Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(9): 9164-9171, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30747511

RESUMO

Metal-organic frameworks (MOFs), as newly emerging materials, show compelling intrinsic structural features, e.g., the highly crystalline nature and designable and tunable porosity, as well as tailorable functionality, rendering them suitable for proton-conducting materials. The proton conduction of MOF is significantly improved using the postsynthesis or encapsulation strategy. In this work, the MOF-based proton-conducting material Im@MOF-808 has been prepared by incorporating the imidazole molecules into the pores of proton-conducting MOF-808. Compared with MOF-808, Im@MOF-808 not only possesses higher proton conductivity of 3.45 × 10-2 S cm-1 at 338 K and 99% RH, superior to that of any imidazole-encapsulated proton-conducting materials reported to date, but also good durable and stable proton conduction. Moreover, the thermal stability of H-bond networks is much improved owing to the water molecules partially replaced by higher boiling point imidazole molecules. Additionally, it is further discussed for the possible mechanism of imidazole encapsulation into the pores of MOF-808 to enhance proton conduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA