrations ≥0.5 mg L-1, with the precisions of DOC concentrations and δ13C ratios were better than 0.07 mg L-1 and 0.1, respectively. More importantly, this method saved much pre-treatment time and realized batch processing of water samples to obtain their DOC contents and isotope ratios.
Assuntos
Isótopos de Carbono , Carbono , Isótopos de Carbono/análise , Carbono/química , Carbono/análise , Água/química , OxirreduçãoRESUMO
Although lead (Pb) poisoning in wild birds has been considered a serious problem in Japan for over 30 years, there is little information about Pb exposure and its sources throughout Japan except for Hokkaido. Furthermore, to identify and effectively prioritize the conservation needs of highly vulnerable species, differences in sensitivity to Pb exposure among avian species need to be determined. Therefore, we investigated the current situation of Pb exposure in raptors (13 species, N = 82), waterfowl (eight species, N = 44) and crows (one species, N = 6) using concentration and isotope analysis. We employed blood or tissue samples collected in various Japanese facilities mainly in 2022 or 2023. We also carried out a comparative study of blood δ-ALAD sensitivity to in vitro Pb exposure using blood of nine avian species. Pb concentrations in the blood or tissues displayed increased levels (>0.1 µg/g blood) in two raptors (2.4%), ten waterfowl (23%) and one crow (17%). Among them, poisoning levels (>0.6 µg/g blood) were found in one black kite and one common teal. The sources of Pb isotope ratios in ten blood samples with high Pb levels were determined as deriving from shot pellets (N = 9) or rifle bullets (N = 1). In the δ-ALAD study, red-crowned crane showed the highest sensitivity among the nine tested avian species and was followed in order by five Accipitriformes species (including white-tailed and Steller's sea eagle), Blakiston's fish owl, Muscovy duck and chicken, suggesting a genetically driven variance in susceptibility. Further studies on contamination conditions and exposure sources are urgently needed to inform strict regulations on the usage of Pb ammunition. Furthermore, detailed examinations of δ-ALAD sensitivity, interspecific differences, and other factors involved in the variability in sensitivity to Pb are required to identify and prioritize highly sensitive species.
Assuntos
Aves , Poluentes Ambientais , Chumbo , Aves Predatórias , Animais , Chumbo/sangue , Chumbo/metabolismo , Japão , Aves Predatórias/metabolismo , Poluentes Ambientais/sangue , Aves/metabolismo , Monitoramento Ambiental/métodos , Intoxicação por Chumbo/veterinária , Exposição Ambiental/estatística & dados numéricos , CorvosRESUMO
Adrenosterone (Androst-4-ene-3,11,17-trione, 11OXO) is forbidden in sports according to the Prohibited List of the World Anti-Doping Agency. The administration of 11OXO may be detected by monitoring the urinary concentrations of its main human metabolites 11ß-hydroxy-androsterone and 11ß-hydroxy-etiocholanolone. Preliminary urinary concentration and concentration ratio thresholds have been established for sports drug testing purposes, but adaptations are desirable as the suggested limits would result in numerous suspicious findings due to naturally elevated concentrations and ratios. Recently, the metabolism of 11-oxo-testosterone (KT) was investigated in the context of anti-doping research, resulting in a preliminary urinary concentration threshold and a confirmation procedure based on the determination of carbon isotope ratios (CIRs). Gas chromatography coupled to isotope ratio mass spectrometry was employed to investigate the CIRs of selected steroids. As KT is also a metabolite of 11OXO, the developed protocols for KT have been tested to elucidate their potential to detect the administration of 11OXO after a single oral dose of 100 mg. In order to further improve the analytical approach, the threshold for urinary concentrations of KT was re-investigated by employing a reference population of n = 5232 routine doping control samples. Quantification of urinary steroids was conducted by employing gas chromatography coupled to triple quadrupole mass spectrometry. Derived from these, a subset of n = 106 samples showing elevated concentrations of KT was investigated regarding their CIRs. By means of this, potentially positive samples due to the illicit administration of 11OXO or KT could be excluded, and the calculation of reference population-derived thresholds for the concentrations and CIR of KT was possible. Based on the results, the urinary concentration threshold for KT is suggested to be established at 130 ng/mL.
RESUMO
This study looked at the application of multiple bulk stable isotope ratio analysis to accurately authenticate organic rice and counteract organic fraud within the expanding global organic market. Variations of δ13C, δ15N, δ18O, and δ34S in organic, pesticide-free, and conventional rice were assessed across different milling states (brown, milled, and bran). Individual stable isotope ratio alone such as δ15N demonstrated limited capacity to correctly differentiate organic, pesticide-free, and conventional rice. A support vector machine model-incorporating δ13C, δ15N, δ18O, and δ34S in milled rice-yielded overall predictability (95%) in distinguishing organic, pesticide-free, and conventional rice, where δ18O emerged as the pivotal variable based on the feature weights in the SVM model. These findings suggest the potential of multi-isotope and advanced statistical approaches in combating organic fraud and ensuring authenticity in the food supply chain.
RESUMO
Marine bony fish are important participants in Earth's carbon cycle through their contributions to the biological pump and the marine inorganic carbon cycle. However, uncertainties in the composition and magnitude of fish contributions preclude their integration into fully coupled carbon-climate models. Here, we consider recent upwards revisions to global fish biomass estimates (2.7-9.5×) and provide new stable carbon isotope measurements that show marine fish are prodigious producers of carbonate with unique composition. Assuming the median increase (4.17×) in fish biomass estimates is linearly reflected in fish carbonate (ichthyocarbonate) production rate, marine fish are estimated to produce between 1.43 and 3.99 Pg CaCO3 yr-1, but potentially as much as 9.03 Pg CaCO3 yr-1. Thus, marine fish carbonate production is equivalent to or potentially higher than contributions by coccolithophores or pelagic foraminifera. New stable carbon isotope analyses indicate that a significant proportion of ichthyocarbonate is derived from dietary carbon, rather than seawater dissolved inorganic carbon. Using a statistical mixing model to derive source contributions, we estimate ichthyocarbonate contains up to 81 % dietary carbon, with average compositions of 28-56 %, standing in contrast to contents <10 % in other biogenic carbonate minerals. Results also indicate ichthyocarbonate contains 5.5-40.4 % total organic carbon. When scaled to the median revised global production of ichthyocarbonate, an additional 0.08 to 1.61 Pg C yr-1 can potentially be added to estimates of fish contributions to the biological pump, significantly increasing marine fish contributions to total surface carbon export. Our integration of geochemical and physiological analyses identifies an overlooked link between carbonate production and the biological pump. Since ichthyocarbonate production is anticipated to increase with climate change scenarios, due to ocean warming and acidification, these results emphasize the importance of quantitative understanding of the multifaceted role of marine fish in the global carbon cycle.
Assuntos
Carbono , Carbonatos , Animais , Humanos , Carbono/metabolismo , Carbonatos/química , Água do Mar/química , Isótopos de Carbono/metabolismo , Dióxido de Carbono/metabolismo , Peixes/metabolismo , Ciclo do Carbono , Proteínas de Membrana Transportadoras/metabolismo , Oceanos e MaresRESUMO
Hongyuan yak milk is a protected geographical indication (PGI) product of rich nutritional value, which is popular among consumers. Stable isotope ratio analysis (SIRA) is an effective way to protect the authenticity of the geographical origin of PGI products, and it is crucial to study the factors affecting stable isotopes. Firstly, we proved that the SIRA could be used to identify the geographical origin of Hongyuan yak milk, and that the identification accuracy in combination with δ13C and δ18O was 100 %. Secondly, we analyzed the effect of sampling selection on the stable isotopes of Hongyuan yak milk in practical applications, which showed that sampling time influenced the δ13C, δ2H, and δ18O, while the sampling locations did not. There were interactions between the effect of sampling time and location on δ2H and δ18O. These results provide a reliable method for identifying PGI products and also provide new guidance on sampling models.
Assuntos
Isótopos , Leite , Animais , Bovinos , Leite/química , Isótopos de Carbono/análise , Isótopos de Oxigênio/análise , Isótopos/análise , Geografia , Isótopos de Nitrogênio/análiseRESUMO
Phenethylamine (PEA) is a naturally occurring trace amine that acts as a modulator in the central nervous system. It is widely sold as a dietary supplement and advertised for its mood enhancing effects and should support weight loss. It is prohibited in sports and itemized as a stimulant on the Prohibited List issued by the World Anti-Doping Agency (WADA). After oral administration of PEA, its urinary concentration is found only slightly elevated while metabolites of PEA show a significant increase. Besides 2-(2-hydroxyphenyl)acetamide sulfate, especially phenylacetylglutamine (PAG) was found at significantly elevated urinary concentrations after the administration. Due to large inter- and intra-individual variations in urinary concentrations of all metabolites, establishing a concentration or concentration ratio-based threshold remained complicated to unambiguously identify post-administration samples. In accordance with the approach employed in detecting testosterone misuse, the applicability of isotope ratio mass spectrometry to differentiate between endogenously elevated concentrations and PEA administrations was investigated. A method encompassing solid-phase extraction combined with acetylation and high-performance liquid chromatography (HPLC)-based clean-up was developed and validated for PEA. The more abundant metabolite PAG was purified by a direct injection approach on the HPLC and could be analyzed without the need for derivatization. Both methods were validated considering applicable WADA regulations. A reference population encompassing n = 57 samples was investigated to establish population-based thresholds considering the carbon isotope ratios (CIRs) found at natural abundance for PAG. The derived threshold was tested for its applicability by re-analysis of numerous post-administration samples encompassing single- and multi-dose trials.
RESUMO
Hypomagnesemia was historically prevalent in individuals with type 1 diabetes mellitus (T1DM), but contemporary results indicate an incidence comparable to that in the general population, likely due to improved treatment in recent decades, resulting in better glycemic control. However, a recent study found a significant difference between the serum Mg isotopic composition of T1DM individuals and controls, indicating that disruptions to Mg homeostasis persist. Significant deviations were also found in samples taken one year apart. To investigate whether the temporal variability in serum Mg isotopic composition is linked to the transient impact of administered insulin, Mg isotope ratios were determined in serum from 15 T1DM individuals before and one hour after insulin injection/meal consumption using multi-collector inductively coupled plasma-mass spectrometry. Consistent with results of the previous study, significant difference in the serum Mg isotopic composition was found between T1DM individuals and 10 sex-matched controls. However, the average difference between pre- and post-insulin injection/meal T1DM samples of 0.05 ± 0.13‱ (1SD) was not significant. No difference was observed for controls before (-0.12 ± 0.16‱) and after the meal (-0.10 ± 0.13‱) either, suggesting a lack of a postprandial Mg isotopic response within one hour of food consumption, and that the timing of the most recent meal may not require controlling for when determining serum Mg isotopic composition.
Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Isótopos , Magnésio , Insulina , Insulina Regular HumanaRESUMO
In this study, eight potential toxic elements (PTEs) and stable isotope ratios (δ13C and δ15N) were analyzed in three dominant fish species of the Beibu Gulf, namely Saurida tumbil, Pennahia macrocephalus and Upeneus sulphureus. The mean contents (mg/kg, dry weight) of As, Cd, Cr, Cu, Mn, Ni, Pb and Zn in the three species of fish were 10.94, 0.11, 0.55, 2.00, 5.80, 0.47, 0.39, 41.70, respectively. Cr, Mn and Pb showed potential biomagnification effects in fish bodies while Cu and Zn were biodiluted through the food chain. The results of the health risk assessment showed that the total hazard quotient (THQ) ranged from 0.11 to 0.32 and 1.34 to 1.70 and the total carcinogenic risk (TCR) ranged from 5.44 × 10-4 to 1.35 × 10-3 and 6.35 × 10-3 to 1.57 × 10-2 for adults and children, respectively. These results suggest that consumption of the three fish species by adults lead to carcinogenic health risks and consumption of the three fish species by children would result in significant adverse health effects.
Assuntos
Metais Pesados , Animais , Adulto , Criança , Humanos , Metais Pesados/análise , Chumbo , Monitoramento Ambiental/métodos , Peixes , Medição de Risco , ChinaRESUMO
To evaluate potential metal emissions from offshore wind farms (OWFs), 215 surface sediment samples from different German North Sea OWFs taken between 2016 and 2022 were analyzed for their mass fractions of metals and their isotopic composition of Sr. For the first time, this study provides large-scale elemental data from OWFs of the previously proposed galvanic anode tracers Cd, Pb, Zn, Ga and In. Results show that mass fractions of the legacy pollutants Cd, Pb and Zn were mostly within the known variability of North Sea sediments. At the current stage the analyzed Ga and In mass fractions as well as Ga/In ratios do not point towards an accumulation in sediments caused by galvanic anodes used in OWFs. However, further investigations are advisable to evaluate long-term effects over the expected lifetime of OWFs, especially with regard to the current intensification of offshore wind energy development.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Fontes Geradoras de Energia , Mar do Norte , Cádmio , Chumbo , Vento , Eletrodos , Sedimentos Geológicos , Monitoramento Ambiental , Poluentes Químicos da Água/análiseRESUMO
This study introduces a novel methodology for utilizing historic built environments as reliable long-term geochemical archives, addressing a gap in the reconstruction of past anthropogenic pollution levels in urban settings. For the first time, we employ high-resolution laser ablation mass spectrometry for lead isotope (206Pb/207Pb and 208Pb/206Pb) analysis on 350-year-old black crust stratigraphies found on historic built structures, providing insights into past air pollution signatures. Our findings reveal a gradual shift in the crust stratigraphy toward lower 206Pb/207Pb and higher 208Pb/206Pb isotope ratios from the older to the younger layers, indicating changes in lead sources over time. Mass balance analysis of the isotope data shows black crust layers formed since 1669 primarily contain over 90% Pb from coal burning, while other lead sources from a set of modern pollution including but not limited to leaded gasoline (introduced after 1920) become dominant (up to 60%) from 1875 onward. In contrast to global archives such as ice cores that provide integrated signals of long-distance pollution, our study contributes to a deeper understanding of localized pollution levels, specifically in urban settings. Our approach complements multiple sources of evidence, enhancing our understanding of air pollution dynamics and trends, and the impact of human activities on urban environments.
Assuntos
Poluição do Ar , Monitoramento Ambiental , Humanos , Monitoramento Ambiental/métodos , Chumbo/análise , Poluição Ambiental/análise , Poluição do Ar/análise , Isótopos/análise , Isótopos/químicaRESUMO
Nitrate is a significant constituent of the total nitrogen pool in shallow aquifers and poses an escalating threat to groundwater resources, making it crucial to comprehend the source, conversion, and elimination of nitrogen using appropriate techniques. Although dual-isotope dynamics in nitrate have been widely used, uncertainties remain regarding the asynchronously temporal changes in δ18O-NO3- and δ15N-NO3- observed in hypoxic aquifers. This study aimed to investigate changes in nitrogen sources and transformations using temporal changes in field-based NO3- isotopic composition, hydro-chemical variables, and environmental DNA profiling, as the groundwater table varied. The results showed that the larger enrichment in δ18O-NO3- (+13) compared with δ15N-NO3- (-2) on average during groundwater table rise was due to a combination of factors, including high 18O-based atmospheric N deposition, canopies nitrification, and soil nitrification transported vertically by rainfalls, and 18O-enriched O2 produced through microbial and root respiration within denitrification. The strong association between functional gene abundance and nitrogen-related indicators suggests that anammox was actively processed with nitrification but in small bacterial population during groundwater table rise. Furthermore, bacterial species associated with nitrogen-associated gradients provided insight into subsurface nitrogen transformation, with Burkholderiaceae species and Pseudorhodobacter potentially serving as bioindicators of denitrification, while Candidatus Nitrotogn represents soil nitrification. Fluctuating groundwater tables can cause shifts in hydro-chemical and isotopic composition, which in turn can indicate changes in nitrogen sources and transformations. These changes can be used to improve input sources for mixture models and aid in microbial remediation of nitrate.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Nitrogênio/análise , Nitratos/análise , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/química , Solo/química , ChinaRESUMO
In this work, chloride ions were used as conservative tracers and supplemented with conservative amounts of chloroethenes (PCE, TCE, Cis-DCE, 1,1-DCE), chloroethanes (1,1,1-TCA, 1,1-DCA), and the carbon isotope ratios of certain compounds, the most representative on the sites studied, which is a novelty compared to the optimization methods developed in the scientific literature so far. A location of the potential missing sources is then proposed in view of the balances of the calculated mixing fractions. A test of the influence of measurement errors on the results shows that the uncertainties in the calculation of the mixture fractions are less than 11%, indicating that the source identification method developed is a robust tool for identifying sources of chlorinated solvents in groundwater.